
A randomized Halton algorithm in R

Art B. Owen
Stanford University

May 2017

Abstract

Randomized quasi-Monte Carlo (RQMC) sampling can bring orders
of magnitude reduction in variance compared to plain Monte Carlo (MC)
sampling. The extent of the efficiency gain varies from problem to problem
and can be hard to predict. This article presents an R function rhalton

that produces scrambled versions of Halton sequences. On some problems
it brings efficiency gains of several thousand fold. On other problems, the
efficiency gain is minor. The code is designed to make it easy to determine
whether a given integrand will benefit from RQMC sampling. An RQMC
sample of n points in [0, 1]d can be extended later to a larger n and/or d.

1 Introduction

This paper is about a method for numerically approximating integrals of the
form µ =

∫
[0,1]d

f(x) dx. There has been considerable recent progress in quasi-

Monte Carlo (QMC) and randomized quasi-Monte Carlo (RQMC) solutions to
this problem. See Dick et al. (2013) for an introduction to the area. (R)QMC
methods can bring orders of magnitude improvements in accuracy compared to
Monte Carlo (MC). This effect is most valuable in high dimensional settings
where classical alternatives to MC (Davis and Rabinowitz, 1984, Chapter 5)
suffer from a curse of dimensionality. For other high dimensional problems,
(R)QMC brings only minor improvements. The best way to determine whether
these methods improve on MC for a specific problem is to run them both on a
perhaps smaller version of that problem. This paper presents a very simple to
use RQMC code based on randomized Halton points. The algorithm is designed
to be extensible in both sample size and problem dimension.

The simplest approach to computing µ is to use a Monte Carlo estimate

µ̂ = µ̂MC ≡
1

n

n∑
i=1

f(xi)

for independent xi ∼ U([0, 1]d). This estimate converges almost surely to µ by
the law of large numbers, and when σ2 =

∫
(f(x)−µ)2 dx <∞, then

√
n(µ̂−µ)

converges in distribution to N (0, σ2) by the central limit theorem.

1

The more general problem of finding the expectation of g(x) for x ∼ p
can often be solved by taking transformations τ(x) ∼ p for x ∼ U([0, 1]d).
Devroye (1986) contains a wealth of such transformations. Therefore we consider
integration on the finite dimensional cube with the understanding that taking
f = g ◦ τ extends the range of application.

(R)QMC sampling can be far more effective than MC on some problems.
These problems tend to involve some smoothness on the part of the integrand as
well as a tendency for the integrand to be approximately a superposition of lower
dimensional integrands. See Caflisch et al. (1997) or Sloan and Wozniakowski
(1998). The presently known theory provides an explanation, in hindsight, for
cases where (R)QMC is seen to work well. It is difficult to use the theory
prospectively. Unlike MC where the root mean squared error is σn−1/2 for
all n > 1, the convergence rates in QMC are based on asymptotic and worst
case analyses where non-trivially large powers of log(n) appear. We may see
good results for finite n in some cases where the theory suggests otherwise
(e.g., functions with infinite variation). In other settings, a given integrand f
can belong to multiple reproducing kernel Hilbert spaces, that each have quite
different consequences for integration accuracy.

This paper presents an RQMC method that for each random seed is con-
ceptually a doubly infinite random matrix X with elements Xij for integers
1 6 i < ∞ and 1 6 j < ∞. It is simple to implement. We provide an imple-
mentation in R (R Core Team, 2015). There, the user typing rhalton(n,d)

gets a matrix X ∈ [0, 1]n×d comprising the upper left n × d submatrix of
X , so Xij = Xij for i = 1, . . . , n and j = 1, . . . , d. The i’th row of X is
xi = (xi1, . . . , xid) and then one gets µ̂ = (1/n)

∑n
i=1 f(xi).

To replicate the process one can call rhalton repeatedly. It is a good practice
to set the seed prior to each call, so that the computations are reproducible. If
n observations are not enough, then it is possible to skip the first n observations
and get the next ones starting at the n + 1’st. To do that properly requires
taking some care with random seeds. Syntax to handle seeds within rhalton

is deferred to Section 5. There are also cases where one wants to extend a
simulation to a higher dimensional one. For instance, we may have simulated a
stochastic process n times for d time steps each using values from rhalton(n,d).
If we then want to continue the simulation to d′ > d time steps, we need colunns
d+1, . . . , d′ of X . Extending to higher dimensions without recomputing the first
d dimensions, is also described in Section 5.

An outline of this paper is as follows. Section 2 introduces quasi-Monte
Carlo concepts with pointers to the literature for more information. Section 3
presents randomized quasi-Monte Carlo which can be used to get sample driven
error estimates for QMC. In some cases, randomization also improves accu-
racy and mitigates the large powers of log(n) that appear in some performance
metrics. Section 4 presents the Halton sequences and various randomizations
and deterministic scrambles of them, including a digital randomization that we
adopt. The randomization that we adopt was used in the simulations of Wang
and Hickernell (2000), although that paper advocates a different randomization.
Section 5 gives some design considerations for the implementation of rhalton

2

with examples of how to call it, using random seeds to make simulations repli-
cable as well as extensible in n or d or both. Section 6 gives some numerical
illustrations for problems with dimension ranging from 1 to 50. For some in-
tegrands we see an RMSE matching theoretically predicted behavior close to
O(n−1) and a mild dimension effect. Then RQMC is hundreds or even thou-
sands of times as efficient as plain Monte Carlo. For other integrands there,
the benefits of RQMC are smaller and decay rapidly with dimension. Section 7
makes a numerical comparison to the randomized Halton code function ghalton

from the R package qrng of Hofert and Lemieux (2016). That code uses much
more sophisticated scrambles. It is about 12 to 24 percent more efficient on the
example cases we consider. The comparative advantages of rhalton are that it
is extensible without recomputing intermediate values, and that its pseudocode
is so simple that it can be easily understood and coded in new settings.

2 Quasi-Monte Carlo

In quasi-Monte Carlo sampling (Dick and Pillichshammer, 2010) we choose n
points x1, . . . ,xn ∈ [0, 1]d strategically to make the discrete distribution of xi
for i ∼ U{1, 2, . . . , n} as close as possible to the continuous U([0, 1]d) distribu-
tion. The difference between two such distributions is known as a discrepancy
and many discrepancies have been defined. The most basic one is the star
discrepancy

D∗n(x1, . . . ,xn) = sup
x∈[0,1]d

|δ(x)|, where δ(x) =
1

n

n∑
i=1

1xi6x − vol([0,x])

is known as the ‘local discrepancy’. This δ(x) is the difference between the
fraction of points xi in the box [0,x] ⊂ [0, 1]d and the fraction that box should
have gotten, which is simply its volume. Then D∗n is defined in terms of the box
with the greatest mismatch between volume and fraction of points. If d = 1,
then D∗n is the Kolmogorov-Smirnov distance between the empirical distribution
of the xi and the U([0, 1]) distribution. Other discrepancy measures use different
collections of sets, or replace the supremum over sets by an Lp measure or both.

If D∗n → 0 and f is Riemann integrable, then µ̂→ µ as n increases. This is
the QMC counterpart to the law of large numbers. With genuine random num-
bers, the plain MC estimate works for Lebesgue integrable functions, and so at
first sight the QMC result looks to be restrictive. However pseudo-random num-
bers are constructed in finite precision and so MC does not handle all Lebesgue
integrable functions either.

