
MARKOV CHAIN MONTE CARLO ALGORITHMS USING

COMPLETELY UNIFORMLY DISTRIBUTED DRIVING

SEQUENCES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF STATISTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Seth D. Tribble

June 2007

c© Copyright by Seth D. Tribble 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Art Owen) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Trevor Hastie)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Simon Jackman)

Approved for the University Committee on Graduate Studies.

iii

Abstract

The advantage of low-discrepancy sequences in lieu of random numbers for simple

independent Monte Carlo sampling is well-known. This procedure, known as quasi-

Monte Carlo (QMC), yields an integration error that decays at a superior rate to

that obtained by IID sampling, by the Koksma-Hlawka inequality. For the class of

Markov chain Monte Carlo (MCMC) samplers, little literature has been produced

examining the use of low-discrepancy sequences, and previous experiments have of-

fered no theoretical validation for this practice. The central result in this work is

the establishment of conditions under which low-discrepancy sequences can be used

for consistent MCMC estimation. This condition of completely uniform distribution

(CUD) applies to a series of sequences that look like full outputs of a small random

number generator. A strategy for the incorporation of these sequences into a general

MCMC sampling scheme is thoroughly developed here, with attention to the preser-

vation of the CUD condition. The use of these sequences in a few MCMC examples

shows reductions in estimate error that are most significant in Gibbs samplers. From

these examples, the empirical benefits of CUD sequences in MCMC sampling are im-

mense, although no analog of the Koksma-Hlawka inequality has been produced for

MCMC to provide a general theoretical corroboration of these improvements.

iv

Acknowledgments

I would like to thank:

• Art Owen for his excellent mentorship and inspiration in bringing this material

forward

• Trevor Hastie, Simon Jackman, Wing Wong and Guenther Walther for providing

a wide range of perspective on the work done and its broader potential

• David Vansuch, Emily Tribble, Gail Tribble and David Tribble for their unwa-

vering support

• The Department of Defense

• The National Science Foundation

This work has been supported by the National Defense Science and Engineering

Graduate Fellowship and by National Science Foundation grants DMS-0604939 and

DMS-0306612.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 New Results . 4

2 Background 5

2.1 Simple Monte Carlo Estimation . 5

2.1.1 Random Number Generation 7

2.1.2 Transformations . 8

2.2 Quasi-Monte Carlo . 10

2.2.1 Low-discrepancy Sequences: Examples 13

2.3 Markov Chain Monte Carlo . 16

2.3.1 Metropolis-Hastings Algorithms 16

2.3.2 Gibbs Sampling . 19

3 Foundation: MCQMC 21

3.1 MCQMC Notation . 22

3.2 Completely Uniform Distribution . 24

vi

3.3 The Main Consistency Theorem . 27

4 CUD Sequences in Practice 33

4.1 Low Discrepancy . 33

4.2 Useful Lemmas . 35

4.3 Triangular Arrays . 38

4.4 Liao’s Method . 40

4.5 Random Number Generators Revisited 41

4.5.1 The Korobov Lattice . 43

4.5.2 Linear Feedback Shift Register Generators 47

5 Algorithm Implementation 52

5.1 Populating the Variate Matrix . 52

5.1.1 The LFSR Case . 54

5.1.2 The MCG Case . 56

5.2 Randomization . 57

5.2.1 The LFSR Case . 57

5.2.2 The MCG Case . 59

5.2.3 The Issue of Bias . 60

5.3 Acceptance/Rejection Sampling . 62

5.4 The Final Variate Matrix Expression 63

6 MCQMC Examples 65

6.1 Toy Problems . 65

6.2 A Bayes Model . 70

6.3 Probit Regression Model . 73

6.4 A Larger Metropolis-Hastings Algorithm 76

vii

7 Conclusion 82

7.1 Future Directions . 82

7.1.1 Functional ANOVA . 83

7.1.2 Smoothing the Metropolis Algorithm 85

7.1.3 General implementation . 88

A Jordan Measurability 89

A.1 Construction . 89

A.2 Empirical Measure . 92

B Auxiliary Graphs 95

Bibliography 99

viii

List of Tables

2.1 Acceptance/Rejection Sampling Algorithm 9

2.2 Metropolis-Hastings Algorithm . 17

2.3 Gibbs Sampler . 20

6.1 Mean Square Error, Random Walk 66

6.2 Mean Square Error, Independence . 67

6.3 Mean Square Error, Gaussian Gibbs Sampler 69

6.4 MSE Reduction Factors, Gaussian Gibbs Sampler 69

6.5 Pump failure data . 71

6.6 Variances of posterior mean estimates, Bayes model 74

6.7 Minimum and maximum variance reduction factors, Bayes model . . 75

6.8 VRFs of posterior mean estimates, probit model 77

6.9 Confidence Intervals for True MSE Reduction 77

7.1 Smoothed Metropolis-Hastings . 86

ix

List of Figures

2.1 2-dimensional integration lattices . 15

2.2 Halton sequence projections . 16

3.1 Lag plot of van der Corput sequence. 25

4.1 Projections of successive values from an LFSR generator 51

5.1 Lag plot for generator skipping methods 55

6.1 Boxplots of mean estimates for Probit model, β0 78

6.2 Boxplots of mean estimates for Probit model, β1 79

6.3 Boxplots of mean estimates for Probit model, β2 80

B.1 Samples of β from the Bayes model, IID Gibbs 96

B.2 Samples of β from the Bayes model, MCG Gibbs 97

B.3 Samples of β from the Bayes model, LFSR Gibbs 98

x

Chapter 1

Introduction

The practice of Markov chain Monte Carlo is one whose theoretical validation has ex-

isted since the seminal paper of Metropolis et al [29] in 1953 (and in greater generality

from Hastings [12] in 1970). At that time, the need was present to simulate sample

values from a distribution that could not be sampled directly. As computing power

grows and complex data structures become more manageable, Markov chain Monte

Carlo is likely to become a more familiar tool to those analyzing these data. The

general Metropolis-Hastings algorithm (of which Gibbs sampling is a special case) is

almost synonymous with Markov chain Monte Carlo, and its traditional justification

relies on the assumption of the use independent uniform variables. The assumption

that we can create truly independent and uniformly distributed variables is sustain-

able for problems of ample size, thanks to advances in random number generation.

The research on Markov chain Monte Carlo and the research on quasi-Monte Carlo,

in which independent uniform sampling is replaced by the use of a point sequence

chosen to approximate the uniform distribution more closely, have been almost ex-

clusively separate. It is easy to believe that the delicate framework that guarantees

1

CHAPTER 1. INTRODUCTION 2

the consistency of the Metropolis-Hastings algorithm would be difficult to maintain

through a sequence of chosen points, because the samples are now dependent, and, to

a diminishing degree as one looks further in the past, the current state of the Markov

chain is influenced by the variates used in any previous step.

Most of the sparse previous efforts to put QMC points in a Markov chain sampler

or a sequential Monte Carlo method (such as particle filters or Brownian path sam-

pling) do so in a way that the statistical dependence of successive points in a QMC

sequence is not carried over to statistical dependence among successive values used to

simulate the chain (see [35] and [34]). Liao [23] runs a Gibbs sampler using a QMC

point to drive each step, but the order of the points is randomized. Chaudary [5]

uses QMC to weight the sample points from a Metropolis-Hastings algorithm by a

neighboring point, but the underlying chain is still simulated by IID sampling. Some

important aspects of the work here draw inspiration from recent efforts of Niederre-

iter [32], who first proposed the full output of a small random number generator as a

QMC rule, and of Lemieux and L’Écuyer [21], who use such a sequence on the simu-

lation of an infinite-dimensional process. Markov chain Monte Carlo is equivalent to

infinite-dimensional sampling using an overlapping sequence of variates.

The central goal of this work is the development of a theory that justifies the use

of these full-period outputs of small random number generators in MCMC. There is

some intuition that this strategy may work: because the marginal dependence on the

past of a sample point in an MCMC algorithm decays, a nice distribution among the

values close together in the driving sequence of the chain is most essential. This “nice

distribution” is the goal of a good random number generator.

This work begins with a cursory background on Monte Carlo, quasi-Monte Carlo

and Markov chain Monte Carlo in Chapter 2, with particular focus on the aspects

CHAPTER 1. INTRODUCTION 3

of the process suited to the goals above. Chapters 3 and 4 establish a necessary

and sufficient consistency condition on the use of non-IID point sets in an arbitrary

Metropolis-Hastings sampler; this condition is quite restrictive, but fortunately the

method of using small random number generators satisfies the condition for the classes

of generators examined. For a single infinite sequence, this condition is called a

completely uniform distribution (CUD), in which the blocks of s consecutive values

form a sequence whose empirical distribution approaches the uniform distribution

on the s-dimensional hypercube for ALL dimensions s. The proof that this yields

consistent estimates is from Owen & Tribble [37], and it generalizes work of Chentsov

[6] on a simpler Markov chain construction. Chapter 4 begins to develop a strategy for

using the full RNG sequences discussed above. In Chapter 5, this strategy culminates

in a closed form for the variate sequence recommended for use in driving the MCMC

algorithm.

All experiments and results appear in Chapter 6. A reader who is not so familiar

with Markov chain Monte Carlo or the central results of [37] is encouraged to refer

to these examples to facilitate understanding of the method and its motivations.

What is not present in this work is a rate of convergence for the estimation proce-

dure given above. This is perhaps the largest obstacle to a widespread acceptance of

this method. As is shown in the simulation results, particularly for the Gibbs sam-

pler, the performance of the full RNG output sequences is markedly better than that

of IID sample points at times, even for problems of much larger dimension than is

guaranteed by the theoretical bounds. This is similar to the use of quasi-Monte Carlo

in a simple independent sampling scheme, where the Koksma-Hlawka inequality pro-

vides an error rate highly sensitive to the dimension of the sampling space. Just as in

the independence scenario, there are ways to codify the improvement beyond these

CHAPTER 1. INTRODUCTION 4

conservative bounds using a functional ANOVA decomposition, as is done in [41] and

[25]. Still, it is a loftier task to produce a single useful rate of estimate convergence

in the Markov chain setting.

1.1 New Results

Much of the paper is a restatement or slight expansion of the results in [37] and [42].

The following new results are the most significant:

1. The entire discussion of Tausworthe and linear feedback shift register generator

sequences, its incorporation into the framework of CUD arrays, and multiple

strategies for its randomization, in Sections 4.5.2 and 5.2

2. A safe scheme for a more smooth use of the generator sequence, such that error

cancellation is augmented, as discussed in Section 5.1

3. A more careful demonstration that the randomized CUD arrays of interest are

array-WCUD, in Section 5.2

4. A more complex Metropolis-Hastings example where the method is not as nice,

in Section 6.4

5. A smoother Metropolis-Hastings-type algorithm introduced in Section 7.1.2

The first two items are the most essential in the advancement of the method

beyond what is seen in [37] or [42]. The last item is interesting, but there is still

much exploratory work to be done to see if the method provides a general advantage.

Chapter 2

Background

The purpose of this section is both to make the reader familiar with the fundamental

aspects of Markov chain Monte Carlo (MCMC) algorithms and quasi-Monte Carlo

(QMC) techniques and to introduce notation of significant use throughout this work.

2.1 Simple Monte Carlo Estimation

We are given a probability distribution π on a state space S, and a function f : S → R.

The task of Monte Carlo estimation is to construct an estimate of Eπ[f(X)] (X

is a π-distributed random variable on S). Frequently an explicit solution for this

expectation is readily obtained. This state space S will be discrete or continuous in

all cases examined here, and in these respective circumstances, we denote by π(ω)

the probability mass function or density function of the distribution π at a state ω.

In cases where S is R or a Jordan measurable subset of R and the function f is

well-behaved, classical quadrature methods are a clear choice for the estimation of

Eπ[f(X)], when an analytical solution is unavailable. In cases where S is a space

5

CHAPTER 2. BACKGROUND 6

of considerably larger dimension, the number of function evaluations required to im-

plement the analogous quadrature is far larger. The increased difficulty of basic

quadrature in higher dimensions can be codified through the rate of decay of the

quadrature error; if ǫn is the absolute error of an estimate of Eπ[f(X)] based on an

n-point quadrature rule for a well-behaved function f , we note that the rate of decay

of ǫn is far slower for higher dimensions (most methods yield error rate O(n−r/d) for

some constant r). Simple Monte Carlo estimation is a randomized procedure that is

clearly beneficial in high dimensions, as the absolute error of the estimate is Op(n
−1/2)

for a state space of any dimension (assuming f has finite variance over π). In simple

Monte Carlo, we generate a sequence of values X(1), . . . , X(n) with the practically

sustainable assumption that these values are mutually independent and that each Xi

has distribution π. In this case we take as our Monte Carlo estimate of Eπ[f(X)] the

sample mean of f over our generated point set:

1

n

n
∑

i=1

f(X(i)) ≈ Eπ[f(X)] (2.1.1)

Fundamental results in probability and statistics validate this procedure given the

assumption that the point set really is an IID π-distributed sample. The strong law

of large numbers guarantees almost sure (a.s.) consistency of our estimate:

1

n

n
∑

i=1

f(X(i)) → Eπ[f(X)] a.s. (2.1.2)

In terms of finding the error rate, we note by the Central Limit Theorem that when

f has finite variance σ2 over π,

CHAPTER 2. BACKGROUND 7

√
n

[

1

n

n
∑

i=1

f(X(i))

]

L−→ N(0, σ2). (2.1.3)

Hence the absolute error of our Monte Carlo estimate is Op(n
−1/2). Only in cases

where f is unbounded but a.s. finite can the task of determining whether f is of finite

variance become difficult.

2.1.1 Random Number Generation

The assumption that one can create a set of values with independent π distributions

is one that has become more viable with the advent of computing power and is crucial

in the justification of simple Monte Carlo estimation. The task of generating a set of

independent values with distribution π is usually divided into two parts:

1. Generate a set of values U (1), . . . , U (n) assumed to be i.i.d. U [0, 1)d

2. Transform U (i) to yield X(i) with distribution π

Note that the first step is equivalent to generating a set of nd values assumed to be

independent uniforms on [0, 1). The goal of a “random number generator” is this first

step, to which much attention has been given. As the capacity grows for working with

samples of increasing size, algorithms of increasing sophistication have been designed

to produce a sequence that is practically indistinguishable in law from a sequence

of independent uniforms. These algorithms usually operate via a recursive formula

such that the next number generated is determined by the last number or last several

numbers. As each number is identified to finite precision, a recursive generator must

be periodic. If the sample size is larger than the period of the generator then clearly

an illusion of independence is impossible to maintain; the presence of discernible

CHAPTER 2. BACKGROUND 8

patterns gives rise to an informal notion that to maintain pseudo-independence, a

sample from a RNG should not exceed the square root of the period in size.

A “good” RNG should be able to produce blocks of points that look like indepen-

dent uniforms; i.e., the empirical distribution of the entire set of s-dimensional blocks

obtained by s consecutive outputs of the generator should be close, in some sense, to

the uniform distribution over [0, 1)s. The idea of relating an empirical distribution to

the uniform distribution will be developed in the introduction to quasi-Monte Carlo

and will play a central role in much of the findings discussed later.

In this work, one large RNG is used to create practically IID uniform samples. This

generator (due to [28]), commonly known as the “Mersenne Twister,” has a period of

219937−1 and has optimal equidistribution property in 623-dimensional output blocks

to 32-bit accuracy. (In other words, the 2623·32 bits formed from the leading 32 bits

of 623 successive outputs of the generator take on each value in {0, 1}623·32 the same

number of times, except the all-zero combination, which appears one fewer time.)

For the simulations studied herein, the assumption of independence and uniformity

among values taken from this generator appears safe.

2.1.2 Transformations

In the continuous univariate setting, the usual method of using a uniform variate U

to generate a target distribution with cumulative density function (CDF) F (x) is to

take X = F−1(U), the image of the uniform under the inverse of the CDF:

P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x). (2.1.4)

A brief review of the most commonly seen continuous univariate distributions

makes it clear that even when the density of a distribution is known, the closed

CHAPTER 2. BACKGROUND 9

Table 2.1: Acceptance/Rejection Sampling Algorithm

Simple Acceptance/Rejection Sampling

1 Generate uniform U (1)

2 Transform U (1) to a g-distributed variable G
3 Generate uniform U (2)

4 If U (2) < π(G)
cg(G)

:

Set X to G
Else:

Go to step 1
5 Return X

form expression of its CDF or inverse CDF is frequently not available. Univariate

Gaussian and Gamma distributions are such cases. In such cases as these, some

easily evaluated expressions are available that convert a uniform into its appropriate

quantile to a negligible precision for the vast majority of [0, 1); these formulae are in

operation in such functions as “qnorm” and “qgamma” in R, which come respectively

from [44] and [1]. In arbitrary cases where the inverse CDF is not easily obtained or

sufficiently approximated, alternative methods are necessary. See [9] for more details.

One method that is usually available for any continuous distribution with an

identifiable density π is that of acceptance/rejection sampling. What is required

is a distribution (with density g) for which sampling is easy by a simple uniform

transformation, with the condition that

sup
x∈R

π(x)

g(x)
= c <∞.

The algorithm for generating a π-distributed variable is in Table 2.1, with all

generated uniforms independent.

The number of uniform variables required to generate X is twice a geometric

CHAPTER 2. BACKGROUND 10

variable with parameter 1/c; note this number is unbounded.

In the multivariate setting, it is valid to generate each univariate component by

its conditional distribution on the components already generated, with the first com-

ponent sampled from its marginal distribution. For a multivariate Gaussian distribu-

tion with covariance matrix Σ, a common method of generation is a case of the above

practice. Using univariate normal generation, a multivariate normal with identity

covariance matrix is created and then transformed under the linear operator Σ1/2,

obtained via the Cholesky decomposition of Σ.

2.2 Quasi-Monte Carlo

The simple Monte Carlo estimate of Eπ[f(X)] is the sample mean of f on a set

of points X(1), . . . , X(n); equivalently, this estimate is the expectation of f on the

empirical measure of this point set. For f with a bounded variation condition, we can

justify the consistency of this estimation procedure by the convergence of the empirical

measure to the distribution π. As we transform a uniform variable U (i) ∼ U [0, 1)d to

get X(i), this convergence is equivalent to the convergence of the empirical measure

of U (1), . . . , U (n) to that of the uniform measure on [0, 1)d.