Next we turn to the QMC counterpart to the central limit theorem. For
QMC we replace the concept of variance by variation. Let VHK(f) be the total
variation of f in the sense of Hardy and Krause. For d = 1, this is the ordinary
total variation from calculus. Multidimensional variation is more complicated
and there have been many generalizations. See Owen (2005) for a discussion

3

and some historical notes. The Koksma-Hlawka inequality is

|µ̂− µ| 6 D∗n(x1, . . . ,xn)× VHK(f). (1)

If we knew D∗n and VHK then (1) would provide a 100% confidence interval for µ
centered on µ̂. In practice, D∗n can be expensive to compute and VHK is almost
certain to be harder to compute than µ itself. We will address practical error
estimation below.

Some low discrepancy constructions generate x1, . . . ,xn for a sequence of
values n, such as n = 2m, along which D∗n(x1, . . . ,xn) = O(log(n)d−1/n). The
points in the 2m point rule of the sequence are not necessarily among the points
of the 2m+1 point rule. There are extensible constructions of points x1,x2, . . .
where D∗n(x1, . . . ,xn) = O((log n)dn−1) holds along the entire sequence. That
is, one can attain extensibility at the cost of an asymptotic logarithmic factor.

Given the rate at which discrepancy decreases, we find that |µ̂ − µ| =
O(n−1+ε) holds for any ε > 0, when VHK(f) < ∞. This rate establishes
the potential for QMC to be much more accurate than MC which has a root
mean squared error of O(n−1/2). Even modestly large powers d suffice to make
log(n)d/n � n−1/2 for sample sizes n of practical interest. The logarithmic
powers are usually not seen in applications. For one thing, equation (1) applies
even to a worst case function f chosen based on the specific points xi in the
integration rule. The bound in (1) is tight in that VHK(f) cannot be replaced by
(1− η)VHK(f) for any η > 0, but it is loose in that it can severely overestimate
the error. Another complication is that the implied constant in (1) has a strong
dimensional dependence. The first published bound grew very quickly with in-
creased dimension d and then Atanassov (2004) proved a surprising result that
a still sharper bound rapidly decreases with d. See Faure and Lemieux (2009)
for some comparisons.

The conservatism of (1) can be partially understood through a decomposi-
tion of f . Let f(x) =

∑
u⊆1:d fu(x) where fu(x) depends on x only through

xj for j ∈ u. The functions fu may come from an ANOVA decomposition (Ho-
effding, 1948; Sobol’, 1967) or an anchored decomposition (Rabitz et al., 1999).
Let D∗n,u be the |u|-dimensional star discrepancy of the points xi,u. Then

|µ̂− µ| 6
∑

u⊆1:d,u 6=∅

∣∣∣∣∣ 1n
n∑
i=1

fu(xi)−
∫
fu(x) dx

∣∣∣∣∣ (2)

6
∑

u⊆1:d,u6=∅
D∗n,u × VHK(fu). (3)

It is always true that D∗n,u 6 D∗n. The best QMC constructions have very low

discrepancies in their coordinate projections, and typicallyD∗n,u = O(log(n)|u|/n).
If f is dominated by low dimensional contributions, then VHK(fu) for large |u|
could be negligible. Then the error can then be like what one would see in a
low dimensional QMC applied to fu.

Equation (3) is conservative. Morokoff and Caflisch (1994) have a similar
expression that is tighter than (3) because they use Vitali variation in place of

4

Hardy-Krause. Furthermore if supx |fu(x)| < ε, then even if the Vitali variation
of fu is infinite, the error contribution of fu in (2) is below 2ε which could be
negligible compared to O((log(n))|u|/n) for the n in use.

It is very hard to tell from looking at a functional form whether the integrand
f is nearly a sum of functions of just a small number of its input components.
Caflisch et al. (1997) find that a given 360 dimensional function designed to
model a finance problem is very nearly a sum of functions of one variable at
a time. It is possible to numerically inspect a function using Sobol’ indices to
measure the extent to which it depends on just a few inputs. It is even more
simple to experiment on the function with RQMC.

3 Randomized quasi-Monte Carlo

One problem with QMC is that it is difficult to estimate the error |µ̂−µ| because
the points xi are deterministic, and the bound (1) is both extremely conservative
and much harder to compute than µ itself.

A practical remedy for this is to randomize the points xi. In random-
ized quasi-Monte Carlo (see L’Ecuyer and Lemieux (2002) for a survey) we
use points xi ∼ U([0, 1]d) individually, that have low discrepancy collectively.
Under randomized QMC, E(µ̂) = µ by uniformity of the individual xi. Also,
if VHK(f) < ∞, then Var(µ̂) = O(n−2−ε) for any ε > 0. We can take a small
number R of independent randomizations and pool them via

µ̂ =
1

R

R∑
r=1

µ̂r, V̂ar(µ̂) =
1

R(R− 1)

R∑
r=1

(µ̂r − µ̂)2.

Then E(µ̂) = µ and E(V̂ar(µ̂)) = Var(µ̂), so the variance estimate is not con-
servative. The variance of the pooled estimate µ̂ is O(R−1n−2−ε) and it takes
nR function evaluations. When accuracy of µ̂ is of primary importance and the
variance estimate is of secondary importance, then one takes a small value of
R, perhaps only 5 or 10. Larger values of R are used in studies where the goal
is to measure how accurate RQMC is.

There are numerous randomization strategies. The simplest is the Cranley-
Patterson rotation (Cranley and Patterson, 1976). Let bzc be the greatest in-
teger less than or equal to z and define z mod 1 = z − bzc, the fractional part
of z. Given a list of QMC points x̃1, . . . , x̃n, Cranley and Patterson generate a
(pseudorandom) vector u ∼ U([0, 1]d) and deliver xi = x̃i + u mod 1 (compo-
nentwise). It is easy to see that xi ∼ U([0, 1]d). Also the points x̃i that end up
in a given axis-parallel rectangular subset of [0, 1]d are those that started out as
points xi in the union of up to 2d such subsets. This observation can be used to
show that D∗n(x1, . . . ,xn) 6 4dD∗n(x̃1, . . . , x̃n). We see at once that the conver-
gence rates will be the same, but the bound on the constant of proportionality
is likely to be very conservative. Fortunately we can use V̂ar(µ̂) to estimate the
actual error magnitude and not a bound.

5

Cranley-Patterson rotations are well suited to QMC methods known as lat-
tice rules (Sloan and Joe, 1994). A second major category of QMC methods
use what are called digital constructions. For sampling [0, 1]d, they include the
Halton sequences as well as the (t,m, d)-nets on n = bm points and the extensi-
ble (t, d)-sequences of Niederreiter (1987). The remaining parameter t > 0 is a
quality parameter. Smaller values indicate better equidistribution, though the
range of possible values for t depends on b, m and d. This class of methods
includes the sequences of Sobol’ (1967) and Faure (1982). Those algorithms
generate observations x̃ij =

∑∞
`=1 ãi,j(`)b

−` for an integer base b > 2 and digits
ã ∈ {0, 1, . . . , b − 1}. The digits are usually chosen via the algebra of finite
fields to produce low discrepancy. Digit scrambling methods then replace digits
ã by values a = π(ã) where π is a random permutation of {0, 1, . . . , b− 1}. The
permutation applied to ãi,j(`) may depend on j and ` and even on the digits
ãi,j(`

′) for `′ < `. Numerous such permutation strategies are described in Owen
(2003).

If there is a badly covered portion of [0, 1]d, then Cranley-Patterson rota-
tions simply shift the problem elsewhere. Digit scrambling has the potential to
improve upon QMC. A digit scrambling from Owen (1995) applied to (t, d)-nets
in base b leads to a root mean squared error of O(n−3/2 log(n)(d−1)/2) along a
sequence of values n = λbm for 1 6 λ < b and m > 0, for smooth enough f . It
suffices for the mixed partial derivatives of f taken at most once with respect
to each component xj to be in L2. For any f ∈ L2[0, 1]d, Var(µ̂) = o(1/n), so
that the efficiency of RQMC versus MC increases to infinity with no smooth-
ness assumptions on f . Furthermore Var(µ̂) 6 Mσ2/n where the constant M
depends on t, d and b. For instance, if t = 0 then M 6 exp(1). The logarithmic
factors that might make the Koksma-Hlawka bound much larger than n−1/2 for
feasible n, do not make these RQMC root mean squared errors greatly exceed
n−1/2.

4 Halton sequences

Halton sequences (Halton, 1960) presented here are easy to code and easy to
understand. Some QMC methods work best with specially chosen sample sizes
such as large prime numbers or powers of small prime numbers. Halton se-
quences can be used with any desired sample size. There may be no practical
reason to require a richer set of sample sizes than, for example, powers of 2
(Sobol’, 1998). However, first time users may prefer powers of 10, or simply the
ability to select any sample size they like.

We begin with radical inverse sequences, following the presentation in Nieder-
reiter (1992). For integer i > 0, write i =

∑∞
k=1 ak(i)bk−1 for an integer base

b > 2 and digits ak(i) ∈ {0, 1, . . . , b− 1}. Because i is finite, only finitely many
ak(i) are nonzero. Then the radical inverse function is

φb(i) =

∞∑
k=1

ak(i)b−k (4)

6

i xi

base 10 base 2 base 2 base 10

0 0 .0 .0
1 1 .1 .5
2 10 .01 .25
3 11 .11 .75
4 100 .001 .125
5 101 .101 .625
6 110 .011 .375
7 111 .111 .875

Table 1: 8 consecutive points from the radical inverse sequence in base b = 2.
The base 2 bits of i are reflected about the (binary) decimal point to get those
of xi.

which is also a finite sum.
For b = 2, the radical inverse sequence is due to van der Corput (1935). Eight

points of the van der Corput construction are illustrated in Table 1. Integers
i are converted to base 2 and then their digits are reflected about the base 2
‘decimal’ point, so for instance 5 → 101 → 0.101 → 0.625 in base ten. We see
that these eight points generate values `/8 for ` = 0, 1, . . . , 7. The sequence is
commonly started at 0, with xi = φ2(i− 1) for i = 1, . . . , n. Then if n = 2m we
will have points `/n for ` = 0, 1, . . . , n− 1, known as a left endpoint rule (Davis
and Rabinowitz, 1984).

Because integers alternate between odd and even, the van der Corput points
alternate between [0, 1/2) and [1/2, 1). More generally, for any 2r consecutive
integers i, the points φ2(i) are stratified equally among intevals [k2−r, (k+1)2−r)
for k ∈ {0, 1, . . . , 2r − 1}, though not necessarily at the left endpoints. Of
100 consecutive points, the first 64 will be equally distributed among 64 non-
overlapping subintervals of length 1/64, the next 32 will be equally distributed
among 32 intervals of length 1/32 and the last 4 will be stratified over 4 intervals
of length 1/4. The star discrepancy of n consecutive points in the van der
Corput sequence is O(log(n)/n). Along the subsequence with n = 2m, for
m = 0, 1, 2, . . . , the star discrepancy is O(1/n).

The same idea for low discrepancy sampling of [0, 1] works for other integer
bases, where it is known as the generalized van der Corput construction. The
extension to [0, 1]d was made by Halton (1960). The Halton sequence has

xi = (φp1(i− 1), φp2(i− 1), . . . , φpd(i− 1))

for different bases pj , for i = 1, . . . , n. Here pj > 2 must be relatively prime
integers. Ordinarily pj is simply the j’th prime number, and this is why we
write pj instead of bj . The discrepancy of the Halton sequence is O(log(n)d/n).

Figure 1 compares the first 100 points of the Halton sequence in [0, 1]2 to 100
pseudorandom points. The Halton points show less tendency to form clumps

7

Halton p = (2,3)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Figure 1: The left panel shows the first 100 Halton points in [0, 1]2. The right
panel shows 100 pseudorandom points.

and leave voids than random points do.
Notice that the first Halton point is at (0, 0) which can be problematic in

some uses, such as transformations of U[0, 1] random variables toN (0, 1) random
variables via Φ−1. The problem with x1 = 0 can easily be solved by starting
the Halton sequence at some larger index, such as xij = φbj (N + i−1) for some
large N . Also, in a randomized QMC setting with xi ∼ U([0, 1]d) individually,
points near the origin are not a much more severe problem under RQMC than
they would be with MC.

For large values of d the Halton sequence has a problem. To take an extreme
case, suppose that n < pj . Then the first n points in the sequence are xij =
(i− 1)/pj . The first n points of (xij , xi,j+1) then lie along a diagonal line with
slope pj/pj+1

.
= 1 in the unit square. If n is a small multiple of pj+1 then the

points lie within a small number of such parallel lines. A Cranley-Patterson
rotation would simply move the line or lines to a random location in the square.

Braaten and Weller (1979) proposed a remedy to this striping problem. For
i =

∑∞
k=1 ak(i, j)pk−1

j , they replace

xij =

∞∑
k=1

ak(i, j)p−kj by

∞∑
k=1

πj(ak(i, j))p−kj

for carefully chosen permutations πj of {0, 1, . . . , pj − 1}. Their permutations
have πj(0) = 0. Because 0 is a fixed point in the permutation, only finitely
many digits are needed when computing each xij . For each base pj of interest,
they chose πj(k) in a greedy step by step fashion to minimize the discrepancy
of their first k choices. Figure 2 shows the first 100 Halton points in the 14’th
and 15’th dimensions, along with the result of Braaten and Weller’s scrambling,
using permutations from their Table 1. We see that scrambling has broken up

8

Halton p = (43,47)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

Braaten & Weller

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2: The left panel shows the first 100 Halton points in [0, 1]2 for p14 = 43
and p15 = 47. The right panel shows 100 pseudorandom points.

the stripe pattern in the Halton points instead of shifting it to another location.
There does appear to remain an artifact with too many points near the diagonal
xi,14 + xi,15 = 1.