The convergence of the empirical measure of a uniform sample to the uniform

distribution is characterized by a notion of discrepancy, which is a multivariate gener-

alization of the Kolmogorov-Smirnov distance. We develop the notion of discrepancy

as follows.

For points y, z ∈ [0, 1]d, denote by [y, z] the rectilinear box with every edge parallel

to some axis and opposite corners at y and z (i.e. the Cartesian product of intervals

[min (yi, zi),max (yi, zi)]). The uniform measure of [y, z] is its Euclidean volume:

CHAPTER 2. BACKGROUND 11

V ([y, z]) ,

d
∏

i=1

|zi − yi|. (2.2.1)

The empirical measure of [y, z] over a point set u(1), . . . , u(n) is the fraction of

points in the box:

V̂n([y, z]) ,
1

n

n
∑

i=1

Iu(i)∈[y,z]. (2.2.2)

Here the focus will be on “anchored” boxes, where z is the corner opposite the

origin (y = 0). A notion of local discrepancy comes from the absolute difference

between the uniform and empirical measure of [0, z]:

δn(z, u(1), . . . , u(n)) , |V̂n([0, z]) − V ([0, z])|. (2.2.3)

An overall notion of the deviation from uniformity of the point set is obtained by

finding the supremum of this local discrepancy. We call this value the star discrep-

ancy:

Definition 2.2.1. The star discrepancy of a point set is the supremum of its local

discrepancy over all anchored boxes:

D∗
n(u(1), . . . , u(n)) , sup

z∈[0,1]d
δn(z). (2.2.4)

The star is used to specify that only anchored boxes are examined. An analo-

gous unanchored discrepancy takes the supremum of the volume difference over all

boxes [y, z]. When it is certain which point set is under examination, its inclusion

as an argument may be suppressed for simplicity of notation. Future references to

“discrepancy” will indicate global star discrepancy unless otherwise specified.

CHAPTER 2. BACKGROUND 12

An analogous derivation to that used to derive the null distribution in a Kolmogorov-

Smirnov test verifies that the empirical measure of the first n values in an IID uniform

sequence converges to the uniform measure with a n−1/2+ǫ rate:

D∗
n = Op(n

−1/2(log log n)). (2.2.5)

This rate of decay of the star discrepancy of a point set bears relevance to the

use of that point set in constructing Monte Carlo estimates. First we must note that

evaluating f on the π-distributed value X(i) is equivalent to evaluating f ◦ ξ on the

d-dimensional uniform U (i), where ξ is the aforementioned transformation function

used to generate π-distributed variables. Thus we can assume that our Monte Carlo

task is the evaluation of a function f over the U [0, 1)d distribution.

For estimating the integral of f over the unit hypercube in d dimensions, integra-

tion error relates to discrepancy by the Koksma-Hlawka inequality:

Theorem 2.2.2 (Koksma-Hlawka Inequality). The absolute error of integration using

point set u(1), . . . , u(n) obeys the inequality

∣

∣

∣

∣

∫

[0,1)d

f dU − 1

n

n
∑

i=1

f(u(i))

∣

∣

∣

∣

≤ D∗
nVHK(f), (2.2.6)

where VHK(f) is the variation of the function f in the sense of Hardy and Krause.

The set of functions with finite Hardy-Krause variation includes bounded contin-

uous functions f with the condition |f(x) − f(y)| ≤ C|x − y| for some constant C.

Functions with discontinuity are generally of infinite Hardy-Krause variation; hence

it is a widely held belief that QMC only “works” on continuous integrands. For a

thorough treatment of Hardy-Krause variation, see [36]. When f has finite variation,

the rate of decay of the discrepancy bounds the rate of decay of the Monte Carlo error.

CHAPTER 2. BACKGROUND 13

In IID sampling, the Op(n
−1/2) absolute error rate found from (2.1.3) is corroborated

by (2.2.5) and (2.2.6).

The actual practice of quasi-Monte Carlo (QMC) is done in response to the desire

to improve error rate beyond O(n−1/2). According to the Koksma-Hlawka inequality,

the use of a point set with a quicker discrepancy decay as our sample of quasi-

uniform variables will lead to quicker convergence of the resulting estimate. QMC

replaces the IID uniform sequence with a deterministic “low-discrepancy sequence”

that provides a more even cover of the unit hypercube than is likely for an independent

random sample. In d dimensions, many sequences are known that have discrepancy

O(n−1(log n)d). For fixed d, this rate is faster than n−1+ǫ for any ǫ > 0; it is common

practice to write that these low-discrepancy sequences have discrepancy O(n−1+ǫ).

2.2.1 Low-discrepancy Sequences: Examples

The more sizable deviations of empirical measure from uniform measure occur when

large clusters or voids of points appear. An intuitive way to choose a point set that

minimizes this effect is to create induce a regular spacing between points. This gives

rise to the use of integration lattices as low-discrepancy sequences. An integration

lattice on [0, 1)d of size n is defined by a multiplier g = (g1, . . . , gd) ∈ Z
d:

u(i) ,
1

n
[ig(mod n)] (2.2.7)

where the modulus is applied coordinatewise. A good choice of g exists for each prime

n such that the discrepancy of the lattice is ≤ Cn−1(log n)d for some C constant with

respect to n.

Notice that an integration lattice contains the origin. In many examples we want

CHAPTER 2. BACKGROUND 14

to avoid sampling too closely to the corners of the cube for our sample size, and

certainly the actual corner can yield severe problems. We also note that there is

one deterministic estimate obtained from the use of a lattice. A well-used habit that

addresses both of these concerns is a randomization of the whole set of QMC points.

A good randomization is one such that the image of a single point in the set is uniform

on the cube under the random transformation, but the joint low-discrepancy property

is preserved.

In the lattice case, a randomization that preserves the lattice spacing is due to

[7] and is appropriately known as a Cranley-Patterson rotation. A single uniform

variable U in the unit cube is taken, and every point is shifted by U with a “wrap-

around” (coordinates shifted above 1 are moved to their mod 1 residue). For example,

the point (0.8, 0.6, 0.4) shifted by the random vector (0.2921, 0.6623, 0.3010) becomes

(0.0921, 0.2623, 0.7010).

Since each point is marginally uniform, the estimate constructed from a random-

ized QMC point set is unbiased. An approximate variability of an estimate can be

constructed using multiple replications of the procedure with independent random-

izations.

As seen in [40] and [33], the star discrepancy of a lattice (which can be difficult to

compute) is related to several “figures of merit,” which are frequently used to select

good integration lattices of a certain size. See Figure 2.1 for a look at a “good” and

a “bad” lattice in two dimensions.

A single infinite sequence with desirable discrepancy is known as the Halton se-

quence. We note that positive integer i has a unique base b representation:

i =

∞
∑

j=0

ajb
j (2.2.8)

CHAPTER 2. BACKGROUND 15

Figure 2.1: 2-dimensional integration lattices

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

for aj ∈ {0, 1, . . . , b− 1}. We can define an inversion function

φb(i) ,

∞
∑

j=0

ajb
−(j+1) (2.2.9)

that maps each integer to a value in [0, 1). The Halton sequence is defined as

u(i) , (φb1(i), . . . , φbd
(i)), (2.2.10)

where b1, . . . , bd are different bases, usually the first d prime numbers. This sequence

has discrepancy O(n−1(logn)d) if the bases are different primes, and it is clear that

lower bases create point sets with lower discrepancy; see Figure 2.2.

These sequences are just a few simple examples in the large canon of sequences

used in QMC sampling. A relatively thorough treatment of common QMC practices

is found in [33].

CHAPTER 2. BACKGROUND 16

Figure 2.2: 2-dimensional projections of the Halton sequence, first 1000 points. The
left graph has components corresponding to prime bases 2 and 3, while the right
graph has components corresponding to 27 and 29.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.3 Markov Chain Monte Carlo

The use of Markov chain Monte Carlo (MCMC) is most often in cases where the

construction of an IID sample of points under a target distribution π is impossible.

As was seen in the brief background on transforming uniform numbers, the knowledge

of the density function of the desired distribution is usually sufficient to create an

independent sampling scheme by means of acceptance/rejection sampling, although

this may be computationally costly.

2.3.1 Metropolis-Hastings Algorithms

The first instances of MCMC sampling addressed a problem in which the target dis-

tribution density is proportional to a known energy function. The algorithm due to

CHAPTER 2. BACKGROUND 17

Table 2.2: Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm

1 Begin at X(0) ∈ S
2 Given X(i), generate Y (i+1)

Transition proposal density q(X(i), ·)
3 Generate U (i+1) ∼ U [0, 1)

4 For A(x, y) = min (π(y)q(y,x)
π(x)q(x,y)

, 1)

If U (i+1) < A(X(i), Y (i+1))
Set X(i+1) to Y (i+1)

Else
Set X(i+1) to X(i)

5 Repeat steps 2-4 K + n times
6 Return X(K+1), . . . , X(K+n)

[29] and its generalization by [12], accordingly known as the Metropolis-Hastings al-

gorithm, creates a Markov chain whose values converge in distribution to an arbitrary

distribution π and requires only the knowledge of the ratio of the density at two states

x and y. (Equivalently, one can create the algorithm if a function on the state space

proportional to the density function is known.)

The Monte Carlo sample drawn from this algorithm for the purpose of estimation

is usually all values in the chain beyond a “burn-in” period (such that every point in

the sample is considered approximately marginally π-distributed). The values in this

sample are no longer independent, but the consistency of the estimate drawn from

this sample is now verified by ergodic theory instead of the law of large numbers. The

mechanics of the general algorithm are outlined in Table 2.2. First for every state

x we need a transition distribution Qx on the state space with density denoted by

q(x, ·).

The only restriction on the proposal densities q(x, ·) is that all states communicate,

and the choice of proposal densities can affect the ease of simulating the chain and

CHAPTER 2. BACKGROUND 18

the speed through which the chain ranges over the state space. Issues relating to the

choice of proposal densities have warranted significant study, although for the most

part, this topic will not be discussed here. The value A(X(i), Y (i+1)) in the algorithm

above is known as the acceptance probability, as it is the chance of the chain moving

to Y (i+1) versus staying at X(i). It is important to note that if the proposed value is

not accepted, then the previous value is repeated in the sample. This is essential for

consistency of the estimate constructed from the sample, as is obvious from a 2-state

space with nonuniform target distribution: a sample without repeated values would

have an empirical measure converging to the uniform distribution on the two states.

To verify that this chain has stationary distribution π, we note that for two distinct

states x, y ∈ S, the overall transition kernel is given by q(x, y)A(x, y), and from the

definition of A(x, y) in step 4 of the algorithm, it is easy to verify that reversibility

holds for this chain:

π(x)q(x, y)A(x, y) = π(y)q(y, x)A(y, x), ∀ x 6= y. (2.3.1)

Alternate definitions for A(x, y) exist which still yield the reversibility condition.

These are acceptable for Metropolis-Hastings, although the one given here is most

frequently used, as it minimizes rejections.

Commonly seen sets of proposal distributions include the “random walk” sampler,

in which q(x, y) is a symmetric density on y about the starting value x and the

distributions look the same about x for all x (i.e., q(x, y− x) does not depend on x),

and the “independence” sampler, where q(x, y) is the same for all x.

CHAPTER 2. BACKGROUND 19

2.3.2 Gibbs Sampling

The claim has been made that all valid MCMC methods for approximate sampling

from a stationary distribution are instances of a Metropolis-Hastings algorithm or a

mild extension thereof. The most familiar method of MCMC to many is known as

the Gibbs sampler, which may seem not to fit in the Metropolis-Hastings scheme at

first glance. In truth, the Gibbs sampler can be reconciled under this framework,

and much of the theoretical results established in the remainder of this work for

Metropolis-Hastings extend to the Gibbs sampler quite easily.

The Gibbs sampler, whose necessity emerges naturally in problems in Bayesian

modeling, looks to generate a value θ = (θ1, . . . , θd) under a joint distribution when

the usable information known about this distribution is its full set of conditional

distributions; i.e., P (θi|θ1, . . . , θi−1, θi+1, . . . , θd) is known for all i. We assume that

drawing from these conditional distributions can be done; there are instances where

acceptance/rejection sampling or even Metropolis-Hastings sampling is done to gen-

erate points from these conditional distributions. The basic step in the algorithm

updates a single component by keeping the others fixed and drawing from the condi-

tional distribution of this component given the others. These components are often

updated in cyclic fashion, although a random choice is sometimes taken as well. We

will keep focus on the cyclic scan algorithm, which is detailed in Table 2.3.

Note that this algorithm only returns points taken d steps apart, such that each

component is updated exactly once before the next point in the sample is taken. A

sample that takes every point can also be used for consistent estimation, and so either

choice is valid. To reconcile with the Metropolis-Hastings framework, we note that

for a single step, if we use the conditional distribution in step 3 of the algorithm as

our proposal density, our accepance probability is always 1. The only distinction now

CHAPTER 2. BACKGROUND 20

Table 2.3: Gibbs Sampler

The Gibbs Sampler

1 Start with θ(0)

2 Given θ(i) = (θ
(i)
1 , . . . , θ

(i)
d) take s ≡ i+ 1(mod d)

3 Draw θ̃s from P (θs|θ(i)
1 , . . . , θ

(i)
s−1, θ

(i)
s+1, . . . , θ

(i)
d)

4 Set θ(i+1) to (θ
(i)
1 , . . . , θ

(i)
s−1, θ̃s, θ

(i)
s+1, . . . , θ

(i)
d)

5 Repeat steps 2-4 K + nd times
6 Return θ(K+d), θ(K+2d), . . . , θ(K+nd)

is that the proposal densities change every step. We can view every d steps as having

one common proposal distribution (with acceptance probability still 1). If we take

every point instead of every d points, we can view our sample as the combination of

d interlocking Metropolis-Hastings chains.

Chapter 3

Foundation: MCQMC

The main goal that this work has sought to develop is the application of randomized

QMC sequences to the general MCMC sampling scheme, such that we can obtain

benefits analogous to those of QMC in independence sampling. Here we denote this

practice as Markov chain quasi-Monte Carlo, or MCQMC. Most of the key results in

this section that establish a condition for valid MCQMC appear in some detail in [37]

and [42]. It will become clear by the following results that the question of validity,

which is synonymous with estimate consistency, is addressed to sufficient satisfaction.

The question of superiority to IID sampling is a far more difficult one, as there is a

dependence structure between successive updates to a Markov chain. The notion that

a significant dependence structure among the variates used k steps apart can create

problems for sizable k gives rise to a new “curse of dimensionality” that reduces the

advantage of low-discrepancy sequences.

There is a distinction that should be clarified before the structure of the MCQMC

algorithm is established: the use of QMC sequences in MCMC estimation is not done

to accelerate convergence to the stationary distribution. Much attention is given to

21

CHAPTER 3. FOUNDATION: MCQMC 22

ways in which convergence can be verified and ways in which slow-mixing or frequently

“stuck” chains can be accelerated; neither question is a closed case by any means.

However, the chief contribution of MCQMC is not the acceleration of convergence.

Rather, on the assumption on convergence, the aim of MCQMC is to create a more

balanced sample of the space for improving estimate accuracy, in the same way that

QMC is done to cover the cube more evenly than by IID sampling.

3.1 MCQMC Notation

In independent Monte Carlo estimation, the use of a QMC sequence in lieu of pseu-

dorandom numbers (assumed to be IID) seems immediately clear: use each value in

the sequence as a sample point. It is less obvious how one might go about using a

QMC sequence in a Metropolis-Hastings sampler. A definitive answer is not given

here, but it will help in future discussion to establish a notation on the values used

at different stages of an MCMC algorithm.

Recall in a Metropolis-Hastings sampling scheme that to simulate a step in the

chain, two actions that require random variates must occur: the generation of a

proposal value y from a transition proposal density, and the generation of an accep-

tance/rejection decision based on the acceptance probability. For now, we assume

that with probability 1, at most d− 1 independent univariate uniforms are required

to generate a variable from the transition proposal density (for any starting state).

Clearly only one univariate uniform is needed to generate the decision, and so each

step in the chain requires (at most) d univariate uniforms.

Similarly in the Gibbs sampler, we assume that a bounded number of variates is

required to update ALL the coordinates once, regardless of the starting values used

CHAPTER 3. FOUNDATION: MCQMC 23

in the conditional distribution sampling. We assume this bounding number is d in

this case, as no acceptance/rejection step is necessary. Then d univariate values are

needed to generate the next point in the sample for any MCMC scheme of interest.

We call this a d-dimensional MCMC sampler.

After a burn-in period (if it is so desired), we wish to generate a sample of size

N , and so we run the chain through N steps. The univariate values needed to effect

these N steps will be stored in the “variate matrix”, which is indexed as follows:

u(1) u(2) · · · u(d)

u(d+1) u(d+2) · · · u(2d)

...
...

. . .
...

u((N−1)d+1) u((N−1)d+2) · · · u(Nd)

(3.1.1)

The sequence u(1), u(2), . . . , u(Nd) of univariate values in the variate matrix will be

referred to as the “driving sequence” of the MCMC algorithm.

Frequently it will be of interest to look at blocks of this sequence as variates in a hy-

percube. To that effect, we define for any i < j the notation ui:j , (u(i), u(i+1), . . . , u(j)),

the (j−i+1)-dimensional point with coordinates taken from the univariate sequence.

The mth row u((m−1)d+1):(md) of the variate matrix is used to generate the mth

sample point of the chain. As this is a Markov chain, we can define a Markov transition

function:

X(m) = φ(X(m−1),u((m−1)d+1):(md)) (3.1.2)

We will want to investigate the relationship of the univariate values in the co-

ordinates of successive multivariate values, and so we define for a set of points

x(1), . . . , x(n) ∈ [0, 1)d the unpacking function U(x(1), . . . , x(n)) to return the sequence

CHAPTER 3. FOUNDATION: MCQMC 24

of univariate values u(1), . . . , u(nd) such that u((m−1)d+1):(md) = x(m).