Faure (1992) presented an algorithm for choosing permutations π that have
relatively good discrepancy properties compared to other permutations espe-
cially the identity permutation. Further permutations have been selected by
Tuffin (1998) as well as Vandewoestyne and Cools (2006) who develop per-
mutations with small mean squared discrepancy and give a thorough survey
of permutation choices. Chi et al. (2005) conduct a search for random lin-
ear permutations of the form π(a) = a × bj mod pj for strategically chosen
bj ∈ {1, 2, . . . , pj −1}. Faure and Lemieux (2009) provide Matousek-style linear
scrambles of Halton sequences. Their scrambles are deterministic and have 0 as
a fixed point.

Deterministic scrambles will not suit our present purpose because we want
to support replication based error assessment. Ökten et al. (2012) investigate
numerous deterministic scrambling methods and exhibit conspicuous sampling
artifacts in several of them. They then advocate choosing the permutation πj
uniformly at random from the pj ! permutations. It appears that they include
cases with πj(0) 6= 0. Their Figure 3 shows that even for p173 = 1031 and
p174 = 1033 there appear to be no serious sampling artifacts for n = 500.

Wang and Hickernell (2000) present an ingenious randomization strategy
for Halton sequences. They choose a point u ∼ U([0, 1]d). Then writing uj

.
=∑K

k=1 akp
−k
j there is an index N = Nj =

∑k
k=1 akp

k−1
j , they deliver a stream

of xij = φpj (Nj + i − 1) for i > 1. They do not have to actually construct Nj
since the generalized van der Corput points can be computed recursively uing
the von Neumann-Kakutani transformation depicted in Figure 3. Incidentally,
it is interesting that the generalized van der Corput sequences in the Halton

9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

von Neumann−Kakutani, p=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

von Neumann−Kakutani, p=3

x[
i+

1,
2]

Figure 3: The left panel shows φ2(i + 1) as a function of φ2(i) for i > 0. The
right panel shows φ3(i + 1) versus φ3(i). These are von Neumann-Kakutani
transformations of [0, 1] to [0, 1].

sequence can all be started at different Nj if so desired. Unfortunately, the
random start Halton approach also produces stripes as Figure 1 of Chi et al.
(2005) shows for n = 512 points using primes p13 = 41 and p14 = 43.

A strategy based on a single random permutation πj for all the bits in xij
will not suit our purposes. For instance, with p1 = 2, there are only two different
permutations (0, 1) and (1, 0). In a d dimensional problem there are

∏d
j=1 pj !

different permutations, which might seem to be enough, except that having only
two different permutations for the first component will be a severe limitation
when we employ R > 2 replicates. For any i, the only two possible values for
xi1 sum to binary 0.11111 · · · = 1. As a result, this strategy would not deliver
xi ∼ U([0, 1]d) upon which RQMC is based.

The points we use are formed by

xij =

∞∑
k=1

πj,k(ak(i, j))p−kj (5)

where πj,k are independent random permutations, each uniformly distributed
over all pj ! possibilities. This is one of the methods that Wang and Hickernell
(2000) included in their numerical comparisons. It usually had greater efficiency
in their higher dimensional simulations (dimensions 10, 20 and 50 from Tables
2, 3 and 4) than the random start method had, though random start did better
for dimension 5 (their Table 1).

It is clear from equation (5) that individually xij ∼ U([0, 1]). Also, if j 6= j′

then xij and xi′j′ have no permutations in common and hence are independent,
whether or not i = i′. It then follows that xi ∼ U([0, 1]d). Equation (5) involves
an infinite number of digits for each xij because πj,k(0) is not necessarily 0. In

10

Permuted Halton p = (2,3)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Permuted Halton p = (43,47)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4: The left panel shows the first 100 Halton points in [0, 1]2 for p1 = 2
and p2 = 3 after permutation via (5). The right panel has the same points for
p14 = 43 and p15 = 47.

floating point arithmetic one can stop adding digits to xij when 1.0− pkj < 1.0
no longer evaluates to true.

5 Design considerations

The scrambling algorithm is illustrated in the pseudo-code of Algorithm 1. The
rhalton function iterates over indices of the columns, invoking Algorithm 1 on
a set of indices given the j’th prime pj for the j’th dimension. It also keeps
track of random seeds and lets the user extend the output to more rows and/or
more columns. The greatest amount of R code in the Appendix is the function
nthprime which returns the n’th prime from a list of 1000 primes stored in the
function.

If one wants to extend the function to an indefinitely large number of
primes, then one use the sieve of Eratosthenes or Atkin’s sieve on integers up
to some maximum D. The numbers R package (Borchers, 2017) has a func-
tion atkin sieve to do this. It remains to choose D. From Rosser (1941)
we know that d’th prime is no larger than D = d log(d) + d log(log(d)) if
6 6 d 6 exp(95)

.
= 1.81 × 1041. This would remove the need to store a list

of primes and Rosser’s result extends well beyond the practically relevant range
of dimensions. Our implementation caps d0 + d at 1000 because diminishing
gains are expected for larger dimensions and using a list means there are no
package dependencies for rhalton.

Next we give a summary of the design considerations in this code. First, the
baseline QMC methods was chosen to be digital instead of an integration lattice.
Integration lattices require a search for suitable parameter values. While that

11

Algorithm 1 Randomized van der Corput

b2r ← 1 / b
ans ← ind × 0
res ← ind
while 1 − b2r < 1 do

dig ← res mod b
π ← uniform random permutation of {0, 1, . . . , b− 1}
pdig ← π(dig)
ans ← ans + pdig × b2r
b2r ← b2r / b
res ← (res − dig) / b

end while
return ans

NB: Input is a vector ind of non-negative integer indices and a prime base
b > 2. The while loop terminates in floating point arithmetic. If numbers are
represented some other way (e.g., rational numbers), terminate when b2r < ε
for a small ε such as 10−16.

provides a way to tune them to a specific problem it also places a burden on
the user to know how to tune them.

It is likely that the most accurate digital point sets are (t,m, d)-nets, or for
smoother integrands, higher order digital nets Dick (2011). Those constructions
are best used with sample sizes of the form n = pm for prime numbers p. The
Halton sequence by contrast is less sensitive to special sample sizes. Also, it can
be applied in any dimension d.

The best variance for scrambled digital nets comes from the nested uniform
scramble introduced in Owen (1995) or from a partial derandomization of them
due to Matoušek (1998). Matousek’s random linear scrambles are used in the R
package qrng of Hofert and Lemieux (2016). For those scrambles, the permu-
tation applied to digit ai,j(`) depends on ai,j′(`) for all j′ < j. Random linear
scrambles require much less additional storage and bookkeeping than nested
uniform ones do. Even with that derandomization it remains complicated to
extend a prior simulation to increased n or d. The scramble in (5) is simpler to
use.

The appendix has code for an R function rhalton. The most basic usage is
rhalton(n,d) which yields an n × d matrix X with i’th row xi ∈ [0, 1]d of a
Halton sequence. If f is a function on [0, 1]d then mean(apply(rhalton(n,d),

1,f)) provides an RQMC estimate of µ =
∫

[0,1]d
f(x) dx. Figure 5 shows an

R code snippet that provides replicated RQMC points. It returns an estimate
and standard error of

[1] 1.016707e+02 7.419982e-03

where the true integral is 202/4 + 20/12
.
= 101.6667, about 0.5 standard errors

below the estimate.