3.2 Completely Uniform Distribution

We assume a d-dimensional MCMC sampler is our candidate for receiving QMC

updates in lieu of psuedorandom values, and we are able to construct a d-dimensional

QMC sequence x(1), x(2), . . . , x(N). The clearest way to use the QMC points is to

make each row of the variate matrix a QMC point, such that u((m−1)d+1):(md) = x(m).

In this scheme, each QMC point is used to generate one step in the chain. For this

method of inclusion, many QMC point sets will lead to comically inaccurate results.

Recall the Halton sequence with bases the first d primes, and suppose we wish

to use this point set in a random walk Metropolis-Hastings algorithm. Assuming

the standard method of generating the proposal value from a point in [0, 1)d−1, the

proposal will have a smaller first coordinate than the current value if the first variate

used (which lies in the first column of the variate matrix) is less than 0.5. Likewise,

the first coordinate of the proposal will be larger than the current value if the first

variate is greater than 0.5. The use of the Halton sequence in d bases would establish

the first column of the variate matrix as the base 2 sequence, known as the van der

Corput sequence. This sequence is as follows:

1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16 . . .

Note that it alternates above and below 1/2. Thus the proposals alternately move

up and down in the first coordinate. The chain is prevented from moving into the

tails of the marginal distribution of this first coordinate, and so consistency from a

sample generated in this fashion obviously fails for a variety of functions. Alternative

CHAPTER 3. FOUNDATION: MCQMC 25

Figure 3.1: Lag plot of van der Corput sequence.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

methods of interlaying QMC points of different dimension may be even worse, such

as an example in [30], where a particle intended to undergo symmetric random walk

moves in the same direction at every step.

The clear culprit in the grave errors obtained in this crude attempt at MCQMC

is the relationship between successive points in the QMC sequence. The practical

notion of independence among successive values in a good random number generator

output is not upheld here. We can codify this notion by looking at the properties of

the unpacked sequence u(1), . . . , u(nd) = U(x(1), . . . , x(n)). For the Halton sequence,

the relationship between u(i) and u(i+d) for all values of i is not one that approximates

uniformity on the unit square, as seen in Figure 3.1.

It is easy to conceive scenarios in which a lack of approximate uniformity in [0, 1)m

among x(i), x(i+k1), . . . , x(i+km) for some set of lags (k1, . . . , km) can create a similar

problem for producing a consistent sample. Sequences that avoid this problem are

such that the points created by blocks of d successive variates fill the unit hypercube

CHAPTER 3. FOUNDATION: MCQMC 26

[0, 1)d in a uniform fashion. In an asymptotic sense, to approach uniformity is to have

a discrepancy that decays to 0. This motivates the proposition that the following

sequence condition is essential for incorporation of a sequence in an MCMC sampler:

Definition 3.2.1. A sequence u(1), u(2), . . . is completely uniformly distributed (CUD)

if for every integer s ≥ 1, the sequence x(1), x(2), . . . of s-blocks (x(i) = ui:(i+s−1))

satisfies:

D∗
n(x(1), . . . , x(n)) −→ 0 as n→ ∞. (3.2.1)

The concept of CUD sequences originated in [17], and a survey of many CUD

sequence constructions is given in [22]. The CUD property is given as a definition of

randomness in [16]. Note there is no condition of uniform convergence of the discrep-

ancy to 0 over all dimensions s. This definition applies to deterministic sequences; it

serves us to create a similar definition for random sequences.

Definition 3.2.2. A random sequence u(1), u(2), . . . is weakly completely uniformly

distributed (WCUD) if for every integer s ≥ 1, the sequence x(1), x(2), . . . of s-blocks

(x(i) = ui:(i+s−1)) has the following condition of convergence in probability:

D∗
n(x(1), . . . , x(n))

P−→ 0 as n→ ∞. (3.2.2)

To validate the use of (W)CUD sequences in an MCMC sampler, we generalize a

result of Chentsov [6] derived for a simpler class of Markov chain simulations. Before

the mechanics of this result and its proof are discussed, it is helpful to note the

following lemma, shown in [16]:

Lemma 3.2.3. The sequence u(1), u(2), . . . is CUD if and only if for arbitrary integers

s ≥ l ≥ 1, the sequence {z(i)} of s-tuples defined by z(i) = (u(is−l+i), u(is−l+2), . . . , u(is−l+s))

CHAPTER 3. FOUNDATION: MCQMC 27

satisfies

D∗
n(z(i), . . . , z(n)) −→ 0 as n→ ∞. (3.2.3)

An analogous equivalence holds for WCUD sequences.

The lemma establishes that a CUD property has good balance in both its over-

lapping blocks and its nonoverlapping blocks of arbitrary offset. The “if” statement

is easy to verify via Slutsky’s Theorem, but the “only if” statment is less obvious.

3.3 The Main Consistency Theorem

The following result, as mentioned earlier, generalizes a result of Chentsov from what

he calls a “standard construction” for Markov chain simulation on a finite state space.

The following proof is contained in [37], but it will be repeated here, as the result is

the foundation on which any future results rest. The generalization to Metropolis-

Hastings sampling requires some assumptions. The most restrictive is that our state

space S is finite; the necessity of this restriction is readily evident in the proof.

A milder assumption satisfied by all feasible sampling schemes is a regularity

condition on the proposal mechanisms in the Metropolis-Hastings algorithm:

Definition 3.3.1. The proposals of a Metropolis-Hastings algorithm are regular if

and only if for any states k, l ∈ S and time i, the set

A(i)
kl , {(u(id+1), . . . , u(id+d−1)|Y (i+1) = l when X(i) = k} (3.3.1)

is Jordan measurable.

CHAPTER 3. FOUNDATION: MCQMC 28

A Jordan measurable set is one whose indicator function is Riemann integrable.

For a starting state k at time i, the hypercube [0, 1)d−1 can be divided into regions A(i)
kl

of variates whose use to generate the next proposal would propose state l; regularity

implies that each of these sets is Jordan measurable. Note these sets are usually the

same for all i (the proposals are homogenous).

See Appendix A for a treatment of Jordan measurable sets in the unit hypercube.

Included are the results that finite unions and tensor products of Jordan measurable

sets are also Jordan measurable.

Lemma 3.3.2. If regularity of proposals holds, for any states k, l ∈ S and time i, the

overall transition sets defined as

S(i)
kl , {u(id+1), . . . , u(id+d)|X(i+1) = l when X(i) = k} (3.3.2)

are Jordan measurable.

Proof. For k 6= l, S(i)
kl = A(i)

kl × [0, A(k, l)), the product of two Jordan measurable sets.

S(i)
kk =

(
⋃

l∈S\{k}A
(i)
kl × [A(k, l), 1)

)

∪ A(i)
kk × [0, 1) (assuming [1, 1) = ∅). These are

Jordan measurable due to Theorems A.1.4 and A.1.5.

The central theorem indicates that the replacement of IID points by a CUD se-

quence preserves the consistency of a Metropolis-Hastings sampler. In this finite-state

setting, consistency holds if for any state ω ∈ S and any starting state X(0) = ω0:

π̂n(ω) ,
1

n

n
∑

i=1

1X(i)=ω → π(ω). (3.3.3)

Similarly, weak consistency holds if for any state ω ∈ S and ǫ > 0, under any

starting state ω0:

CHAPTER 3. FOUNDATION: MCQMC 29

P (|π̂n(ω) − π(ω)| > ǫ | X(0) = ω0) → 0. (3.3.4)

Theorem 3.3.3. Suppose S = {ω1, . . . , ωK} is finite and a sequence u(1), u(2), . . . is

used to run a Metropolis-Hastings sampler with regular homogenous proposals. As-

sume the resulting sample is weakly consistent if the u(i) are IID U [0, 1), such that

(3.3.4) holds. Then if the u(i) form a CUD sequence, the consistency result (3.3.3)

holds. Similarly, if u(i) are a WCUD sequence, (3.3.4) holds.

Proof. For a given value of X(0), the empirical measure π̂n(ω) is completely deter-

mined by the variates u(1), . . . , u(nd). We wish to look at regions in [0, 1)nd which are

“problematic” in the sense that the empirical measure of a state is not close to its

target value. For a tolerance ǫ > 0, we define for each starting state and target state

the region

Tlkn(ǫ) , {(u(1), . . . , u(nd)) | |π̂n(ωk) − π(ωk)| > ǫ when X(0) = ωl}.

These regions are Jordan measurable by Theorem A.1.4 as they are the finite

unions of the sets in (3.3.2). Because the volume of Tlkn(ǫ) is the probability under

IID sampling that |π̂n(ωk) − π(ωk)| > ǫ when X(0) = ωl, the validity of (3.3.4) under

IID sampling means that for any k, l:

V (Tlkn(ǫ)) −→ 0 as n→ ∞. (3.3.5)

So we pick an m sufficiently large that for all k, l, Vol(Tlkm(ǫ)) < ǫ/K, which we

can do due to the finite number of states. We now define Tkm(ǫ) ,
⋃

l∈S
Tlkm(ǫ), the

region that samples ωk “badly” for at least one starting state. This set is Jordan

CHAPTER 3. FOUNDATION: MCQMC 30

measurable as well and has volume < ǫ.

For ωk and m we define an indicator Z(i) of tail behavior of our CUD sequence

{u(i)} in the following fashion:

Z(i) , 1u((i−1)d+1):((i−1)d+md)∈Tkm(ǫ).

We also define the empirical measure π̂i,m(ωk) on the corresponding block of m points

in our sample:

π̂i,m(ωk) ,
1

m

m−1
∑

j=0

1X(i+j)=ωk
.

Note that if Z(i) = 0, |π̂i,m(ωk) − π(ωk)| < ǫ (although the converse is not true

depending onX(i−1)). Because the sequence u(1), u(2), . . . is CUD, we have by Lemmas

3.2.3 and A.2.2:

1

n

n
∑

i=1

Z(i) → Vol(Tkm(ǫ)). (3.3.6)

We dissect our overall empirical law on n points as follows:

π̂n(ωk) =
1

n

n
∑

i=1

π̂i,m(ωk) +
1

n

m−1
∑

j=1

[

1X(m−j)=ωk
− 1X(n+m−j)=ωk

]

. (3.3.7)

The latter term in the above decomposition is bounded in magnitude by m/n. Now

CHAPTER 3. FOUNDATION: MCQMC 31

we use the triangle inequality and striate over Z(i):

|π̂n(ωk) − π(ωk)| ≤ 1

n

n
∑

i=1

Z(i)|π̂i,m(ωk) − π(ωk)|

+
1

n

n
∑

i=1

(1 − Z(i))|π̂i,m(ωk) − π(ωk)| +
m

n

≤ 1

n

n
∑

i=1

Z(i) + ǫ+
m

n
(3.3.8)

→ Vol(Tkm(ǫ)) + ǫ (as n→ ∞)

≤ 2ǫ. (3.3.9)

As ǫ is arbitrary, (3.3.3) is established for the CUD case. If {u(i)} is WCUD, (3.3.8)

still holds w.p. 1, but now

1

n

n
∑

i=1

Z(i) P−→ Vol(Tkm(ωk)). (3.3.10)

So for n > m/ǫ,

P (|π̂n(ωk) − π(ωk)| > 3ǫ) ≤ P

(

1

n

n
∑

i=1

Z(i) > ǫ

)

→ 0 (3.3.11)

and so (3.3.4) is established for the WCUD case.

Clearly there are cases where a non-CUD sequence still provides consistency in

the sense of (3.3.3), but for a non-CUD sequence, it is easy to construct ad hoc

a Metropolis-Hastings sampler on which (3.3.3) fails. Hence a general practice of

MCQMC designed to adapt to an arbitrary sampling scheme should use CUD variates.

For the Gibbs sampler, the lack of an acceptance-rejection step and the nonhomo-

geneity of proposals are the only distinctions that need be addressed. Without the

CHAPTER 3. FOUNDATION: MCQMC 32

acceptance-rejection step, the Jordan measurable proposals assumption tautologically

gives the Jordan measurable transitions. If we take every output in the Gibbs sampler

as opposed to every dth output, there is a nonhomogeneity issue in the proposals, but

again this is easily satisfied by viewing the sample as d interlocking samples, each of

which is consistent, and so the average of these samples is consistent as well.

Chapter 4

CUD Sequences in Practice

4.1 Low Discrepancy

The results of the previous chapter provide a general condition on the valid use of

QMC sequences in a Metropolis-Hastings sampler. The replacement of IID points by

a CUD or a weakly CUD sequence leads to a consistent estimate (and note that IID

points are weakly CUD), and any other choice of sequence fails for some Metropolis-

Hastings construction. But not much has been said concerning the actual rate of

decay of s-dimensional discrepancy in a CUD sequence for any given s. The ultimate

goal is to create estimates with lower variability than those obtained via IID sampling;

therefore we wish to create a “balance” along the sequence of variates, just as is done

with QMC for regular independent Monte Carlo sampling.

It is apparent that for a QMC sequence like the Halton sequence, in which the

relationship between successive points does not support an assumption of indepen-

dence, that something must be done which eliminates this relationship. There are

two intuitive notions of how this can be done:

33

CHAPTER 4. CUD SEQUENCES IN PRACTICE 34

1. Randomize the order of the points in the sequence

2. Choose a sequence whose successive points have more uniform distribution

The first method was proposed by Liao [23] on a series of Gibbs sampling schemes

for fitting Bayesian models. The resulting estimates of the quantiles of the marginal

posterior distributions showed lower variability than those obtained with IID sam-

pling. No theoretical argument was given that this procedure is consistent in some

sense or that the variance is reduced; this chapter will demonstrate the former claim

(consistency). A nonrigorous argument for this method says that the larger the sam-

ple size, the more the points look like independent random points, except that after

the entire sequence is used, each component has seen a set of update variates that are

more evenly spaced than one would expect from independent uniforms. Because of

this final balance, Liao’s proposal may be likely to improve on IID sampling. Still, a

notion of a better-than-random approximation of uniformity across successive points

may provide further improvement, if it is possible.

The notion of consistency does not make sense for a single finite sequence, but

the implementation of Liao’s proposed method requires a clear choice of a finite

simulation length before the randomization can occur. In addition, it may be difficult

for a single infinite sequence to maintain a more uniform appearance in different

dimensions simultaneously (e.g., see the CUD constructions given in [22]). Therefore

the need arises to incorporate the use of finite sequences into the theoretical framework

given in the previous chapter. To this effect, we will define classes of finite sequences

of increasing length such that the limits which characterize the CUD property and

consistency will be over the increase in sequence length.

The goal in constructing sequences that improve on IID sampling is a lower dis-

crepancy in many dimensions (“s-dimensional discrepancy” is the discrepancy of the

CHAPTER 4. CUD SEQUENCES IN PRACTICE 35

sequence of s-blocks formed from concatenating s successive values in the original

sequence). Clearly for a finite sequence of length N , the s-dimensional discrepancy

can only be good for s ≪ N . Even an infinite sequence will not a discrepancy de-

cay faster than n−1/2 in every dimension. The reason that this line of inquiry still

seems worthwhile is that the importance of uniformity in s dimensions decays as s

increases. Another nonrigorous argument says that for a Markov chain that is mixing

appropriately, the Markov transition function given in (3.1.2) can be expressed as

X(i) = φm(X(i−m),u) ≈ ψ(u), (4.1.1)

where u is an md-dimensional uniform variate. This approximation gets better as

m increases, and so at some point when the approximation error is negligible, the

Markov chain sampler is like an independent sampler of md dimensions. Thus if we

find a sampling scheme whose s-blocks are well-distributed for s ≤ md, it is likely to

provide less variable estimates than those given by IID sampling.

Much of the work contained here is also found in [42]; some of the proofs are

reproduced here, but more details on the remaining results are contained there.

4.2 Useful Lemmas

In working with discrepancy in multiple dimensions, it is useful to note the relation-

ship between discrepancies of the s-blocks of a sequence.

Lemma 4.2.1. For a sequence u(1), u(2), . . . ∈ [0, 1), define y(i) = (u(i), u(i+1), . . . , u(i+s1−1))

and z(i) = (u(i), u(i+1), . . . , u(i+s2−1)), where s1 < s2. Then the following inequality

holds:

CHAPTER 4. CUD SEQUENCES IN PRACTICE 36

D∗
n(y(1), . . . , y(n)) ≤ D∗

n(z(1), . . . , z(n)). (4.2.1)

Proof. For a box [0, b] ⊂ [0, 1)s1, the empirical measure of [0, b] on {y(1), . . . , y(n)} is

the same as the empirical measure of [0, b]× [0, 1](s2−s1) on {z(1), . . . , z(n)}. These sets

have the same Jordan measure, and so the local discrepancies are equal. Hence

δn([0, b], y(1), . . . , y(n)) ≤ sup
m∈[0,1](s2−s1)

δn([0, b] × [0, m], z(1), . . . , z(n)). (4.2.2)

Taking the supremum of both sides over all b, (4.2.1) follows.

Lemma 4.2.2. For a sequence x(1), x(2), . . . ∈ [0, 1)s and fixed integer m, the star

discrepancies of this sequence satisfy the following inequality:

∣

∣

∣

∣

D∗
n+m −D∗

n

∣

∣

∣

∣

≤ m

n +m
. (4.2.3)

Proof. For an arbitrary box B, suppose k of the first n points in the sequence lie in B.

Then the number of the first n+m points that lie in B is in the set {k, k+1, . . . , k+m}.
Thus the difference of the empirical measures of B on the first n points and the first

n+m points is bounded above by

max

(

m(n− k)

n(n+m)
,

mk

n(n +m)

)

, (4.2.4)

which is at most m/(n+m). By the triangle inequality, the local discrepancies of B

differ by at most m/(n +m), and (4.2.3) follows.

It is easier to verify the convergence of local discrepancy to 0 than to verify the

convergence of star discrepancy to 0 directly. The following lemma establishes a useful

CHAPTER 4. CUD SEQUENCES IN PRACTICE 37

equivalence that helps to establish the latter.

Lemma 4.2.3. For a sequence x(1), x(2), . . . ∈ [0, 1)d, if for arbitrary z ∈ [0, 1]d,

δn(z, x(1), . . . , x(n)) → 0, (4.2.5)

then convergence for star discrepancy holds as well:

D∗
n(x(1), . . . , x(n)) → 0. (4.2.6)

For a random sequence x(1), x(2), . . ., if the convergence in (4.2.5) holds in probability,

then (4.2.6) holds in probability as well.

Proof. For arbitrary ǫ > 0, choose positive integer M > 1/ǫ and define lattice L to

be the set of points whose coordinates are integer multiples of 1/(2dM) between 0

and 1 (inclusive). For arbitrary z ∈ [0, 1]d, there are points z(1), z(2) ∈ L such that

[0, z(1)] ⊆ [0, z] ⊆ [0, z(2)] and z
(2)
i − z

(1)
i < ǫ/(2d) for all i.

Note V ([0, z(2)])−V ([0, z(1)]) < ǫ/2, as the difference of these sets is contained in d

blocks of volume ǫ/(2d). V ([0, z]) is contained in the interval [V ([0, z(1)]), V ([0, z(2)])].

By the nested nature of the boxes,

V̂n([0, z(1)]) − V ([0, z]) ≤ V̂n([0, z]) − V ([0, z]) ≤ V̂n([0, z(2)]) − V ([0, z]). (4.2.7)

Applying the triangle inequality to the left and right ends of the above inequality,

−ǫ/2 − δn([0, z(1)]) < V̂n([0, z]) − V ([0, z]) < ǫ/2 + δn([0, z(2)]), (4.2.8)

CHAPTER 4. CUD SEQUENCES IN PRACTICE 38

and so D∗
n < ǫ/2 + maxy∈L δn([0, y]). As L is finite, (4.2.5) yields that, for a deter-

ministic sequence, lim supD∗
n < ǫ/2. As ǫ is arbitrary, (4.2.6) follows. For a random

sequence, convergence in probability implies that P (maxy∈L δn([0, y]) > ǫ/2) → 0,

and so P (D∗
n > ǫ) → 0, and (4.2.6) holds in probability.

4.3 Triangular Arrays

As we would like to use a finite (W)CUD sequence to generate an MCMC sample, it

is important to incorporate the use of a finite sequence into the CUD framework. We

can define a class C of sequences of lengths N1 < N2 < . . .→ ∞. We will denote the

jth value of the ith sequence as u
(j)
Ni

.

Definition 4.3.1. The class C of sequences is a CUD triangular array (array-CUD)

if for arbitrary dimension s,

lim
i→∞

D∗
Ni−s+1

(

(u
(1)
Ni
, . . . , u

(s)
Ni

), . . . , (u
(Ni−s+1)
Ni

, . . . , u
(Ni)
Ni

)

)

= 0. (4.3.1)

Similarly, a class of random sequences is array-WCUD if for arbitrary s, the limit in

(4.3.1) holds in probability.

Many results that held for a single CUD sequence hold for a CUD triangular

array. Most importantly, the central Theorem 3.3.3 extends to CUD arrays, where

for a Metropolis-Hastings sampler of dimension d, the first ⌊Ni/d⌋ · d elements of row

i of the array {u(1)
Ni
, . . . , u

(Ni)
Ni

} are used to generate a sample of size ⌊Ni/d⌋.

Theorem 4.3.2. Let Mi = ⌊Ni/d⌋. Suppose for arbitrary starting value X(0) the

sequence {u(1)
Ni
, . . . , u

(Mid)
Ni

} is used as a driving sequence for a finite-state Metropolis-

Hastings sampler under which (3.3.4) holds with an IID driving sequence. For the

CHAPTER 4. CUD SEQUENCES IN PRACTICE 39

resulting sample X
(1)
Ni
, . . . , X

(Mi)
Ni

and the resulting empirical measure

π̂Ni
(ω) ,

1

Mi

Mi
∑

j=1

1
{X

(j)
Ni

=ω}
, (4.3.2)

the following convergence result holds when the triangular array is CUD:

π̂Ni
(ω) → π(ω) ∀ ω ∈ S. (4.3.3)

If the triangular array is WCUD, convergence in probability holds:

π̂Ni
(ω)

P−→ π(ω) ∀ ω ∈ S. (4.3.4)

The proof of this theorem includes only a few minor modifications of the proof

of Theorem 3.3.3. This result is also fundamental in justifying the use of certain

sequences in Metropolis-Hastings sampler. Subsequent sections will develop specific

CUD triangular arrays that will be useful for MCQMC.

Lemma 4.2.3, which verifies the equivalence of local discrepancy decay and star

discrepancy decay, has a clear analog for arrays. Lemma 3.2.3, which establishes

the equivalence of a CUD property for overlapping and nonoverlapping s-tuples, also

has an analog for arrays (note that this extension is necessary for Theorem 4.3.2).

However, to verify that certain classes of sequences are array-WCUD, we need the

following stronger result, which is not obvious for WCUD arrays. Its proof appears

in [42].

Theorem 4.3.3. For some infinite subset D ⊆ N, suppose that a triangular array

CHAPTER 4. CUD SEQUENCES IN PRACTICE 40

satisfies for any s ∈ D and ǫ > 0:

lim
i→∞

P

[

D∗
M

(

(u
(1)
Ni
, . . . , u

(s)
N1

), (u
(s+1)
Ni

, . . . , u
(2s)
N1

), . . . , (u
((M−1)s+1)
N1

, . . . , u
(Ms)
Ni

)

)

> ǫ

]

= 0,

(4.3.5)

where M = ⌊Ni/s⌋. Then the triangular array is array-WCUD.

The lemma says that to show an array-WCUD property, it is only necessary to

verify the discrepancy decay in probability of the nonoverlapping s-tuples for s in

an infinite subset of the positive integers. This subset often contains only integer

multiples of a common integer s0.

4.4 Liao’s Method

Recall the proposal of Liao that takes a low-discrepancy sequence in d dimensions

and randomly permutes the sequence to use in a d-dimensional Gibbs sampler. This

method requires a selection beforehand of the simulation length N , as the permutation

step does not permit extensibility. A theoretical validation of this method (in terms

of consistency) is now available through the above framework on WCUD arrays.

We take a low-discrepancy sequence a(1), . . . , a(N) ∈ [0, 1)d and a random permuta-

tion τ on the integers {1, 2, . . . , N}. The random sequence with elements u((i−1)d+j) ,

a
(τ(i))
j for all i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , d} is one of a triangular array of se-

quences of lengths Nd for fixed d and all positive integers N .

The following theorem is due to [42]:

Theorem 4.4.1. Suppose D∗
N is the discrepancy of the sequence a(1), . . . , a(N) ∈ [0, 1)d

in d dimensions. Then for arbitrary dimension s, the sequence z(1), . . . , z(Ñ) ∈ [0, 1)s

CHAPTER 4. CUD SEQUENCES IN PRACTICE 41

obtained by

z(i) = u((i−1)s+1):(is) (4.4.1)

for Ñ = ⌊(Nd)/s⌋ satisfies, for arbitrary z ∈ [0, 1)s, ǫ > 0:

P
(

δÑ (z; z(1), . . . , z(Ñ)) > ǫ
)

= O(N−1 +D∗
N). (4.4.2)

Although the result is not so surprising, the proof is quite complex, and so it is

not restated here. The proof uses the Markov inequality as its final step, as it bounds

the mean of the squared local discrepancy.

Corollary 4.4.2. The random triangular array emerging from Liao’s method is

WCUD. Consequently, weak consistency of MCQMC estimates holds when Liao’s

method generates the driving sequence.

Proof. By applying Lemma 4.2.3 to the result of the above theorem, the WCUD

property is verified, and so Theorem 4.3.2 yields weak consistency.

Notice that there is nothing that requires the dimension of the permuted points

to match the dimension of the MCMC algorithm. The natural impulse is to match

these dimensions, as the variates in each column of the variate matrix are more evenly

spaced than is expected with IID sampling.

4.5 Random Number Generators Revisited

The goal of Liao’s method was to provide an overall balance on the variate rows used

to update each step but make the successive variate rows look essentially independent.

To fully carry over the benefits of QMC sampling to the Markov chain case, we would

CHAPTER 4. CUD SEQUENCES IN PRACTICE 42

like to improve on pseudo-independence in the relationship between successive variate

rows, and such a sequence would have low s-dimensional discrepancy for values of

s greater than d. In other words, the s-tuples formed from consecutive s-blocks

of the entire sequence would have an approximate uniform distribution on [0, 1)s.

This criterion is equivalent to the criterion used to indicate that a random number

generator is “good.” For example, recall the equidistribution property of the Mersenne

Twister of [28], such that for all s ≤ 623, the 32 leading bits of all components of an

s-block evenly cover {0, 1}32s. We must run through the full period to see this even

distribution; certainly we have no interest in running our Metropolis-Hastings chain

to a length anywhere near 219937 − 1.

So the candidates for MCQMC endorsed by this line of reasoning are sequences

of much smaller periods that may pass as random number generators in smaller

capacity. The random number generator of period N produces a sequence of the

form u(1), . . . , u(N), u(1), Clearly as a single sequence, this is not CUD. However,

we can look at classes of random number generators of increasing sizes, and in cases

where an array-CUD property holds, the use of the full random number generator

output in a MCQMC algorithm is justifiable.

Recall the variance matrix given in (3.1.1). Liao’s method is expected to provide

some variance reduction due to a “balance in the columns,” whereby the set of variates

used to update each component is evenly distributed across [0, 1). If the full output of

a small random number generator with periodN is used exactly once in populating the

variate matrix (discarding theN(mod d) variates left over), the columns of the variate

matrix see at most N/d values from the generator, and the balance in the columns is

not notably better than that via IID sampling. So the actual sequence that should

be used is the full output from the random number generator repeated exactly d

CHAPTER 4. CUD SEQUENCES IN PRACTICE 43

times. Assuming that N and d are relatively prime (the case in which this is false will

be discussed later), the columns of the variate matrix are u(i), u(i+d), . . . , u(i+(N−1)d),

where the indices are equivalent to their mod N residue. These columns include each

value in the generator exactly once, and so the notion of balance in the columns is

upheld here. If the array-CUD property applies to a class of generator sequences,

Slutsky’s Theorem and Lemma 4.2.2 verify that the array-CUD property applies to

the class of these generator sequences repeated d times.

An additional benefit is that the s-tuples of consecutive values in the columns

include each of (u(i), u(i+d), . . . , u(i+(s−1)d)) exactly once (assuming a sort of “wrap-

around” from the bottom of the matrix to the top). Thus the last s variates used to

update a given component have a better-than-IID balance in [0, 1)s as well, assuming

the random number generator is “good.” This notion will be made more concrete for

specific classes of generators.

4.5.1 The Korobov Lattice

One well-known recursive pseudorandom number generator with desirable properties

for MCQMC is the multiplicative congruential generator (MCG). For a prime number

M , the generator assumes all values in the set {1/M, 2/M, . . . , (M − 1)/M} exactly

once. The order of the output sequence is determined by powers of an integer a, for

some 1 ≤ a ≤ (M − 1) such that

an ≡ 1(mod M) (4.5.1)

has exactly one solution in n (n = M − 1). Such a value a is known as a primitive

root of the prime M . It is well-known (see [3], e.g.) that the number of primitive

CHAPTER 4. CUD SEQUENCES IN PRACTICE 44

roots for M is positive; more specifically, it is equal to φ(M − 1), where φ is Euler’s

totient function (which maps an integer n to the number of positive integers k less

than n such that gcf(k, n) = 1).

For the sequence r(n) = an(mod M), which is equivalent to the recursion

r(n) = ar(n−1)(mod M), r(0) = 1, (4.5.2)

the sequence formed by x(n) = r(n)/M hits each value in {1/M, 2/M, . . . , (M−1)/M}

exactly once before repeating. So we take the sequence x(1), . . . , x(M−1) as the full

output sequence of the generator.

A look at the consecutive s-tuples in this sequence for s < M reveals that each is

the mod 1 residue of an integer multiple of the vector (1, g, g2, . . . , gs−1), and so the full

set of s-tuples from the generator sequence forms an integration lattice (introduced in

Section 2.2.1). The use of these sequences then guarantees some notion of even spacing

in s dimensions for all s, although, as is evident in two-dimensional projections, some

lattices are better than others.

For an infinite subset of primes, we would like to define, on each member of this set,

a generator sequence of this type such that we can verify an array-CUD property on

the resulting collection of sequences. A simultaneous discrepancy bound in dimension

s and period N = M − 1 is useful in verifying this property. Niederreiter [31] derives

the result that for a fixed choice of s and M , at least one primitive root exists such

that the s-dimensional discrepancy of the resulting sequence satisfies:

D∗
M−1 <

1

M − 1

(

1 +
(M − 2)(s− 1)

φ(M − 1)

)(

2

π
logM +

7

5

)s

. (4.5.3)

The totient function obeys the following limit (γ ≈ 0.5772 is the Euler-Mascheroni

CHAPTER 4. CUD SEQUENCES IN PRACTICE 45

constant):

lim inf
n→∞

φ(n)

n
log (log (n)) = e−γ, (4.5.4)

so for some MCG sequence on prime M above a threshold M0 > 0:

D∗
M−1 <

As

M
log (log (M))(logM)s, (4.5.5)

where A is a positive constant. Note that the choice of generator for each s is not

necessarily the same. Still, we can use this fact to verify an array-CUD property.

Theorem 4.5.1. For an infinite subset M of the primes, one can define for each

M ∈ M a multiplicative congruential generator such that the collection of full output

sequences from these generators is array-CUD.

Proof. For each M , we choose a dimension s such that s(M) = o([logM/ log logM]α)

for some constant α < 1, and choose generators to satisfy (4.5.3) for M, s(M). Under

this s(M), for large enough M we have the inequality

(logM)s < M

[

(

log log M

log M

)1−α
]

< Mβ (4.5.6)

for an arbitrary constant β ∈ (0, 1). Thus for this choice of s, the right side in (4.5.5)

decays to 0 with rate M−1+ǫ. Now for arbitrary fixed dimension s̃, the sequence of

s̃-tuples
(

u
(1)
M−1, . . . , u

(s̃)
M−1

)

, . . . ,
(

u
(M−s̃)
M−1 , . . . , u

(M−1)
M−1

)

(4.5.7)

formed by the generators above have discrepancy that decays to 0 at rate M−1+ǫ by

Lemmas 4.2.1 and 4.2.2.

It should be noted that, in the above proof, the implied constant in the rates

CHAPTER 4. CUD SEQUENCES IN PRACTICE 46

of discrepancy decay for different dimensions s̃ is different, and there is no notion

of uniform discrepancy decay in all dimensions. For s that grows with M at least

as quickly as logM/ log logM , the discrepancy bound in (4.5.5) is useless, as the

(logM)s term grows too quickly. For our Metropolis-Hastings sampler, we need a

generator of period N = M −1 to run the chain for N steps, and for practical sample

sizes, the resulting value of s for which the above bound is useful is actually quite

small. It should be pointed out that this bound is usually quite conservative. Still,

for purposes of establishing consistency via the array-CUD property, it is sufficient.

To say that a function is o([logM/ log logM]α) for some α < 1 is equivalent to

saying that the function is o([logM]β) for some β < 1; this latter expression may

seem simpler, but in the calculation above and in future calculations, it is easier to

work with the former.

The choice generator of a desired size for MCQMC is motivated by minimizing

discrepancy for all dimensions up to some tolerable smax. The actual computation

of star discrepancy of a point set is laborious and becomes far more difficult as the

dimension of the point set grows. Alternatively, one can compute the L2 norm of

the anchored local discrepancy rather than the star discrepancy (which is the L∞

norm). This mean square discrepancy has a simple calculation due to [43]; in higher

dimensions, the calculation time is accelerated due to a recursive formula in [13].

While the generator with optimal mean square discrepancy is not necessarily the one

with the best star discrepancy, it is safe to expect that the rank of sequences based

on this criterion is not much different from the true rank. In independence sampling,

alternate notions of discrepancy can also be used to bound integration error (see [14]),

although in the Markov chain case, these notions may be difficult to use in an analog

of Theorem 3.3.3.

CHAPTER 4. CUD SEQUENCES IN PRACTICE 47

As previously discussed, a more popular criterion used to evaluate the quality

of an integration lattice is one of several functions of the lattice called a “figure of

merit.” The figures of merit discussed in [33] and [40] are easier to compute and relate

to an upper bound on the discrepancy. A table of Korobov lattices for a series of

primes (close to 2n for different n) whose 8-blocks and 32-blocks have optimal figures

of merit (among Korobov lattices of the same size) is given in [18].

4.5.2 Linear Feedback Shift Register Generators

The intuitive value of a series of lattice points in approximating uniformity is the

homogenous spacing of the points. Another intuitive approach to approximating

uniformity by a point set is that of equidistribution, in which the unit hypercube is

partitioned into subcubes of equal size, and the point set puts the same number of

points into each subcube. If the subcubes of [0, 1)s have side length 2−k, the placement

of a point in a subcube is uniquely determined by the k leading binary digits of the

s coordinates of the point. The goal of random number generators based on bit

recursion is the even distribution of the leading binary digits of successive points.

The linear feedback shift register generator constructs its variates from an under-

lying sequence b1, b2, . . . of zeroes and ones. For some choice of integers a1 < a2 <

. . . < ak, the sequence is advanced by the recursive formula

bi =

(k
∑

j=1

bi−aj

)

(mod 2). (4.5.8)

As the future of the sequence is completely determined by the last m = ak values

and there are only 2m possible choices for these values, the sequence has period at

most 2m. As a set of m zeroes yields an all-zero sequence, the maximal period is only

CHAPTER 4. CUD SEQUENCES IN PRACTICE 48

2m − 1.

The existence of parameters a1, . . . , ak that create a sequence of period 2m − 1 is

guaranteed through the following well-known theorem (see [38], e.g.):

Theorem 4.5.2. The resulting sequence from the recurrence relation (4.5.8) has pe-

riod 2m − 1 (for m = ak) if and only if the polynomial

1 +

k
∑

j=1

zaj (4.5.9)

is a primitive polynomial over the Galois field with two elements. There are Zm ,

m−1φ(2m − 1) such primitive polynomials of degree m over GF(2), and so there are

Zm degree m recurrence relations whose corresponding sequence has period 2m − 1.