12

f <- function(v){sum(v)^2} # Example function that is easy for RMQC

R <- 10

n <- 5000

p <- 20

stride <- 1000 # Or replace 1000 by nthprime(0,getlength=TRUE)

muvec <- rep(0,R)

for(r in 1:R){

x <- rhalton(n,p,singleseed = r*stride)

muvec[r] <- mean(apply(x,1,f))

}

mu <- mean(muvec)

se <- sqrt(var(muvec)/R)

print(c(mu,se))

Figure 5: Example of replication with rhalton. It estimates µ =
∫

[0,1]p
f(x) dx

for p = 20 using R = 10 replicates of n = 5000 points. The initial seeds are
separated by a ‘stride’ that is larger than the integrand’s dimension to prevent
overlap.

Setting the seed as in the snippet of Figure 5 makes it easier to do repro-
ducible research. A second goal for the user might be to extend a computation
later to larger values of n and/or d. To each integer value s > 0 of the argument

singleseed the scrambled Halton sequence is a matrix X (s) of values X (s)
ij for

1 6 i < ∞ and 1 6 j < ∞. Calling rhalton(n,d,n0,d0,singleseed=s) will

return an n×d matrix X with elements Xij = X (s)
n0+i,d0+j for indices i = 1, . . . , n

and j = 1, . . . , d. Notice that n0 is the number of rows you have already and
the first delivered new point will be the n0 +1’st one of X (s). Similarly d0 is the
number of columns you have already and the first delivered new variable will
be the d0 + 1’st one. The rhalton code has a fixed list of prime numbers. It is
necessary to have d0 + d at most equal to the size of that list (presently 1000).
If more columns are needed, then the user can increase the length of the list of
prime numbers.

Figure 6 shows how to extend the output of rhalton. The first call to
rhalton generates n = 3 points in d = 4 dimensions. The next call generates
n = 5 points in d = 4 dimensions. Because the seed vector is the same, the first
three rows of the second result contain the first result. To just get the two new
rows after the third, the next example sets n0 = 3. The next call shows how to
extend the matrix to get two new columns including the first ones and the final
call shows how to get just the two new columns by setting d = 2 and d0 = 4.

Columns 1 and 3 of the output matrices in Figure 6 have a striking pattern
of common digits in their base 10 representation. This arises because the first
and third prime numbers are divisors of 10. The first two values in column one
have the same second digit, the first four have the same third digit, the first
eight have the same fourth digit and so on. That pattern would not arise in a

13

> rhalton(3,4,singleseed=1) # First example matrix

[,1] [,2] [,3] [,4]

[1,] 0.3581924 0.02400209 0.142928 0.7024411

[2,] 0.8581924 0.35733543 0.742928 0.1310125

[3,] 0.1081924 0.69066876 0.342928 0.2738697

> rhalton(5,4,singleseed=1) # Two more rows of the example

[,1] [,2] [,3] [,4]

[1,] 0.3581924 0.02400209 0.142928 0.7024411

[2,] 0.8581924 0.35733543 0.742928 0.1310125

[3,] 0.1081924 0.69066876 0.342928 0.2738697

[4,] 0.6081924 0.13511320 0.942928 0.9881554

[5,] 0.4831924 0.46844654 0.542928 0.4167268

> rhalton(2,4,n0=3,singleseed=1) # Just the two new rows

[,1] [,2] [,3] [,4]

[1,] 0.6081924 0.1351132 0.942928 0.9881554

[2,] 0.4831924 0.4684465 0.542928 0.4167268

> rhalton(3,6,singleseed=1) # Two more columns

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3581924 0.02400209 0.142928 0.7024411 0.2247080 0.5583664

[2,] 0.8581924 0.35733543 0.742928 0.1310125 0.5883443 0.8660587

[3,] 0.1081924 0.69066876 0.342928 0.2738697 0.7701625 0.1737510

> rhalton(3,2,d0=4,singleseed=1) # Just the new columns

[,1] [,2]

[1,] 0.2247080 0.5583664

[2,] 0.5883443 0.8660587

[3,] 0.7701625 0.1737510

Figure 6: Extending rhalton to larger n and/or d, as described in the text.

nested uniform scramble.
The default seeding uses the random seed s + j − 1 for column j of X (s).

That is, the user supplied seed is for column 1 and all others are keyed off of
that. If the user does not want to employ consecutive random seeds for different
dimensions then it is possible to supply instead a parameter called seedvector

containing seeds sj for j = 1, . . . , d0 + d. It is not enough for the user to supply
only d seeds when d0 > 0. This design choice is meant to prevent an accidental
misusage in which some single seed sj is used for both dimension j and d0 + j.

6 Illustration

Here we illustrate the accuracy of scrambled Halton sequences through some
numerical examples. Sometimes additive functions are used to test numerical
integration, but such functions are far too simplistic for QMC. More commonly
product functions are used. Product functions are prone to have a coefficient of

14

variation that grows exponentially with dimension. For this section, we choose
some integrands over [0, 1]d that resemble quantities one sees in statistical ap-
plications and for which d can naturally vary.

These integrands are of the form

fk(x) = gk

(1√
d

d∑
j=1

Φ−1(xj)
)

for functions gk given below. The argument to gk has a N (0, 1) distribution
which makes it easier to study properties of the integration problem. The spe-
cific functions we choose are

g1(z) = Φ(z+1), g2(z) = 1z+1>0, g3(z) = max(z+1, 0) and g4(z) = 1z<Φ−1(0.001).

Integrand f1 is designed to make it easy for QMC to improve on MC. It
is very smooth. The +1 inside Φ is there so that this test function will not
be antisymmetric. Some QMC algorithms incorporate antithetic sampling and
they would be exact for g(z) = Φ(z) by symmetry instead of by equidistribution.
Next, VHK(f2) =∞ for d > 2. Yet in an ANOVA decomposition of f2 the lower
order terms will dominate (Griebel et al., 2010), and they will be better behaved.
For instance, only the full d dimensional interaction will be discontinous, the
others will be smoother by integration. Next, VHK(f3) = ∞ for d > 3, though
it should also enjoy the good projecton property from Griebel et al. (2010). We
can reasonably expect it to be more difficult than f1 but easier to handle than
f2. Integrand f4 describes a rare event, and it is included to show QMC failing
to bring much improvement. QMC is not designed for rare events; importance
sampling is required, though it can be combined with (R)QMC (Aistleitner and
Dick, 2014).

Each integral was estimated using randomized Halton points for a range of
dimensions and sample sizes n. The true mean and variance of fk are µk =
E(gk(z)) and σ2

k = Var(gk(z)), respectively, for z ∼ N (0, 1), and these can be
very accurately found by applying Φ−1 to a midpoint rule on 107 points in [0, 1].

The points in replicate r were x
(r)
i ∈ [0, 1]d. We estimate the MSE for integrand

k by

M̂SEk =
1

R

R∑
r=1

(µ̂k,r − µk)2, µ̂k,r =
1

n

n∑
i=1

fk(x
(r)
i)

We also retain the sample variance of the squared errors (µ̂k,r − µ̂k)2 for r =

1, . . . , R. Those sample variances enable an estimate of Var(M̂SEk). We sup-

press the dependence on n and d of MSEk and M̂SEk.