Any sequence which achieves this maximal period has every m-block of bits in the

set {0, 1}m \ {0}. Thus for any integer g such that gcf(g, 2m − 1) = 1, the sequence

defined by

u(i) =

B
∑

j=1

b(i−1)g+j2
−j (4.5.10)

has 2m−1 distinct values which each lie in a different interval in the partition of [0, 1)

into intervals of length 2−m. The lowest interval has no entries, as the leading m bits

are never all 0. B is the total number of bits in the number and is usually taken to be

32 or 64. We call this sequence a linear feedback shift register (LFSR) sequence. In

the special case where k = 2 and the generator corresponds to a primitive trinomial,

this generator is also known as a Tausworthe generator.

The relationship between successive points is not necessarily one that approxi-

mates uniformity well. For example, if the offset parameter g is 1, then the resulting

pairs (u(i), u(i+1)) lie in one of four rectangles, each with volume 1/8. (The second bit

CHAPTER 4. CUD SEQUENCES IN PRACTICE 49

of u(i) is the first bit of u(i+1).) We would like to choose g such that there is a better

cover of the hypercube by consecutive s-tuples. Recall the notion of equidistribution

discussed at the beginning of this section. A more formal definition as it applies to

these LFSR sequences is the following.

Definition 4.5.3. An LFSR sequence is 2−l-equidistributed in s dimensions if, upon

the partition of [0, 1)s into subcubes of side length 2−l, the number of s-tuples from

blocks of s consecutive outputs in each subcube is the same, with the exception of

the subcube containing the origin, whose count is one fewer.

Clearly 2−l-equidistribution can only hold for l ≤ ⌊m/s⌋. Given s, a significant

fraction of offsets g relatively prime to 2m − 1 seem to satisfy equidistribution for

l = ⌊m/s⌋.

Given an LFSR sequence of length N = 2m−1 and a 2−l-equidistribution property

in s dimensions for l = ⌊m/s⌋, the local discrepancy is 1/N on every box whose

corner opposite the origin has coordinates which are integer multiples of 2−l (call this

collection of boxes B). The volume of any box differs by at most s2−l from that of a

set in B which is either a superset or subset of the box. Thus the star discrepancy

satisfies

D∗
N ≤ 1

N
+ s2−m/s+1 <

1

N
+ 2sN−1/s. (4.5.11)

This bound is not strong, but we can verify an array-CUD property for a collection

of LFSR sequences from this.

Theorem 4.5.4. Let s(N) be an integer function with growth o(logN/ log logN). For

each integer m, define an LFSR sequence of size N = 2m − 1 such that the sequence

is 2−⌊m/s(N)⌋-equidistributed. The collection of LFSR sequences is array-CUD.

CHAPTER 4. CUD SEQUENCES IN PRACTICE 50

Proof. For s(N) above and N sufficiently large, the right side of (4.5.11) is bounded

above by (log logN)−1, and so it decays to 0 as N and s(N) grow to ∞. For a specific

s, the s-dimensional discrepancy decays to 0 by the above result and Lemmas 4.2.1

and 4.2.2, and so the collection is array-CUD.

There are many choices of primitive polynomial and offset which satisfy the

equidistribution condition. Because finding star discrepancy is tedious for high di-

mensions, an exhaustive search for optimal sequence of a certain size in terms of dis-

crepancy in a certain dimension becomes far too computationally expensive quickly.

It is again easier to look at mean square discrepancy, and still, a nonexhaustive search

for good mean square discrepancy in a few choices of dimension yielded the sequences

used in the examples in Chapter 6.

The decision of whether to use an LFSR sequence or an MCG sequence is not

clear. Beyond the specific dimension by which the MCG is selected, the s-blocks still

form a lattice, although a lattice may still have large gaps (recall Figure 2.1). The

equidistribution property of the LFSR can only hold for a small set of dimensions and

cube sizes; beyond this, the LFSR may also have large gaps, as seen in Figure 4.1. The

discrepancy of a sequence and the integration error resulting from its use, even in an

independent sampling scheme, are not always well-correlated. A result in [27] states

that a lattice of size N on the s-dimensional hypercube lies in at most (s!N)1/s parallel

hyperplanes. For a function f with large variability in the transverse direction, the

MCG points would not provide substantial improvements in estimate accuracy over

random sampling. The results of the search for good MCG sequences have been well-

documented, but there is little literature to endorse specific LFSR sequences in terms

of optimal discrepancy; however, results that are at least comparable to, and in some

cases substantially better than those attained using MCG sequences emerge using the

CHAPTER 4. CUD SEQUENCES IN PRACTICE 51

Figure 4.1: Projections of successive values from an LFSR generator, with equidistri-
bution in 2-dimensions holding on the left. From an LFSR generator with multipliers
(3, 10) and offset 52, these are the plots of (u(i), u(i+k)) for k = 2 on the left and
k = 47 on the right.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

best LFSR sequences from a nonexhaustive search of a group of sequences.

Chapter 5

Algorithm Implementation

The results of the previous chapter indicate that an MCQMC algorithm which re-

places IID sampling with points drawn from a multiplicative congruential generator

or a linear feedback shift register generator is valid in an array-consistency sense. This

chapter will include details of a general strategy for populating the variate matrix used

in the simulation, randomizing the variates, and beginning the sampler. Throughout,

the notion of consistency through an array-WCUD property will be preserved.

5.1 Populating the Variate Matrix

The discussion in Section 4.5 suggests a strategy for the inclusion of a full-period

generator output (with length N) into the variate matrix (3.1.1), where the sequence

is repeated d times. (Recall that this d is the dimension of the algorithm itself and

is fixed.) This strategy assumes that d and N are relatively prime, such that each

value of the generator appears in each column of the variate matrix exactly once.

In the instance where gcf(d,N) > 1, some adjustment of this sequence repetition is

necessary so that the balance in the columns of the variate matrix is preserved.

52

CHAPTER 5. ALGORITHM IMPLEMENTATION 53

For b = gcf(d,N), the method used in simulations in [37] and [42] uses a series

of b − 1 skips that occur after every N/b rows, such that for generator sequence

u(1), u(2), . . . , u(N), the variate matrix appears as such:

u(1) u(2) . . . u(d)

u(d+1) u(d+2) . . . u(2d)

...
...

. . .
...

u((N/b)d−d+1) u((N/b)d−d+2) . . . u((N/b)d)

u(2) u(3) . . . u(d+1)

u(d+2) u(d+3) . . . u(2d+1)

...
...

. . .
...

u((N/b)d−d+2) u((N/b)d−d+3) . . . u((N/b)d+1)

...
...

...
...

...
...

...
...

u(b) u(b+1) . . . u(d+b−1)

u(d+b) u(d+b+1) . . . u(2d+b−1)

...
...

. . .
...

u((N/b)d−d+b) u((N/b)d−d+b+1) . . . u((N/b)d+b−1)

(5.1.1)

In the above notation and in similar expressions in this chapter, we define u(i) = u(j)

for i ≡ j mod(N). Although this scheme places every output of the generator in

each column exactly once, the s-tuples formed by consecutive values in the columns

of the variate matrix do not correspond to (u(i+k1), u(i+k2), . . . , u(i+ks)) for fixed values

k1, . . . , ks. For example, in the MCG case, the consecutive s-tuples do not form a

lattice, as shown in Figure 5.1. To preserve some notion of approximate uniformity

among the s-tuples that govern s successive updates to a component, the skips in the

CHAPTER 5. ALGORITHM IMPLEMENTATION 54

sequence must be the same between every pair of rows. An improved strategy is to

find the smallest integer y ≥ d such that gcf(y,N) = 1, and form the variate matrix

in the following fashion:

u(1) u(2) . . . u(d)

u(y+1) u(y+2) . . . u(y+d)

u(2y+1) u(2y+2) . . . u(2y+d)

...
...

. . .
...

u((N−1)y+1) u((N−1)y+2) . . . u((N−1)y+d)

(5.1.2)

This strategy maintains a balance among the s-tuples in the columns. As the random

number generator sequence is selected for its optimal properties in small dimensions,

y − d (the number of skips between rows) should remain small. To keep y − d small

such that the array-CUD property is preserved, nothing need be done for a collection

of array-CUD LFSR sequences, but some primes should be avoided in the MCG case.

These cases will be treated separately below.

5.1.1 The LFSR Case

The preservation of the array-CUD property with generator skips is verified through

the following theorem.

Theorem 5.1.1. For a fixed positive integer d, let yi be the smallest value ≥ d such

that gcf(yi, Ni) = 1. If for all sequence lengths Ni in a CUD triangular array, the

value yi is bounded above by some constant K, then the sequences

u
(1)
Ni
, u

(2)
Ni
, . . . , u

(d)
Ni
, u

(yi+1)
Ni

, u
(yi+2)
Ni

, . . . , u
(yi+d)
Ni

, u
(2yi+1)
Ni

, . . . , . . . , u
((Ni−1)yi+d)
Ni

CHAPTER 5. ALGORITHM IMPLEMENTATION 55

Figure 5.1: Left is lag plot of successive updates using (5.1.1) on MCG with M =
1021, a = 65, d = 12. Right is the same, using (5.1.2). 12 is a factor of 1020, and so
12 points are out of place in the lattice on the left.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

form a CUD array.

Proof. For arbitrary dimension s, the s-dimensional discrepancy of the above is

bounded above by the ⌈sK/d⌉-dimensional discrepancy of the corresponding gen-

erator sequence repeated d times without skips, plus an error term for end values.

This bound is achieved by an analogous proof to that of Lemma 4.2.1, with the er-

ror term of size O(1/N) by Lemma 4.2.2. So as the original sequence collection is

array-CUD, the s-dimensional discrepancies of these sequences decay to 0. As s is

arbitrary, the sequences with skips are still array-CUD.

The period of each LFSR generator sequence is odd, and so any power of 2 is

relatively prime to the sequence length. Thus for an algorithm dimension d, the skip

y−d is less than d for any LFSR sequence. Thus the array-CUD property is preserved

for the collection of LFSR sequences by Theorem 5.1.1 with K = 2d.

CHAPTER 5. ALGORITHM IMPLEMENTATION 56

5.1.2 The MCG Case

For a prime M , the period of an MCG sequence with base M is M − 1, which is an

even composite number for any M > 3. As N increases (algorithm dimension d is

fixed), the smallest value y ≥ d relatively prime to N has lim supN→∞(y/ logN) > 0.

So some thinning of the prime numbers is necessary. For a specific dimension d, we

select a “threshold” prime number y0 at least as large as d. For M > y0, the smallest

value y ≥ d relatively prime to M − 1 is at most y0 if M is not congruent to 1 (mod

y0); thus y0 can serve as the constant K in Theorem 5.1.1 if each MCG sequence with

prime base M congruent to 1 (mod y0) is discarded from the CUD array.

More rigorously, we can partition the set of primes bigger than y0 into y0 − 1

subsets A1, . . . , Ay0−1 such that

M ∈ Ai iff M ≡ i(mod y0). (5.1.3)

An array-CUD sequence based on MCG generator outputs is still array-CUD with

skips added if the sequences based on primes in the set A1 are discarded, by applica-

tion of 5.1.1 with K = y0. The sparseness of the subsets in the above partition is not

a problem, as a result of Vallée Poussin [8] says that, for all i:

lim
N→∞

#
∣

∣Ai ∩ {1, 2, . . . , N}
∣

∣

N/ logN
=

1

y0 − 1
. (5.1.4)

In practice, the application of a generator sequence of period M −1 for which y is

large should be avoided in favor of a sequence of roughly the same length for which

y is small.

CHAPTER 5. ALGORITHM IMPLEMENTATION 57

5.2 Randomization

The randomization of the values in the variate matrix is an important tool to minimize

the bias of the estimation procedure. In creating a good randomization scheme,

the goal is to make points marginally uniform while preserving the low-discrepancy

property; specifically, we want to preserve an array-WCUD property. It seems natural

to apply the same randomization to each row in the variate matrix (3.1.1), such

that the d-dimensional point in each row is marginally distributed U [0, 1)d, but the

balance in the columns is still preserved. This can be achieved by applying a common

randomization to every univariate value in a single column of the variate matrix, with

the condition that the randomizations applied to different columns are independent.

5.2.1 The LFSR Case

The verification of an array-CUD property of a collection of optimally equidistributed

LFSR generators relied on this equidistribution. Consequently, a randomization that

preserved the notion of equidistribution would be a good choice. Such a randomization

that does this is an additive bit scramble, defined below.

Definition 5.2.1. For arbitrary x ∈ [0, 1), take the unique binary representation

x = 0.x1x2x3 . . . such that xi = 0 infinitely often. The additive bit scramble creates a

random binary sequence (a1, a2, . . .) whose ith coordinate is 0 or 1 with probability 1/2

(independently of the values of other coordinates), and thus maps x to the number

whose ith binary digit is xi + ai (mod 2). Equivalently, each digit of x is flipped

independently with probability 1/2. The distribution of x under this random map is

uniform on [0, 1].

A common additive bit scramble is applied to each column of the variate matrix,

CHAPTER 5. ALGORITHM IMPLEMENTATION 58

with the scrambles on separate columns independent. Now each row is marginally

uniform, and an array-WCUD property still holds.

Theorem 5.2.2. For an array-CUD collection of LFSR generator sequences defined

in Theorem 4.5.4 repeated with regular skips as in (5.1.2), define the random array

by a series of d independent additive bit scrambles applied to each sequence (such that

the nth value in the sequence gets the jth randomization, where n ≡ j (mod d)). This

array is WCUD.

Proof. Take s(N) = o([logN/ log logN]α) for some constant α < 1. For such s,

s2N−1/s → 0. For the original generator sequence of length N = 2m − 1, take k(N)

the largest integer power of 2 such that s(N) ≥ 2k(N)d. (Recall that there are at

most d skips per row in the construction (5.1.2).) For l = ⌊m/s⌋ the nonoverlapping

k(N)d-tuples in the sequence are 2−l equidistributed in the sense that every subcube

in a partition of [0, 1)k(N)d into subcubes of side length 2−l has the same number of

points, except one random cube which has one fewer point. By similar reasoning to

that in Theorem 4.5.4, the nonoverlapping discrepancy of the point set of size N in

dimension k(N)d goes to 0.

For arbitrary constant k0 which is an integer power of 2, when N is sufficiently

large, k0 < k(N). For some N sufficiently large, the set of nonoverlapping (k0d)-tuples

can be partitioned into subsets such that the ith point is mapped to a subset indexed

by the residue of i mod (k(N)/k0). From this decomposition, the discrepancy of

nonoverlapping (k0d)-tuples is bounded above by the sum of k(N)/k0 terms at most

equal to the k(N)d-discrepancy, and so the discrepancy of the nonoverlapping (k0d)-

tuples is at most s(N)k(N)N−1/s(N), which goes to 0 as specified above. By Lemma

4.3.3, the array is WCUD.

In practice, only the first 32 or 64 bits of the number are recorded, and so the

CHAPTER 5. ALGORITHM IMPLEMENTATION 59

randomization is only carried out to the same number of bits.

5.2.2 The MCG Case

As we want to preserve the regular spacing between points, the natural randomization

here is the Cranley-Patterson rotation where every row is translated by a common

variable U uniformly distributed on [0, 1)d. This is equivalent to independent uni-

variate Cranley-Patterson rotations on each column. To show that this preserves the

array-WCUD property, we first start with a Lemma relating types of discrepancy.

Definition 5.2.3. For 0 ≤ a < b ≤ 1, define the wrap-around interval [b,a] to be

[0, a] ∪ [b, 1]. A wrap-around box B takes the form
∏

[ai, bi], where the interval is

wrap-around if ai > bi and traditional otherwise. The wrap-around discrepancy DW
n

takes the supremum of the absolute difference between empirical measure and Jordan

measure over all wrap-around boxes.

Lemma 5.2.4. For the same point set in [0, 1)d,

D∗
n ≤ DW

n ≤ 4dD∗
n. (5.2.1)

Proof. The first inequality is clear, as all anchored boxes are wrap-around boxes. All

simple unanchored boxes have local discrepancy at most 2dD∗
n by (A.2.6). All wrap-

around boxes are the union of at most 2d simple unanchored boxes, and so every wrap

around box has local discrepancy at most 2d · 2dD∗
n. The result follows.

Note that the wrap-around discrepancy of a point set with a common Cranley-

Patterson rotation applied to every point does not change. We use this fact to verify

an array-WCUD property.

CHAPTER 5. ALGORITHM IMPLEMENTATION 60

Theorem 5.2.5. For an array-CUD collection of MCG generator sequences defined

in Theorem 4.5.1 repeated with regular skips as in (5.1.2) and thinned to primes not

congruent to 1 mod y0, define the random array by a series of d independent Cranley-

Patterson rotations, where the nth value in the sequence undergoes the jth rotation if

n ≡ j (mod d). Then the array is WCUD.

Proof. Take s(N) = o([logN/ log logN]α) as before, where α < 1. Define k(N) the

largest integer power of 2 such that s(N) > k(N)y0. The nonoverlapping k(N)d-tuples

have, by (4.5.5) and (5.2.1), discrepancy at most As(N)N−1(log logN)(4 logN)s(N).

Note that 4s(N) is o(N log 4/ log log N), and so this discrepancy is still O(N−1+ǫ) as N

(and s(N)) grow to ∞. The remainder of the argument follows as in the proof of

Theorem 5.2.2 (note k(N)O(N−1+ǫ) = O(N−1+2ǫ) for arbitrary ǫ), verifying that the

array is WCUD.

5.2.3 The Issue of Bias

It should be noted that even if we assume the starting value X(0) of the Metropolis

Algorithm is π-distributed (i.e., we are already in a stationary distribution), the

randomizations above do not make the resulting estimate unbiased. The distribution

of successive variates in the same column of the matrix is not uniform under the

randomization, and so the resulting chance that the path moves in any direction

given its previous move is not the same as with independent sampling.