The efficiency of RQMC to MC is estimated by (σ2
k/n)/M̂SE. The uncer-

tainty in MSE is judged by lower and upper limits

σ2
k/n

M̂SE + 2

√
V̂ar(M̂SE)/R

, and
σ2
k/n

M̂SE− 2

√
V̂ar(M̂SE)/R

.

15

0 10 20 30 40 50

1
10

10
0

10
00

10
00

0

●

● ●
● ●

● ●
● ●

●
● ●

● ●
● ● ● ● ● ● ● ●

● ●

●

●

●

●

● ●
● ●

● ● ● ●
● ● ●

● ●
● ●

● ●
● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ●

● ● ● ●

●

●
●

●

●

●

●
● ●

● ●
●

● ●
● ● ●

●
● ● ● ●

●
● ●

●

●
●

●

●

●

●
●

● ●

●
●

● ●
●

●
●

● ● ● ●
● ● ●

● ●
● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

●
● ● ● ● ● ● ● ●

QMC / MC efficiency vs dimension

Figure 7: RQMC efficiency for function f1 based on R = 100 repetitions. Top
to bottom n = 105, 104, 103, 102.

The number R of replications and the sample sizes used varied with the
difficulty of the case. Figures 7, 8 and 9 show RQMC efficiency with uncertainty
bands for f1, f2 and f3. They are based on R = 100 repetitions and n from 100
to 10,000 by factors of 10. Figure 10 shows shows the rare event integrand f4

with R = 300 replications and n from 10,000 to 1,000,000 by factors of 10.
In Figure 7 we see dramatic efficiency gains versus Monte Carlo. As the

sample size grows by 10-fold the efficiency grows also by about 10-fold, when
d is small, consistent with a theoretically anticipated MSE of O(n−2+ε). The
efficiency decreases with dimension and by d = 50 the efficiency no longer looks
to be proportional to n, but it is still quite large, e.g., over 100 for the largest
sample size.

Figure 8 has a discontinuous integrand. Already by d = 10 the efficencies
are not much greater than 1. The bands around the estimates begin to overlap
considerably as they must if all of the efficiencies are getting closer to 1.

Although the integrand f3 has infinite variation for d > 3, the efficiencies in
Figure 9 are stilll very large and grow with sample size. The smoothing effect
from Griebel et al. (2010) appears to apply much more strongly to f3 than to
f2.

The integrand f4 is both discontinuous and describes a rare event with 10−3

probability. Larger sample sizes and more repetitions and fewer dimensions were
used. We see an efficiency gain but it diminishes rapidly with dimension.

16

2 4 6 8 10

1
10

10
0

10
00

10
00

0

●

●

●

●
● ●

●
● ●

●

●

●

●
●

● ●
●

●
● ●

●

●

●

●
●

● ● ●
● ●

●

●

●

●

●

● ●
●

●
●

QMC / MC efficiency vs dimension

Figure 8: RQMC efficiency for function f2 based on R = 100 repetitions. Top
to bottom n = 105, 104, 103, 102.

0 10 20 30 40 50

1
10

10
0

10
00

10
00

0

●
●

● ● ●

●
●

●
● ●

● ● ● ●

●

●
●

●

● ●
●

● ● ●
● ●

● ● ● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

● ● ●
●

●
● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●
●

● ● ●
●

● ● ●
● ●

● ● ●
●

●
● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ●

QMC / MC efficiency vs dimension

Figure 9: RQMC efficiency for function f3 based on R = 100 repetitions. Top
to bottom n = 105, 104, 103, 102.

17

1 2 3 4 5

1
5

50
50

0

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

QMC / MC efficiency vs dimension

Figure 10: RQMC efficiency for function f4 based on R = 300 repetitions. Top
to bottom n = 106, 105, 104.

6.1 Mean dimension

Here we use the functional ANOVA of Hoeffding (1948) and Sobol’ (1967). Let
the function f have functional ANOVA decomposition f(x) =

∑
u⊆1:d fu(x)

where fu depends on x only through xj for j ∈ u. The effects fu have variance
components σ2

u = Var(fu(x)). The function f is said to be of effective dimension
s in the superposition sense (Caflisch et al., 1997), if∑

u:|u|6s

σ2
u > 0.99σ2,

and the same is not also true for |u| 6 s− 1. This means that 99% or more of
the variance comes from main effects f{j} and interactions of order up to s. It
is difficult to estimate the effective dimension of a function and a more easily
quantified measure is the mean dimension

d̄(f) =

∑
u⊆1:d |u|σ2

u

σ2
. (6)

See Liu and Owen (2006).
For any dimension d > 1, the test functions satisfy

µ =

∫
[0,1]d

f(x) dx =

∫ ∞
−∞

g(z)ϕ(z) dz

where ϕ is the N (0, 1) probability density function. Similarly, for any d > 1,
the variance of the integrand is

σ2 =

∫ ∞
−∞

(g(z)− µ)2ϕ(z) dz.

18

0 20 40 60 80 100

1.
00

1.
10

1.
20

Functions f1 and f3

Nominal dimension

M
ea

n
di

m
en

si
on

f1

f3

1e+01 1e+03 1e+05

2
10

50
50

0

Functions f2 and f4

Nominal dimension

M
ea

n
di

m
en

si
on

f2

f4

Figure 11: The left panel shows mean dimensions of f1 and f3 for d =
1, 2, . . . , 100. The right panel shows mean dimensions of f2 and f4 for mean
dimensions 2m for m = 1, . . . , 20.

For x ∈ [0, 1]d and zj ∈ [0, 1], let x−{j}:zj be the point x after xj has
been changed to zj . The theory of Sobol’ indices (Sobol’, 1993) can be used to
simplify the numerator in the mean dimension (6),

∑
u⊆1:d

|u|σ2
u =

1

2

d∑
j=1

∫ 1

0

∫
[0,1]d

(f(x)− f(x−{j}:zj))
2 dx dzj

=
d

2

∫ 1

0

∫
[0,1]d

(f(x)− f(x−{1}:z1))2 dx dz1

=
d

2
× E

(
[g(y0 + y1)− g(y0 + y2)]2

)
for independent y1, y2 ∼ N (0, 1/d) and y0 ∼ N (0, (d− 1)/d). We may compute
these integrals using a randomized Halton point set in 3 dimensions for any
given d.

Figure 11 shows the mean dimensions for the test functions in this paper as
a function of the nominal dimension d. The functions f1 and f3 have a mean
dimension that remains just barely larger than 1.0 as d→∞. The functions f2

and f4 have a mean dimension that grows roughly like
√
d.

For very large d and differentiable g we anticipate that∑
u⊆1:d

|u|σ2
u
.
=
d

2
× E

(
g′(y0)2(y1 − y2)2

)
= E

(
g′(y0)2

)
,

by independence of y0, y1 and y2. So the mean dimension is approximately∫∞
−∞ g′(z)2ϕ(z) dz∫∞

−∞(g(z)− µ)2ϕ(z) dz

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−12 1e−10 1e−08 1e−06 1e−04

1e
−

12
1e

−
08

1e
−

04

Mean squared error comparison

Randomized Halton

Q
rn

g'
s

gh
al

to
n

Figure 12: The horizontal axis has mean squared errors from rhalton. The
vertical axis has mean squared errors for the ghalton program from the R
package qrng. There is a reference line where the MSEs are equal.

for large d. These limiting quantities closely match the mean dimensions of f1

and f3 for very large values of d such as 106.

7 Comparisons

There is a randomized Halton code function ghalton in the R package qrng by
Hofert and Lemieux (2016). That code uses a random linear scramble and it
has core computations written in C++.

The problems displayed in Figures 7 through 10 were also computed with
the ghalton generalized Halton code from the qrng package. Figure 12 depicts
the mean squared errors from each method on all of the dimensions and sample
sizes in those figures. There is not much difference in accuracy. That figure
includes data with very large differences in sample sizes as well as differences
in efficiencies, and the mean squared errors in each method range by a factor
of more than 108. We might also want to compare efficiencies, normalizing
out the large differences among sample sizes. Sample size effects cancel in the
average of MSE(rhalton)/MSE(ghalton) which is 1.22 and in the average of
the reciprocal MSE(ghalton)/MSE(rhalton) is 0.88. Both of these reflect an
efficiency advantage for ghalton, but not a large one.

The ghalton code does not come with internal seeding methods. Version
0.0-3 allows up to d = 360 dimensions. If the seed is set and n and d are
increased, the new matrix contains the previous one as its upper left corner:

> set.seed(1);x1=ghalton(500,180);set.seed(1);x2=ghalton(1000,360)

20

> range(x2[1:500,1:180]-x1)

[1] 0 0

The principal advantage of the present rhalton code is that it can be ex-
tended to n′ > n rows only computing the new n′−n rows, or to d′ > d columns
only computing the new d′ − d columns. It is even possible to extract an ar-

bitrary single element X (s)
ij via rhalton(1,1,n0=i-1,d0=j-1,singleseed=s).

A second advantage is that the pseudocode is so simple that one can easily
write it in a new language, such as julia (Bezanson et al., 2017), or use it for
instructional purposes about RQMC.

There are more accurate RQMC methods than this one, if the integrand has
sufficient smoothness. See, for instance Dick (2011) or Owen (1997). However
any rule with error or root mean squared error o(1/n) cannot be reasonably
used at arbitrary sample sizes. To see why, suppose that µ̂n is an average of n
evaluations and µ̂n+1 averages n+ 1 of them. Then µ̂n+1− µ̂n = O(1/n). If µ̂n
had error o(1/n) then we have probably made it an order of magnitude worse
just by taking one more observation. The only exception would be if f(xn+1)
itself had error o(1/n). In that case we would just use f(xn+1) all by itself.
This observation is due to Sobol’ (1998) and was worked out in detail in Owen
(2015). The consequence is that for o(1/n) accuracy an equal weight rule must
use sample sizes n` with some lower bound on n`+1/n`. Equal weight rules with
arbitrary sample sizes are easiest to use.

Nested uniform scrambling of (t,m, d)-nets in base b (Owen, 1995) has the
property that for finite n the resulting variance cannot be much worse than
plain MC for any integrand f in L2. The bound depends on t,m, d and b for
sample sizes n = bm. The randomized Halton method presented here does not
have that property. Pathological exceptions are possible. Suppose that d = 26
and that f(xi) only depends on the 26’th component xij . The 26’th prime is
101 and to make matters worse, suppose that f(xi) is a periodic function of
xi,26 with period 1/101. Then the first 101 values of f(xi) are all equal. So are
the second 101 values. The variance could be 101 times as large as Monte Carlo
sampling, and of course a larger prime number would be even more problematic,
as would a function that depended only on xj and had period pkj for some k.
The code presented here is based on ignoring this far-fetched possibility for the
sake of simplicity of implementation and use.

References

Aistleitner, C. and Dick, J. (2014). Functions of bounded variation, signed
measures, and a general Koksma-Hlawka inequality. Technical Report
arXiv1406.0230, University of New South Wales.

Atanassov, E. (2004). On the discrepancy of the Halton sequence. Mathematica
Balkanica, 18:15–32.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A
fresh approach to numerical computing. SIAM Review, 59(1):65–98.

21

Borchers, H. W. (2017). numbers: Number-Theoretic Functions. R package
version 0.6-6.

Braaten, E. and Weller, G. (1979). An improved low-discrepancy sequence for
multidimensional quasi-Monte Carlo integration. Journal of Computational
Physics, 33(2):249–258.

Caflisch, R. E., Morokoff, W., and Owen, A. B. (1997). Valuation of mort-
gage backed securities using Brownian bridges to reduce effective dimension.
Journal of Computational Finance, 1(1):27–46.

Chi, H., Mascagni, M., and Warnock, T. (2005). On the optimal Halton se-
quence. Mathematics and computers in simulation, 70(1):9–21.

Cranley, R. and Patterson, T. N. L. (1976). Randomization of number theo-
retic methods for multiple integration. SIAM Journal of Numerical Analysis,
13(6):904–914.

Davis, P. J. and Rabinowitz, P. (1984). Methods of Numerical Integration.
Academic Press, San Diego, 2nd edition.

Devroye, L. (1986). Non-uniform Random Variate Generation. Springer, New
York.

Dick, J. (2011). Higher order scrambled digital nets achieve the optimal rate of
the root mean square error for smooth integrands. The Annals of Statistics,
39(3):1372–1398.

Dick, J., Kuo, F. Y., and Sloan, I. H. (2013). High-dimensional integration: the
quasi-Monte Carlo way. Acta Numerica, 22:133–288.

Dick, J. and Pillichshammer, F. (2010). Digital sequences, discrepancy and
quasi-Monte Carlo integration. Cambridge University Press, Cambridge.

Faure, H. (1982). Discrépance de suites associées à un système de numération
(en dimension s). Acta Arithmetica, 41:337–351.

Faure, H. (1992). Good permutations for extreme discrepancy. Journal of
Number Theory, 42(1):47–56.

Faure, H. and Lemieux, C. (2009). Generalized Halton sequences in 2008: A
comparative study. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 19(4):15:1–15:31.

Griebel, M., Kuo, F. Y., and Sloan, I. H. (2010). The smoothing effect of the
anova decomposition. Journal of Complexity, 26(5):523–551.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numerische Mathematik,
2(1):84–90.

22

Hoeffding, W. (1948). A class of statistics with asymptotically normal distribu-
tion. Annals of Mathematical Statistics, 19(3):293–325.

Hofert, M. and Lemieux, C. (2016). qrng: (Randomized) Quasi-Random Number
Generators. R package version 0.0-3.

L’Ecuyer, P. and Lemieux, C. (2002). A survey of randomized quasi-Monte
Carlo methods. In Dror, M., L’Ecuyer, P., and Szidarovszki, F., editors,
Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and
Applications, pages 419–474. Kluwer Academic Publishers.

Liu, R. and Owen, A. B. (2006). Estimating mean dimensionality of analysis
of variance decompositions. Journal of the American Statistical Association,
101(474):712–721.

Matoušek, J. (1998). On the L2–discrepancy for anchored boxes. Journal of
Complexity, 14(4):527–556.

Morokoff, W. J. and Caflisch, R. E. (1994). Quasi-random sequences and their
discrepancies. SIAM Journal of Scientific Computing, 15(6):1251–1279.

Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monat-
shefte fur mathematik, 104(4):273–337.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo
Methods. SIAM, Philadelphia, PA.

Ökten, G., Shah, M., and Goncharov, Y. (2012). Random and deterministic
digit permutations of the Halton sequence. In Monte Carlo and Quasi-Monte
Carlo Methods 2010, pages 609–622. Springer.

Owen, A. B. (1995). Randomly permuted (t,m, s)-nets and (t, s)-sequences. In
Niederreiter, H. and Shiue, P. J.-S., editors, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, pages 299–317, New York. Springer-
Verlag.

Owen, A. B. (1997). Scrambled net variance for integrals of smooth functions.
Annals of Statistics, 25(4):1541–1562.

Owen, A. B. (2003). Variance with alternative scramblings of digital nets. ACM
Transactions on Modeling and Computer Simulation, 13(4):363–378.

Owen, A. B. (2005). Multidimensional variation for quasi-Monte Carlo. In Fan,
J. and Li, G., editors, International Conference on Statistics in honour of
Professor Kai-Tai Fang’s 65th birthday.

Owen, A. B. (2015). A constraint on extensible quadrature rules. Numerische
Mathematik, pages 1–8.

R Core Team (2015). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria.

23

Rabitz, H., Aliş, Ö. F., Shorter, J., and Shim, K. (1999). Efficient input-output
model representations. Computer Physics Communications, 117(1-2):11–20.

Rosser, B. (1941). Explicit bounds for some functions of prime numbers. Amer-
ican Journal of Mathematics, 63(1):211–232.

Sloan, I. H. and Joe, S. (1994). Lattice Methods for Multiple Integration. Oxford
Science Publications, Oxford.

Sloan, I. H. and Wozniakowski, H. (1998). When are quasi-Monte Carlo al-
gorithms efficient for high dimensional integration? Journal of Complexity,
14:1–33.

Sobol’, I. M. (1967). The distribution of points in a cube and the accurate
evaluation of integrals. USSR Computational Mathematics and Mathematical
Physics, 7(4):86–112.

Sobol’, I. M. (1993). Sensitivity estimates for nonlinear mathematical models.
Mathematical Modeling and Computational Experiment, 1:407–414.

Sobol’, I. M. (1998). On quasi-Monte Carlo integrations. Mathematics and
Computers in Simulation, 47:103–112.

Tuffin, B. (1998). A new permutation choice in Halton sequences. In Monte
Carlo and Quasi-Monte Carlo Methods 1996, pages 427–435. Springer.

van der Corput, J. G. (1935). Verteilungsfunktionen I. Nederl. Akad. Wetensch.
Proc., 38:813–821.

Vandewoestyne, B. and Cools, R. (2006). Good permutations for deterministic
scrambled halton sequences in terms of l2-discrepancy. Journal of computa-
tional and applied mathematics, 189(1):341–361.

Wang, X. and Hickernell, F. J. (2000). Randomized Halton sequences. Mathe-
matical and Computer Modelling, 32(7-8):887–899.

24

Appendix: source code in R

#

Coded by Art B. Owen, Stanford University.

April 2017

#

rhalton <- function(n,d,n0=0,d0=0,singleseed,seedvector){

#

Randomly scrambled Halton sequence of n points in d dimensions.

#

If you already have n0 old points, set n0 to get the next n points.

If you already have d0 old components, set d0 to get the next d inputs.

Get points n0 + 0:(n-1) in dimensions d0 + (1:d)

#

seedvector = optional vector of d0+d random seeds, one per dimension

singleseed = optional scalar seed (has lower precedence than seedvector)

Handle input dimension correctness and corner cases

if(min(n0,d0) < 0)

stop(paste("Starting indices (n0, d0) cannot be < 0, input had (",n0,",",d0,")"))

if(min(n,d) < 0)

stop(paste("Cannot have negative n or d"))

if(n==0 || d==0) # Odd corner cases: user wants n x 0 or 0 x d matrix.

return(matrix(nrow=n,ncol=d))

D <- nthprime(0,getlength=TRUE)

if(d0+d > D)

stop(paste("Implemented only for d <=",D))

Seed rules

if(!missing(singleseed) && length(singleseed) != 1)

stop("singleseed, if supplied, must be scalar")

if(!missing(seedvector) && length(seedvector) < d0+d)

stop("seedvector, if supplied, must be have length at least d0+d")

if(missing(seedvector) && !missing(singleseed))

seedvector <- singleseed + 1:(d0+d) - 1

Generate and return the points

ans <- matrix(0,n,d)

for(j in 1:d){

dimj <- d0+j

if(!missing(seedvector))set.seed(seedvector[dimj])

ans[,j] <- randradinv(n0 + 0:(n-1), nthprime(dimj)) # zero indexed rows

}

ans

}

25

randradinv <- function(ind,b=2){

Randomized radical inverse functions for indices in ind and for base b.

The calling routine should set the random seed if reproducibility is desired.

if(any(ind!=round(ind)))

stop("Indices have to be integral.")

if(any(ind<0))

stop("Indices cannot be negative.")

if(!(is.vector(b) && length(b)==1 && b==floor(b) && b>1))

stop("b must be a single integer >= 2")

b2r <- 1/b

ans <- ind*0

res <- ind

while(1-b2r < 1){ # Assumes floating point comparisons, fixed precision.

dig <- res %% b

perm <- sample(b)-1

pdig <- perm[1+dig]

ans <- ans + pdig * b2r

b2r <- b2r/b

res <- (res - dig)/b

}

ans

}

nthprime <- function(n,getlength=FALSE){

Get the n’th prime, using a hard coded list (or get the length of that list).

First fifty-eight prime numbers from OEIS A000040, April 2017

primes <- c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229,

233, 239, 241, 251, 257, 263, 269, 271)

First 1000 prime numbers from primes.utm.edu/lists/small/1000.txt, April 2017

primes <- c(

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113

, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173

, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229

, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281

, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349

, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409

26

, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463

, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541

, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601

, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659

, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733

, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809

, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863

, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941

, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013

, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069

, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151

, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223

, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291

, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373

, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451

, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511

, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583

, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657

, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733

, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811

, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889

, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987

, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053

, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129

, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213

, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287

, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357

, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423

, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531

, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617

, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687

, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741

, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819

, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903

, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999

, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079

, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181

, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257

, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331

, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413

, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511

, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571

, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643

, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727

, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821

, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907

27

, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989

, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057

, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139

, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231

, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297

, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409

, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493

, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583

, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657

, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751

, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831

, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937

, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003

, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087

, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179

, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279

, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387

, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443

, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521

, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639

, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693

, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791

, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857

, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939

, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053

, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133

, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221

, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301

, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367

, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473

, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571

, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673

, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761

, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833

, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917

, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997

, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103

, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207

, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297

, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411

, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499

, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561

, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643

, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723

, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829

, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919

28

)

p <- length(primes)

if(getlength)

return(p)

if(any(n<1))

stop(paste(sep="","The n’th prime is only available for n >= 1, not n = ",min(n)))

if(any(n>p))

stop(paste(sep="","The present list of primes has length ",p,

". It does not include the n’th one for n = ",max(n),"."))

return(primes[n])

}

29