For example, take the s-tuple of the first s variates used to update the first compo-

nent. In the MCG case with the Cranley-Patterson rotation, this s-tuple is uniformly

distributed on a finite set of line segments. In the LFSR case with the additive

bit scramble, the s-tuple can lie in only 2l of the 2sl subcubes in a partition of the

cube. Yet overall, the set of directions each particle goes in each block of s steps is still

CHAPTER 5. ALGORITHM IMPLEMENTATION 61

well-balanced after the simulation is complete, and so we do not expect a problematic

bias.

One idea to make bias less worrisome is to apply independent transformations to

each element in a block of m rows, where m is some small number bigger than 1. If

m is relatively prime to the sequence period N , by running through the generator

dm times, with the same block of dm independent transformations applied to all

N nonoverlapping (dm)-blocks in the variate matrix, the bias is contained in the

approximation error of (4.1.1). This involves the same work as the use of a generator of

sequence length ≈ Nm, which may have much nicer distribution among its successive

values, and so the marginal return of this step to reduce bias may not be worthwhile.

Specifically in the LFSR case, one can generalize the additive bit scramble to a

linear bit scramble, where we define a matrix A whose entries are 1 on the diago-

nal, 0 above the diagonal, and 0 or 1 independently with probability 1/2 below the

diagonal; and B an additive bit vector as before. For two values x = 0.x1x2x3 . . .

and y = 0.y1y2y3 . . ., if j = min {n ≥ 1 : xn 6= yn}, then the range of the random map

(Ax + B,Ay + B) is a set of 2-dimensional measure 2−j, as (xi, yi) is uniformly dis-

tributed over {0, 0}, {0, 1}, {1, 0}, {1, 1} for all i > j. Under the additive bit scramble

alone, the range of (x + B, y + B) had 2-dimensional measure 0. Equidistribution

is also preserved under this map. The marginal distribution of s-tuples with the

same randomization applied componentwise could approach uniformity even more if

the upper diagonal were not restricted to 0, but in this case, equidistribution is not

preserved, and so this should certainly be avoided.

CHAPTER 5. ALGORITHM IMPLEMENTATION 62

5.3 Acceptance/Rejection Sampling

The strategy for use of CUD and array-CUD sequences in a Metropolis-Hastings al-

gorithm has assumed that at most d variates are needed to generate the next step in

the chain, where d is determined beforehand. In the case where acceptance/rejection

sampling (as described in Table 2.1) is necessary to draw from proposal distributions

in the Metropolis-Hastings algorithm (or conditional distributions in the Gibbs sam-

pler), it is not possible to put a finite bound on the number of variates needed to

generate a sample point. (The number of variates needed is twice a geometrically

distributed variable.)

In the experiment of randomizing QMC points to run a Gibbs sampler in [23], Liao

drew from a Gamma distribution using acceptance/rejection sampling. His strategy

was to run two iterations of an acceptance/rejection algorithm using four coordinates

of a d-dimensional QMC point, and if two rejections occurred, a sequence assumed to

be IID was used to finish the acceptance/rejection algorithm. It is not easy to prove

an analogous theorem to Theorem 3.3.3 without some sort of regular inclusion of IID

sampling after a fixed number of rejections using a CUD sequence.

A Metropolis-Hastings algorithm that runs up to k steps of an acceptance/rejection

sampler with points from a CUD sequence before using IID points is still weakly con-

sistent, as shown in [42]. The reversion to IID sampling to generate from some

distribution is equivalent to drawing a single uniform that corresponds to the CDF of

the distribution evaluated at the drawn value. Hence the entire algorithm, assuming

k acceptance/rejection steps are necessary, is equivalent to using the variate matrix

CHAPTER 5. ALGORITHM IMPLEMENTATION 63

u(1) u(2) . . . u(d−1) v(1) . . . v(k) u(d)

u(d+1) u(d+2) . . . u(2d−1) v(k+1) . . . v(2k) u(2d)

...
...

. . .
...

...
. . .

...
...

u((N−1)d+1) u((N−1)d+2) . . . u(Nd−1) v((N−1)k+1 . . . v(Nk) u(Nd)

(5.3.1)

where the {u(i)} sequence is WCUD (or from an array-WCUD collection) and the

{v(i)} are assumed to be IID and independent of the {u(i)} sequence. The proof that

the sequence formed across the rows is WCUD or array-WCUD appears in [42]. This

proof formalizes the intuitive idea that the nonoverlapping m(d+k)-tuples must have

discrepancy that decays to 0. Lemma 4.3.3 completes the proof.

5.4 The Final Variate Matrix Expression

We assume the following things:

1. We wish to use a length N sequence from a CUD array

2. The Metropolis-Hastings sampler requires d variates and up to k reversions to

IID sampling for acceptance/rejection

3. The smallest integer ≥ d relatively prime to N is y

4. The randomizations ψ1, . . . , ψd are independent

From this, the general format of the variate matrix to be used for MCQMC is

given below. Note that for both generators studied, the point set is incomplete in the

sense that the leading bits in an LFSR sequence point are never all 0, and the origin

CHAPTER 5. ALGORITHM IMPLEMENTATION 64

of the integration lattice from an MCG sequence is missing. The inclusion of the

origin at the beginning of the sampling scheme makes the one-dimensional balance in

the columns more complete and is recommended. As it is one point, its inclusion does

not affect results pertaining to the CUD nature of the arrays. In the following, the

sequence {v(i)} is an IID uniform sequence used only when an acceptance-rejection

algorithm needs further iterations.

ψ1(0) . . . ψd−1(0) v(1) . . . v(k) ψd(0)

ψ1(u
(1)) . . . ψd−1(u

(d−1)) v(k+1) . . . v(2k) ψd(u
(d))

ψ1(u
(y+1)) . . . ψd−1(u

(y+d−1)) v(2k+1) . . . v(3k) ψd(u
(y+d))

...
. . .

...
...

. . .
...

...

ψ1(u
((N−1)y+1)) . . . ψd−1(u

((N−1)y+d−1)) v(Nk+1) . . . v((N+1)k) ψd(u
((N−1)y+d))

(5.4.1)

This final form of the variate matrix is the one used in the simulations whose

results appear in the next chapter, unless otherwise indicated in studies that examine

the marginal benefit of the variate matrix adjustments described here.

Chapter 6

MCQMC Examples

Throughout this section, we denote the stationary distribution by π and the transition

distribution from state x by Qx. The densities or mass functions of these at state y

are π(y) and q(x, y). For the Gibbs sampler, the conditional distributions are denoted

by Q(θk|θ1, . . . , θk−1, θk+1, . . . , θd); for simplicity of notation, we denote the vector of

theta except for the kth component by θ−k.

6.1 Toy Problems

Before examining the performance of MCQMC in comparison to regular MCMC in

substantial problems, it is interesting to explore various aspects of the process in

simple toy problems where the effects of various aspects of the algorithm can be

easily seen.

A few simple examples shown here will have a Gaussian target distribution π

with known parameters, such that Eπ[f(X)] is easily computed. The first example

is a simple univariate Metropolis-Hastings sampler with proposal distributions either

65

CHAPTER 6. MCQMC EXAMPLES 66

Table 6.1: Mean Square Error, Random Walk

σ = 2.4 σ = 1.2 σ = 0.5
IID 4.54e-03 6.28e-03 5.65e-02

f(x) = x MCG 1.96e-03 1.64e-03 2.03e-03
LFSR 1.77e-03 2.15e-03 1.78e-03
IID 1.11e-03 1.02e-03 2.65e-01

f(x) = 1{x>0} MCG 6.36e-04 3.71e-04 2.57e-01
LFSR 5.77e-04 4.53e-04 2.44e-01
IID 8.77e-03 1.35e-02 9.98e-01

f(x) = x2 MCG 6.01e-03 5.62e-03 1.02e+00
LFSR 5.74e-03 5.75e-03 9.22e-01

symmetric about the current state or independent of it:

π = N(0, 1), Qx = N(x, σ2). (6.1.1)

π = N(0, 1), Qx = N(0, σ2). (6.1.2)

The first sampler is known as the random walk sampler, the second is known as the

independence sampler. The parameter σ2 will affect the rate of proposal acceptance

and the rate of decay of dependence on past values. In terms of the mean square

error of the resulting estimates, the performance of MCQMC using MCG or LFSR

sequences can be compared to MCMC with IID sampling for the two samplers, with

a variety of σ values for several functions. The values of σ were chosen to provide

a wide range of mixing speeds of the chain. From here onward, we will denote an

MCG with prime modulus M and primitive root multiplier a as the (M, a) MCG,

and an LFSR with recursion sequence (a1, . . . , ak) and offset g as the [(a1, . . . , ak), g]

LFSR. Tables 6.1 and 6.2 compare the (1021,65) MCG and the [(3,10),52] LFSR to

IID sampling with 1024 steps.

CHAPTER 6. MCQMC EXAMPLES 67

Table 6.2: Mean Square Error, Independence

σ = 2.4 σ = 1.2 σ = 0.5
IID 2.75e-03 7.42e-04 9.81e-01

f(x) = x MCG 5.13e-04 1.09e-04 1.21e+00
LFSR 5.16e-04 1.35e-04 1.13e+00
IID 7.35e-04 2.84e-04 2.66e-01

f(x) = 1{x>0} MCG 1.44e-04 3.22e-05 2.60e-01
LFSR 1.01e-04 5.45e-05 2.33e-01
IID 3.87e-03 2.47e-02 1.71e+00

f(x) = x2 MCG 1.09e-03 1.91e-04 1.36e+00
LFSR 1.45e-03 1.89e-04 1.11e+00

These results show that the MSE reduction using MCQMC is best in the random

walk case for σ = 1.2. An explanation on the diminished performance of the σ = 2.4

case is the high number of rejections, such that the autocorrelation of the sequence

is high.

The independence sampler also favors MCQMC in the σ = 1.2 case; note that

for σ = 1 the sampler is a simple Monte Carlo sampler, and so any σ quite close to

1 will behave similarly to this. The MSE reductions for the σ = 2.4 and σ = 1.2

samplers range from 1.4 to 3.9 in the random walk case and from 2.7 to 13 in the

independence case. The dependence on the past is lower in the independence sampler:

note that two chains at different starting values with the same driving sequence will

match as soon as an acceptance occurs under the independence sampler, whereas the

random walk sampler on these two chains can only move closer together when one

chain accepts and the other rejects.

The σ = 0.5 sampler is highly unstable, rarely reaching the tails of the target

density and remaining for long epochs in values of higher magnitude once they are

reached. MCQMC does not help this sampler.

CHAPTER 6. MCQMC EXAMPLES 68

Somewhat surprisingly, the advantage of MCQMC over IID sampling does not

seem to change much for different functions, including the one with discontinuity.

In a Gaussian setting, the mean and variances are the expectations of unbounded

functions, but the normal tails decay rapidly, such that bounded functions provide

an excellent approximation to these functions. So it is reasonable to expect that

MCQMC does best in estimating the mean and worst in estimating the probability of

positivity, but the results do not differ significantly. In terms of looking at the image

of f over the uniform variates used to generate the sample, the decision to accept or

reject proposals in the Metropolis-Hastings sampler introduces discontinuity anyway.

The next toy example is small Gibbs sampler on a joint Gaussian distribution

(with Gaussian conditional distributions):

π = N(µ,Σ), Q(θk|θ−k) = N(µk +Σk,−kΣ
−1
−k,−k(θ−k −µ−k),Σk,k −Σk,−kΣ

−1
−k,−kΣ−k,k).

(6.1.3)

As the correlations σjk for j 6= k increase in magnitude, the autocorrelation of the

Markov chain increases as well, and so it is reasonable to expect the advantage of

MCQMC to be the best for target distributions with low correlations. The perfor-

mance of the sampler for a few functions and choices of Σ is shown in Table 6.3 (we

keep µ = 0 as the performance of the simulation is not affected by µ). The same

MCG and LFSR as in the previous example are used. Each Gaussian distribution

is trivariate with marginal variances 1 and covariance terms (ρ12, ρ13, ρ23) specified

in Table 6.3. For ease of interpretation, the MSE reduction factors of the MCQMC

methods versus IID MCMC are given in Table 6.4.

The sampler estimates the mean and variance of θ1 and the covariance of θ1

and θ2 with much greater accuracy by MCQMC in all cases. The cases with lowest

CHAPTER 6. MCQMC EXAMPLES 69

Table 6.3: Mean Square Error, Gaussian Gibbs Sampler

(0.7, 0.4, 0.6) (0.3,−0.2, 0.5) (0.95, 0.7, 0.75)
IID 4.03e-03 1.67e-03 2.04e-02

f(θ) = θ1 MCG 1.81e-05 1.14e-05 4.12e-04
LFSR 1.74e-05 4.43e-06 2.61e-03
IID 3.76e-03 1.30e-03 2.48e-02

f(θ) = θ1 · θ2 MCG 8.50e-04 3.07e-04 1.09e-02
LFSR 7.20e-05 1.25e-05 1.63e-02
IID 4.23e-03 1.90e-03 2.44e-02

f(θ) = θ2
1 MCG 6.45-04 2.10e-04 1.04e-02

LFSR 6.39e-05 2.36e-05 1.82e-02

Table 6.4: MSE Reduction Factors, Gaussian Gibbs Sampler

(0.7, 0.4, 0.6) (0.3,−0.2, 0.5) (0.95, 0.7, 0.75)
f(θ) = θ1 MCG 22 146 50

LFSR 24 375 7.8
f(θ) = θ1 · θ2 MCG 4.4 4.2 2.2

LFSR 52 104 1.5
f(θ) = θ2 MCG 6.6 9.0 2.3

LFSR 66 79 1.3

CHAPTER 6. MCQMC EXAMPLES 70

correlation see the greatest advantage of MCQMC, and those with highest correlation

see the lowest advantage. Here the estimation of the means seems to show the best

improvement; interestingly the MCG performance deteriorates much more than the

LFSR performance for the covariance and variance estimates. Overall, except in the

case of ρ12 = 0.95, the error reductions in the Gibbs sampler are far more impressive

than those in the Metropolis-Hastings samplers above.

6.2 A Bayes Model

An example explored in [23] exhibits promising results for MCQMC in dimensions far

larger than the conservative theoretical bounds support. The problem and data come

from [11]. Ten pumps experience failures according to independent Poisson processes

with rates λ1, . . . , λ10. Each λi is assumed to have a Gamma distribution with shape

parameter α = 1.802 and scale parameter β with Gamma prior distribution (shape

parameter γ = 0.1, scale parameter δ = 1). The data recorded are the number of

failures si of each pump and times ti over which the number of failures of the pump

was monitored (see Table 6.5).

For a rate λ, the number of failures in time t has a Poisson(λt) distribution, and

so the distribution of λi given β and the data is indepedent of the other λ values and

has a Gamma(α+ si, β+ ti) distribution. The distribution of β given all the λ values

is independent of the data and has a Gamma(γ+10α, δ+
∑

λi) distribution. We use

these conditional distributions to run a Gibbs sampler whose values converge to the

joint posterior distribution.

For Bayesian modeling, the posterior distributions of these parameters are of in-

terest, as well as the construction of estimates of these parameters. The value a that

CHAPTER 6. MCQMC EXAMPLES 71

Table 6.5: Pump failure data

Pump Failures Time
1 5 94.32
2 1 15.72
3 5 62.88
4 14 125.76
5 3 5.24
6 19 31.44
7 1 1.048
8 1 1.048
9 4 2.096
10 22 10.48

minimizes E[(θ− a)2] over the distribution of θ is the mean, so for the joint posterior

distribution π, the Monte Carlo estimates of Eπ[λi] and Eπ[β] (by the sample means)

will be the parameter estimates. We wish to investigate the square error of the sample

means from the Gibbs sampler in estimating the true means of the parameters. The

posterior mean is not obtainable in closed form; the variance of the estimates will be

explored with a cautious eye towards the potential bias of the MCQMC estimates.

These simulations were run in the program language R. The following MCGs were

used: (1021,65), (4093,209), (16381,665). These were taken from [18]. The following

LFSRs were used: [(3,10),52], [(1,3,7,9,11,12),29], [(1,2,6,10,11,14),35]. The primitive

polynomial was chosen at random from the full list of primitive polynomials of given

degree, and then the offset was chosen to minimize mean square discrepancy.

100 replications were conducted of simulations of size ≈ 210, 212 and 214 using

pseudorandom Mersenne Twister outputs, randomly permuted lattice points (“Liao

method”), MCG sequence points and LFSR sequence values. The sample variances

of these 100 estimates are shown in Table 6.6. From these results, the minimum and

CHAPTER 6. MCQMC EXAMPLES 72

maximum (over the eleven parameters) variance reduction factor of each MCQMC

method over IID sampling is shown in Table 6.7. Note that the ratio of sample

variances, if the sampling distributions are identical, follows an F99,99 distribution for

two independent samples of size 100. The .95 quantile of the F99,99 distribution is

roughly 1.4, and so variance reduction factors of size larger than 1.4 are considered

statistically significant. All MCQMC estimates yield statistically significant variance

reductions in this example.

The tables indicate that the LFSR method yields the lowest variance, with each

method exhibiting larger reductions in variance over IID sampling as the sample size

increases (indicating an improved empirical error rate decay). The bias of the methods

is uncertain, but, assuming that the true mean is somewhere near the mean of the 100

unbiased estimates via IID sampling, a look at the boxplots of estimates shows that

bias is likely far smaller than the variance of the estimates by IID sampling. Sensitivity

to the quality of sequences in more “important” dimensions makes inference on error

rate volatile from a small set of sequences.

Table 6.6 shows that the variance reduction is the largest for the Poisson param-

eters with larger monitoring periods (λ1, λ3, λ4) and smallest for those with smaller

monitoring periods (λ7, λ8). This is not surprising, as the dependence of the condi-

tional distribution on β is stronger for smaller periods. The multiplicative differences

in variance reduction between λ7 and λ8 (which have identical data) under the MCG

and LFSR methods are consistently around 2, indicating that the quality of the se-

quences used has an effect on the improvement in performance.

MCQMC is not expected to perform as well in determing other aspects of the

target distribution not related to expectation. Appendix B contains histograms of

four samples of β obtained by separate Gibbs samplers using each of the IID, MCG

CHAPTER 6. MCQMC EXAMPLES 73

and LFSR methods. Not much discernible difference exists between the samples

constructed by the various methods; we might expect the CUD samplers to provide

an “even” histogram with greater frequency. Still, when the medians of the samples

are used as estimates of the medians of the marginal posterior distributions, the

variances of these estimates in the N ≈ 210 case drop by factors between 4 and 140

for the MCG case and 6 and 170 for the LFSR case. So MCQMC does seem beneficial

in determining quantiles as well. Liao already noted the benefits of his method in

determining quantiles in [23].

6.3 Probit Regression Model

This model is due to [2] on data from [10]. There are 39 measurements of patient

respiration, each of which recorded an indicator Yi of vasoconstriction and measure-

ments of the volume Xi,1 of air inspired and the rate Xi,2 of inspiration. The probit

regression model says that

P (Yi = 1) = Φ−1(β0 + β1Xi,1 + β2Xi,2), (6.3.1)

where Φ−1 is the inverse CDF of the standard Gaussian distribution. To fit this

model, latent data values Zi are introduced where Zi has Gaussian distribution with

mean β0 + β1Xi,1 + β2Xi,2 and variance 1, and Yi is the indicator of whether Zi is

positive. The prior distribution on β is noninformative.

Given this setup, the conditional distribution of the β variables given the Zi values

is independent of the response data, and it has a multivariate Gaussian distribution

with mean (XTX)−1XTZ and covariance (XTX)−1. The Zi, given Yi and β, have a

truncated distribution which is the Gaussian distribution above restricted to [0,∞)

CHAPTER 6. MCQMC EXAMPLES 74

Table 6.6: Variances of posterior mean estimates, Bayes model

N ≈ 210

Parameter λ1 λ2 λ3 λ4 λ5

IID 6.21e-07 9.21e-06 1.89e-06 1.22e-06 9.00e-05
Liao 3.72e-09 4.88e-08 8.23e-09 4.13e-09 9.02e-07
MCG 3.79e-09 4.86e-08 7.86e-09 5.52e-09 7.69e-07
LFSR 1.03e-09 1.36e-08 1.62e-09 7.93e-10 1.80e-07

Parameter λ6 λ7 λ8 λ9 λ10 β
IID 1.63e-05 3.19e-04 4.14e-04 3.74e-04 1.61e-04 9.00e-04
Liao 1.05e-07 1.17e-05 1.37e-05 9.34e-06 1.35e-06 1.37e-05
MCG 7.76e-08 9.34e-06 1.99e-05 3.92e-06 9.99e-07 1.04e-05
LFSR 2.71e-08 7.04e-07 1.32e-06 9.90e-07 3.15e-07 3.14e-06

N ≈ 212

Parameter λ1 λ2 λ3 λ4 λ5

IID 1.67e-07 1.90e-06 3.45e-07 3.29e-07 2.79e-05
Liao 2.27e-10 8.53e-09 7.29e-10 3.05e-10 2.14e-07
MCG 2.93e-10 6.64e-09 5.33e-10 3.42e-10 5.06e-08
LFSR 4.53e-11 1.52e-09 1.25e-10 6.58e-11 1.14e-08

Parameter λ6 λ7 λ8 λ9 λ10 β
IID 4.97e-06 7.12e-05 8.88e-05 9.98e-05 4.77e-05 1.64e-04
Liao 8.31e-09 2.46e-06 4.14e-06 1.96e-06 1.98e-07 2.00e-06
MCG 5.98e-09 9.25e-07 4.81e-07 4.22e-07 8.81e-08 1.90e-06
LFSR 1.18e-09 1.01e-07 5.77e-08 4.68e-08 1.48e-08 5.40e-07

N ≈ 214

Parameter λ1 λ2 λ3 λ4 λ5

IID 3.96e-08 4.62e-07 8.46e-08 6.95e-08 5.44e-06
Liao 2.48e-11 1.01e-09 5.81e-11 2.30e-11 3.34e-08
MCG 2.20e-11 1.37e-09 4.67e-11 2.67e-11 6.35e-09
LFSR 3.51e-12 4.45e-11 8.06e-12 4.32e-12 8.55e-10

Parameter λ6 λ7 λ8 λ9 λ10 β
IID 1.02e-06 2.18e-05 2.65e-05 3.13e-05 1.07e-05 7.04e-05
Liao 1.02e-09 7.57e-07 7.46e-07 4.63e-07 2.52e-08 8.58e-07
MCG 6.96e-10 3.73e-08 5.33e-08 2.89e-08 1.09e-08 5.79e-07
LFSR 9.12e-11 3.80e-09 2.24e-08 5.22e-09 1.27e-09 9.69e-09

CHAPTER 6. MCQMC EXAMPLES 75

Table 6.7: Minimum and maximum variance reduction factors, Bayes model
N ≈ 210 N ≈ 212 N ≈ 214

Method min VRF max VRF min VRF max VRF min VRF max VRF
Liao 27 296 21 1078 29 3016
MCG 21 241 77 961 121 2603
LFSR 286 1543 304 5003 1186 16089

if Yi = 1 and (−∞, 0] if Yi = 0. These conditional distributions are used to run a

Gibbs sampler. The parameters of interest are the regression parameters β0, β1, and

β2. Again we look at the estimation of posterior means by the sample means of each

parameter, hoping to minimize the square error of these estimates.

These simulations were performed in JAVA with the same MCG and LFSR se-

quences as were used in the Bayes model. The Colt Package Mersenne Twister [15]

was implemented in place of JAVA’s insufficient random number generator for the

IID sequences.

Reported in Table 6.8 are the variance reduction factors of 300 estimates of the

posterior means using the various methods versus using IID sampling. Here our

significance threshold is roughly 1.2, taken from the F299,299 distribution. The specific

choices of sequence seem to have a sizeable effect on the performances of the MCQMC

methods. For the LFSR case, the search for a good sequence in terms of discrepancy

is far from exhaustive, and so the lower improvement in accuracy for sample size ≈ 210

may be ameliorated by a better sequence choice. None of the recommended Korobov

lattices in [18] for prime base M = 4093 seem to perform as well here as might be

expected. Again the MSE reduction is likely not as high as the variance reduction

due to possible bias, although boxplots of estimates still indicate that bias is likely far

smaller than variability under IID sampling. For the 214 sample sizes, the boxplots

of the estimates under IID, MCG and LFSR sampling are contained in Figures 6.1,

CHAPTER 6. MCQMC EXAMPLES 76

6.2 and 6.3.

A more concrete justification of the minor effects of bias comes from a simulation

of this same problem conducted over a much longer time frame, where 1000 posterior

mean estimates using chains of length 100,000 each following a heavy burn-in period

were used to create a small 95% confidence interval for the means of β0, β1 and β2.

These intervals are bounded by the horizontal lines in Figures 6.1, 6.2 and 6.3. The

range of MSE reductions taken from the assumption that each value in this interval

is the true mean yields a 95% confidence interval for the true reduction in MSE. In

the 214 case, the MSE reduction confidence intervals are in Table 6.9.

The same simulation with the same MCG sequences was performed in [42], but

the skipping of generator values (as discussed in Section 5.1) was done according to

(5.1.1), while the simulations here skipped according to (5.1.2). Variance is reduced

up to an additional 60% by the new method, which is algorithmically simpler and

computationally comparable.

6.4 A Larger Metropolis-Hastings Algorithm

An example discussed in [5] from quantum physics is used in the attempt to calculate

the ground-state energy of a helium atom. This model assumes that the nucleus of

the atom is at the origin, and the electrons exist at positions ρ1 and ρ2 in R
3. There

is a true ground-state wavefunction of the electron positions that is unknown, and

so the quality of a trial wavefunction is evaluated. Assuming this trial function is

the true function, one estimates the ground-state energy by estimating the mean of

a local energy function of the electron positions. The distribution on the electron

positions is proportional to the squared modulus of the wavefunction (which can be

CHAPTER 6. MCQMC EXAMPLES 77

Table 6.8: VRFs of posterior mean estimates, probit model

N ≈ 210

Parameter β0 β1 β2

Liao 20 19 21
MCG 20 18 24
LFSR 14 15 14

N ≈ 212

Parameter β0 β1 β2

Liao 23 22 24
MCG 24 24 24
LFSR 64 56 76

N ≈ 214

Parameter β0 β1 β2

Liao 19 20 18
MCG 55 62 47
LFSR 114 108 124

Table 6.9: Confidence Intervals for True MSE Reduction

Parameter β0 β1 β2

MCG [44,54] [45,60] [41,47]
LFSR [70,110] [66,102] [83,123]

CHAPTER 6. MCQMC EXAMPLES 78

Figure 6.1: Boxplots for, from left to right, IID, MCG and LFSR estimates of E[β0].
The horizontal lines bound 95% confidence intervals for the true mean, obtained by
much larger simulations.

−
5

.8
5

−
5

.8
0

−
5

.7
5

−
5

.7
0

−
5

.6
5

CHAPTER 6. MCQMC EXAMPLES 79

Figure 6.2: Boxplots for, from left to right, IID, MCG and LFSR estimates of E[β1].
The horizontal lines bound 95% confidence intervals for the true mean, obtained by
much larger simulations.

2
.2

8
2

.3
0

2
.3

2
2

.3
4

2
.3

6
2

.3
8

2
.4

0

CHAPTER 6. MCQMC EXAMPLES 80

Figure 6.3: Boxplots for, from left to right, IID, MCG and LFSR estimates of E[β2].
The horizontal lines bound 95% confidence intervals for the true mean, obtained by
much larger simulations.

1
.6

1
1

.6
3

1
.6

5
1

.6
7

CHAPTER 6. MCQMC EXAMPLES 81

complex). The example in [5] evaluates the trial wavefunction

Φ(ρ1, ρ2) = e−2|ρ1|−2|ρ2|+(1/2)|ρ2−ρ1| (6.4.1)

and, from [26], the local energy function reduces to

f(ρ1, ρ2) = −17

4
− ρ1 · (ρ2 − ρ1)

|ρ1||ρ2 − ρ1|
+
ρ2 · (ρ2 − ρ1)

|ρ2||ρ2 − ρ1|
. (6.4.2)

Thus the task is the integration of f over distribution π proportional to Φ2. This is

a 7-dimensional Metropolis-Hastings algorithm if the proposals are uniform moves of

ρ1 and ρ2 over cubes of side length 2δ centered at their current value. The sample

variances of 300 estimates of Eπ[f(ρ1, ρ2)] using IID sampling and MCQMC sampling

with an MCG sequence, using sample size 214, did not differ significantly. (The

sample variance of the estimates under IID sampling was 1.3e-04, and the sample

variance of estimates under MCG sampling was 1.1e-04.) As is evident from these

variances, the improvements of MCQMC in the Gibbs sampler are not seen in this

case. There are several explanations for the diminished benefits of MCQMC here.

One is the sharper fluctuation of the function f . The acceptance/rejection step in

the Metropolis-Hastings sampler also creates a discontinuity in the estimand as a

function of the uniform variates used to generate it. A third difficulty is the strong

dependence of the sequence on the past, as was seen in the smaller random walk

sampler (6.1.1).

The simulations here were performed in JAVA using the Colt Distribution Mersenne

Twister and the (16381,665) MCG.

Chapter 7

Conclusion

7.1 Future Directions

A framework that gives sufficient confidence in the acceptability of MCQMC with

CUD driving sequences has been outlined here. As it has been written and imple-

mented with the sequence classes discussed, no theoretical derivation of an improved

error rate is yet available. The qualitative explanation of the inherent difficulty in

obtaining an error rate is that the growth of the discrepancy bounds for the sequence

classes is too quick as the dimension of the point set grows. As s = logN grows

too rapidly to make the discrepancy bounds meaningful, the geometric decay of the

marginal dependence of values in the chain on the past is still too large to ignore en-

tirely. It is worth noting that the implied infinite dimensional integrals corresponding

many Monte Carlo sampling schemes are of a relatively low effective dimension (as

defined in [4] in the functional ANOVA sense of [41]) and that the low-dimensional

projections of large s-blocks from a small random number generator output sequence

82

CHAPTER 7. CONCLUSION 83

tend to look more uniform than is theoretically guaranteed. These observations cor-

roborate the encouraging results seen in the Gibbs sampler examples above, despite

the slow asymptotics of the theory.

The improved accuracy of MCQMC estimation is best in scenarios where the

function estimated is “nice”, the transitions are continuous, and the dependence on

the past decays quickly. Efforts to augment the benefits of MCQMC in cases that

are not as nice are of importance in the further development the field. Although the

greatest benefits are seen in cases where the traditional method is thought to work

well already, the added benefits are quite important, as the ability to perform MCMC

simulations quickly to a desired accuracy is essential for its widespread use.

7.1.1 Functional ANOVA

This brief outline follows [25]. We have a function f on [0, 1]d with
∫

[0,1]d
f δu = I.

We are interested in looking at the effects on f(u1, . . . , ud) of each set of arguments

ua1, . . . , uak
for some subset a = (a1, . . . , ak) ⊂ {1, . . . , d}. The method of functional

ANOVA performs the decomposition

f(u) =
∑

a⊂{1,...,d}

fa(u), (7.1.1)

where fa(u) is independent of um for all m /∈ a. This unique decomposition sets

f∅(u) = I constant and then recursively defines, with u(−a) the components of u

whose indices are not in a:

fa(u) =

∫

(

f(u) −
∑

v(a

fv(u)
)

δu(−a) =

∫

f(u) δu(−a) −
∑

v(a

fv(x). (7.1.2)

CHAPTER 7. CONCLUSION 84

Since
∫

fa(u)fv(u) = 0 when the sets a and v are not equal, the following equality

holds for all f ∈ L2[0, 1]d:

σ2 =
∑

a⊆{1,...,d}

σ2
a, (7.1.3)

where σ2 =
∫

f(u) δu and σ2
a =

∫

fa(u) δu.

For s < d and some predetermined tolerance ǫ, a d-dimensional function f can be

thought of as having “effective dimension” s (due to [4]) in a superposition sense if

∑

|a|≤s

σ2
a ≥ σ2(1 − ǫ) (7.1.4)

and in a truncation sense if

∑

a⊆{1,...,s}

σ2
a ≥ σ2(1 − ǫ). (7.1.5)

The superposition sense is often used to say that a large-dimensional function is still

a suitable candidate for independent QMC sampling.

The Markov transition function (3.1.2) applied recursively becomes

Xi = g(u(1), u(2), . . .), (7.1.6)

an infinite-dimensional function of the uniform variates used to arrive at the value

from the infinite past. Heuristic arguments contained in this paper have said that at

time m in the past, the values before then have negligible effect on the current states.

This is equivalent to the notion that the infinite-dimensional function is of effective

dimension dm in the truncation sense. (The functional ANOVA above has a natural

extension to infinite-dimensional functions, although only finite subsets are included

CHAPTER 7. CONCLUSION 85

in this decomposition.)

A look at the Bayes example and Probit example finds that many of the param-

eters tend to be independently updated; this independence implies that the higher

cardinality terms in the ANOVA will tend to have lower variance as well. This is

another explanation for the immense reductions in variance from MCQMC. Analysis

of the relationship between effective dimension and the MCQMC advantage is worth

future study.

It remains to be seen if an error bound for MCQMC estimates can be obtained from

conditions on the functional ANOVA that are generally applicable to MCMC samplers

of interest. Again, a simple relation of the decay on the past to the discrepancy bounds

on the sequences used is not sufficient, and so this line of inquiry for this application

is still in an inchoate stage.

7.1.2 Smoothing the Metropolis Algorithm

While the scenario of estimating parameter means via a quickly mixing continu-

ous Gibbs sampler shows the strongest advantage of using CUD arrays, the fact re-

mains that MCQMC is not clearly outperformed by regular MCMC sampling in the

Metropolis-Hastings examples above. One way to reduce the effects of discontinuities

in Metropolis-Hastings samplers, initially suggested by Chaudary [5], is by a modified

algorithm that runs a chain as normal, but replaces each sample point by a weighted

average of the point and a nearby point. As written Chaudary’s algorithm had an

error that led to inconsistent estimates, and so the algorithm here is offered both as

a correction and as an incorporation of this algorithm into the MCQMC framework

above, such that a CUD sequence can supply the variates which drive all parts of the

algorithm.

CHAPTER 7. CONCLUSION 86

Table 7.1: Smoothed Metropolis-Hastings

The Smoothed Metropolis-Hastings Algorithm

1 Begin at X(0) ∈ S
2 Given X(i), generate Y (i+1)

Transition proposal density q(X(i), ·)
3 Generate U (i+1) ∼ U [0, 1)

4 For A(x, y) = min (π(y)q(y,x)
π(x)q(x,y)

, 1)

If U (i+1) < A(X(i), Y (i+1))
Set X(i+1) to Y (i+1)

Else
Set X(i+1) to X(i)

5 Given X(i+1), generate Z(i+1)

Transition density q̃(X(i), ·)
6 For Ã(x, z) = min (π(z)q̃(z,x)

π(x)q̃(x,z)
, 1)

Define g(x, z) = Ã(x, z)f(z) + (1 − Ã(x, z))f(x)
7 Repeat steps 2-6 K +N times

8 Return 1
N

∑K+N
j=K+1 g(X

(j), Z(j))

The goal is the estimate of Eπ[f(X)], and the algorithm as written in Table 7.1

returns the estimate constructed from a sample, rather than the sample itself.

The steps 5 and 6 look similar to standard Metropolis-Hastings, except the ac-

ceptance/rejection decision is replaced by a continuous weighting of the two points.

The branch points Z(i) do not influence future steps of the chain. The correction to

Chaudary is the inclusion of the latter term in the definition of g; this latter term

can be viewed as the continuous analog of repeating a sample point upon rejection of

a proposal.

Theorem 7.1.1. The smoothed Metropolis-Hastings algorithm is consistent under a

CUD sampling scheme if the underlying chain is a valid ergodic Metropolis-Hastings

chain on a finite state space under IID sampling.

CHAPTER 7. CONCLUSION 87

Proof. We examine the distribution of (X(i), Z(i)) ∈ S×S. The distribution φ(x, y) ,

π(x)q̃(x, y) satisfies the reversibility condition for all (x1, y1), (x2, y2) ∈ S × S, and

so it is the stationary distribution of the chain (X(i), Z(i)). Under IID sampling, by

ergodicity, the algorithm returns a value which converges to Eφ[g(X,Z)]. This is the

same as the target value of the estimation procedure:

Eφg =
∑

x

∑

z

π(x)q̃(x, z)[Ã(x, z)f(z) + (1 − Ã(x, z))f(x)]

=
∑

x

∑

z

min (q̃(x, z)π(x), q̃(z, x)π(z))(f(z) − f(x)) +
∑

x

π(x)f(x)
∑

z

q̃(x, z)

=
∑

x

π(x)f(x) = Eπf. (7.1.7)

The algorithm is consistent under IID sampling; CUD consistency follows by com-

pletely similar reasoning to that in Theorems 3.3.3 and 4.3.2.

For cases where the transitions are homogenous (q̃ = q), the benefit of this

smoothed algorithm is apparent in the small random walk sampler (6.1.1), with an

additional 6-fold variance reduction beyond the use of an MCG on regular Metropolis-

Hastings, but no significant improvements come in the variational Monte Carlo ex-

ample of Section 6.4. Beyond the heuristic improvement of smoothing the accep-

tance/rejection step to make a QMC-theme approach more worthwhile, the benefit of

this method may be the application of a different proposal distribution set for gener-

ating the branches Z from that used to drive the chain. An application of Slutsky’s

Theorem allows for the use of antithetics in creating multiple branches with the same

marginal distribution but a joint antithetic property, with consistency preserved. Like

many of the results here, this result establishes a relatively broad set of conditions

under which the algorithm works, such that there is freedom to adjust the algorithm

CHAPTER 7. CONCLUSION 88

to find further variance reduction techniques. Many extensions and generalizations of

the Metropolis-Hastings algorithm are gaining popularity ([24] includes an interesting

survey of these). The extension of CUD consistency to these generalizations is likely

possible, although those algorithms were not designed to exploit the advantages of

QMC sequences.

7.1.3 General implementation

The expression (5.4.1) of the variate matrix used for MCQMC is one that is readily

implemented in a general sense. For the MCG and LFSR cases, the computational

cost of constructing a variate and applying the appropriate randomization is not any

worse than that of the complex procedure that generates the next value in a Mersenne

Twister. As sample size and sequence type can be options of the user, the greatest task

in creating software that takes in an algorithm and returns an MCQMC estimate is

the specific selection of sequences among those of a certain size and type in response

to the dimension of the problem. A simple method that chooses a good sequence

based on figures of merit or mean square discrepancy in some moderate dimension

would not be difficult to implement. It would be more complicated to develop a

method for sequence choice based on the algorithm dimension, chain autocorrelation

and component interaction together.

Appendix A

Jordan Measurability

A.1 Construction

The condition of regularity in the proposals of the Metropolis-Hastings sampler is

necessary for the proof of Theorem 3.3.3; this measurability condition perhaps merits

more attention than could be afforded in [37]. Its use in the theorem relates the “vol-

ume” of sets to the fraction of points in a sequence contained in that set. This volume

is the Jordan measure of the set in question, and to see how we can take the relevant

steps in the proof of Theorem 3.3.3, a brief background on the construction of Jordan

measure is useful. This construction and the relevant definition of measurability is

due to 19th century mathematician Camille Jordan.

We define a semi-open box [a, b) in [0, 1)d to be the Cartesian product
∏d

i=1[ai, bi),

where bi > ai for all i. We assign Jordan measure V ([a, b)) ,
∏d

i=1(bi − ai) to this

set. We include the empty set (with measure 0) as a semi-open box. From here we

move to expand the measure to increasingly complex sets such that the measure is

valid.

89

APPENDIX A. JORDAN MEASURABILITY 90

Definition A.1.1. A simple set is a set in [0, 1)d which can be expressed as the finite

union of semi-open boxes.

The collection of semi-open boxes which comprise a simple set is not unique. But

by chopping the simple set along any (d−1)-dimensional plane on which the boundary

of the simple set has positive (d − 1)-dimensional volume, we can divide the simple

set into a collection of disjoint semi-open boxes. The measure of the simple set must

therefore be the sum of the measures of the semi-open boxes in this disjoint collection.

For an arbitrary set Y ⊂ [0, 1)d, there is at least one simple set X such that

X ⊂ Y , and at least one simple set Z such that Y ⊂ Z. So for the collection S of

simple sets in [0, 1)d, one can define the internal and external volumes of Y :

Vint(Y) , sup
X∈S,X⊂Y

V (X), (A.1.1)

Vext(Y) , inf
Z∈S,Y ⊂Z

V (Z). (A.1.2)

Definition A.1.2. A set Y is Jordan measurable if Vint(Y) = Vext(Y). Its Jordan

measure V (Y) is equal to this common internal and external volume.

Note that any Jordan measurable set is Lebesgue measurable but some Lebesgue

measurable sets are not Jordan measurable. The rational points are not Jordan

measurable, for example, as they have internal volume 0 and external volume 1.

Clearly when a set is Jordan measurable, the Jordan measure and the Lebesgue

measure are identical.

The proof of Theorem 3.3.3 requires that finite unions and tensor products of

Jordan measurable sets are also Jordan measurable. These results are shown below.

Lemma A.1.3. The collection of simple sets in [0, 1)d is closed under finite unions,

APPENDIX A. JORDAN MEASURABILITY 91

finite intersections and complements.

Proof. The finite union of simple sets is also a simple set by definition. As the

intersection of two semi-open boxes is also a semi-open box, the finite intersection of

simple sets is the finite union of semi-open boxes and is also a simple set. As the

complement of a semi-open box is a simple set, the complement of a simple set is the

finite intersection of simple sets, and so it is also a simple set.

Theorem A.1.4. The collection of Jordan measurable sets in [0, 1)d is closed under

finite unions, finite intersections and complements.

Proof. For any subset A ⊂ [0, 1)d, Vint(A) = 1−Vext(A
C) and Vext(A) = 1−Vint(A

C).

Thus if A is Jordan measurable, so is AC .

To verify closure under unions, take arbitrary Jordan measurable sets A and B.

For any ǫ > 0, there are simple sets A1, A2, B1 and B2 such that A1 ⊆ A ⊆ A2,

B1 ⊆ B ⊆ B2 and V (A) − ǫ/4 < V (A1) ≤ V (A2) < V (A) + ǫ/4, V (B) − ǫ/4 <

V (B1) ≤ V (B2) < V (B) + ǫ/4. A2 \ A1 and B2 \ B1 have internal volume less than

ǫ/2; by the above lemma, these are simple sets with measure less than ǫ/2 each.

From the above lemma, the sets A1∪B1 and A2∪B2 are simple sets, and A1∪B1 ⊆

A∪B ⊆ A2 ∪B2. The simple set (A2 ∪B2) \ (A1 ∪B1) ⊆ (A2 \A1) ∪ (B2 \B1), and

so

V (A2 ∪ B2) − V (A1 ∪ B1) ≤ V (A2 \ A1) + V (B2 \B1) < ǫ, (A.1.3)

and so the internal and external volumes of A ∪ B differ by an amount less than

ǫ. As ǫ is arbitrary, the internal and external volumes agree, so A ∪ B is Jordan

measurable. This result naturally extends to closure under finite unions. Closure

under finite unions and complements yields closure under finite intersections.

APPENDIX A. JORDAN MEASURABILITY 92

Theorem A.1.5. For Jordan measurable sets A ∈ [0, 1)s1 and B ∈ [0, 1)s2, the

Cartesian product A× B ∈ [0, 1)(s1+s2) is Jordan measurable.

Proof. The Cartesian product of two semi-open boxes is clearly a semi-open box

whose measure is the product of the box measures, and so (using the decomposition

of a simple set into a finite union of disjoint semi-open boxes) the Cartesian product

of two simple sets is also a simple set whose measure is the product of the measures

of the simple sets.

It follows by definition that for two arbitrary sets, the internal volume of the

Cartesian product is the product of the internal volumes, and the external volume of

the Cartesian product is the product of the external volumes. Thus for A,B Jordan

measurable, the internal and external volumes of A× B agree, and A× B is Jordan

measurable.

A.2 Empirical Measure

For a sequence x(1), x(2), . . ., we can define the empirical measure of a set Y on the

first n values of the sequence as

V̂n(Y) ,
1

n

n
∑

i=1

1{x(i)∈Y }. (A.2.1)

Suppose our sequence x(1), x(2), . . . has D∗
n → 0. Then we have the following:

Lemma A.2.1. For x(1), x(2), . . . with D∗
n → 0 and arbitrary semi-open box [a, b),

V̂n([a, b)) → V ([a, b)). (A.2.2)

The analogous weak law holds for random sequences.

APPENDIX A. JORDAN MEASURABILITY 93

Proof. Since D∗
n → 0, the empirical measure of the missing boundary [a, b] \ [a, b)

converges to 0, as limn→∞ V̂n([0, b)) = limn→∞ V̂n([0, b]) So it suffices to prove

lim
n→∞

V̂n([a, b]) →
n
∏

i=1

(bi − ai). (A.2.3)

We define signed local discrepancy δ±n ([a, b]) = V̂n([a, b]) −∏n
i=1(bi − ai) and note

that

D∗
n = sup

b∈[0,1)d

|δ±n ([0, b])| (A.2.4)

For the collection C of sets [0, c] such that ci ∈ {ai, bi}, partition C into C0, C1, . . . , Cd

where [0, c] ∈ Cd iff exactly d of the ci are equal to ai. The following inclusion-exclusion

formula holds:

δ±n ([a, b]) =

d
∑

j=0

∑

C∈Cj

(−1)jδ±n (C) (A.2.5)

And by the triangle inequality,

|δ±n ([a, b])| ≤ 2dD∗
n (A.2.6)

and so the result follows from D∗
n → 0.

The analogous weak law for random sequences, where D∗
n

P−→ 0, is verified by the

same logic with little modification.

As empirical measure converges to Jordan measure of a semi-open box, the same

is true for simple sets. The key lemma emerges from this fact.

APPENDIX A. JORDAN MEASURABILITY 94

Lemma A.2.2. For a Jordan measurable set Y and set x(1), x(2), . . . with D∗
n → 0,

lim
n→∞

V̂n(Y) → V (Y), (A.2.7)

and an analogous weak convergence holds for weak discrepancy decay.

Proof. Fix ǫ > 0. There is a simple set X contained in Y such that V (X) >

V (Y) − ǫ. Since V̂n(X) → V (X) by the above results and V̂n(Y) ≥ V̂n(X) for

all n, lim infn→∞ V̂n(Y) > V (Y)− ǫ. Similarly using a simple set Z containing Y , we

get lim supn→∞ V̂n(Y) < V (Y)+ ǫ. As ǫ is arbitrary, (A.2.7) holds. For the weak law,

note that P (|V̂n(Y) − V (Y)| − ǫ) → 0 for arbitrary ǫ from the above results, and so

the weak law holds as well.

Appendix B

Auxiliary Graphs

95

APPENDIX B. AUXILIARY GRAPHS 96

Figure B.1: Four samples from the marginal posterior of β in the Bayes model, under
a Gibbs sampler of size 210 with IID sampling.

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

F
re

q
u

e
n

c
y

0 2 4 6 8
0

5
0

1
5

0

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

5
0

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

APPENDIX B. AUXILIARY GRAPHS 97

Figure B.2: Four samples from the marginal posterior of β in the Bayes model, under
a Gibbs sampler of size ≈ 210 with MCG sampling.

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

F
re

q
u

e
n

c
y

0 2 4 6 8
0

5
0

1
0

0

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

APPENDIX B. AUXILIARY GRAPHS 98

Figure B.3: Four samples from the marginal posterior of β in the Bayes model, under
a Gibbs sampler of size ≈ 210 with LFSR sampling.

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

5
0

F
re

q
u

e
n

c
y

0 2 4 6 8
0

5
0

1
0

0

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

Bibliography

[1] J.H. Ahrens and U. Dieter. Generating gamma variates by a modified rejection

technique. Communications of the ACM, 25:47–54, 1982.

[2] J. Albert and S. Chib. Bayesian analysis of binary and polychotomous response

data. Journal of the American Statistical Association, 88:669–679, 1993.

[3] D.M. Burton. Elementary Number Theory, 4th ed., pages 184–205. William C.

Brown Publishers, 1989.

[4] R. Caflisch, W. Morokoff, and A.B. Owen. Valuation of mortgage-backed secu-

rities using the quasi-Monte Carlo method. Journal of Computational Finance,

1:27–46, 1997.

[5] S. Chaudary. Acceleration of Monte Carlo methods using low discrepancy se-

quences. PhD thesis, UCLA, 2004.

[6] N. Chentsov. Pseudorandom numbers for modelling Markov chains. Computa-

tional Mathematics and Mathematical Physics, 7:218–232, 1967.

[7] R. Cranley and T. Patterson. Randomization of number theoretic methods for

multiple integration. SIAM Journal of Numerical Analysis, 13:904–914, 1976.

99

BIBLIOGRAPHY 100

[8] C.J. de la Vallée Poussin. Recherches analytiques la théorie des nombres premiers.

Ann. Soc. scient. Bruxelles, 20:183–256, 1896.

[9] L. Devroye. Non-uniform Random Variate Generation. Springer, 1986.

[10] D.J. Finney. The estimation from individual records of the relationship between

dose and quantal response. Biometrika, 34:320–334, 1947.

[11] A. Gelfand and A.F.M. Smith. Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85:398–409,

1990.

[12] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57:97–109, 1970.

[13] S. Heinrich. Efficient algorithms for computing the l2 discrepancy. Mathematics

of Computation, 216:1621–1633, 1996.

[14] F. Hickernell. Quadrature error bounds with applications to lattice rules. SIAM

Journal of Numerical Analysis, 33:1995–2016, 1996.

[15] W. Hoschek. http://dsd.lbl.gov/ hoschek/colt/.

[16] D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,

1998.

[17] N. Korobov. On functions with uniformly distributed fractional parts. Dokl.

Akad. Nauk SSSR, 62:21–22, 1948.

[18] P. L’Écuyer. Tables of linear congruential generators of different sizes and good

lattice structure. Mathematics of Computation, 68:249–260, 1999.

BIBLIOGRAPHY 101

[19] P. L’Écuyer, C. Lécot, and B. Tuffin. Randomized quasi-Monte Carlo simulation

of Markov chains with an ordered state space. In Monte Carlo and Quasi-Monte

Carlo Methods 2004. Springer, 2005.

[20] P. L’Écuyer and C. Lemieux. Quasi-Monte Carlo via linear shift-register se-

quences. In Proceedings of the 1999 Winter Simulation Conference, 1999.

[21] C. Lemieux and P. L’Écuyer. Lattice rules for the simulation of ruin problems.

In Proceedings of the 1999 European Simulation Multiconference, 1999.

[22] M.B. Levin. Discrepancy estimates of completely uniformly distributed and

pseudo-random number sequences. International Mathematics Research Notices,

pages 1231–1251, 1999.

[23] L.G. Liao. Variance reduction in Gibbs sampler using quasi random numbers.

Journal of Computational and Graphical Statistics, 7:253–266, 1998.

[24] J. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

[25] R. Liu and A.B. Owen. Estimating mean dimensionality of ANOVA decomposi-

tions. Journal of the American Statistical Association, 101(474):712–721, 2006.

[26] A. MacKinnon. http://www.cmth.ph.ic.ac.uk/angus/lectures/compphys/.

[27] G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the

National Academy of Sciences, 61(1):25–28, 1968.

[28] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudorandom number generator. ACM Trans. Model.

Comput. Simul., 8(1):3–30, 1998.

BIBLIOGRAPHY 102

[29] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21:1087–1092, 1953.

[30] W. Morokoff and R. Caflisch. A quasi-Monte Carlo approach to particle simula-

tion of the heat equation. SIAM Journal of Numerical Analysis, 30:1558–1573,

1993.

[31] H. Niederreiter. Pseudo-random numbers and optimal coefficients. Advances in

Mathematics, 26:99–181, 1977.

[32] H. Niederreiter. Multidimensional numerical integration using pseudorandom

numbers. Mathematical Programming Study, 27:17–38, 1986.

[33] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.

SIAM, 1992.

[34] D. Ormoneit, C. Lemieux, and D.J. Fleet. Lattice particle filters. In Confer-

ence on Uncertainty in Artificial Intelligence, pages 395–402. Morgan Kaufmann

Press, 2001.

[35] M. Ostland and B. Yu. An adaptive quasi-Monte Carlo alternative to metropolis.

Statistics and Computing, 7:217–228, 1997.

[36] A.B. Owen. Multidimensional variation for quasi-Monte Carlo. In International

Conference on Statistics in honour of Professor Kai-Tai Fang’s 65th birthday,

2005.

[37] A.B. Owen and S. Tribble. A quasi-Monte Carlo Metropolis algorithm. Proceed-

ings of the National Academy of Sciences, 102(25):8844–8849, 2005.

BIBLIOGRAPHY 103

[38] W.W. Peterson and E.J. Weldon. Error-Correcting Codes, 2nd ed. MIT Press,

1972.

[39] J. Propp and D. Wilson. Exact sampling with coupled Markov chains. Random

Structures and Algorithms, 9:223–252, 1996.

[40] I. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford Science

Publications, 1994.

[41] I.M. Sobol’. Multidimensional Quadrature Formulas and Haar Functions. Nauka,

1969.

[42] S. Tribble and A.B. Owen. Constructions of weakly CUD sequences for MCMC.

Technical report, Stanford University, 2005.

[43] T.T. Warnock. Computational investigations of low-discrepancy point sets. In

S.K. Zaremba, editor, Applications of Number Theory to Numerical Analysis,

pages 319–344. Academic Press, 1971.

[44] M.J. Wichura. Algorithm as 241: The percentage points of the normal distribu-

tion. Applied Statistics, 37:477–484, 1988.

