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This paper analyzes some schemes for reducing the computational burden of digital scrambling.

Some such schemes have been shown not to affect the mean squared L2 discrepancy. This pa-
per shows that some discrepancy-preserving alternative scrambles can change the variance in

scrambled net quadrature. Even the rate of convergence can be adversely affected by alternative

scramblings. Finally, some alternatives reduce the computational burden and can also be shown
to improve the rate of convergence for the variance, at least in dimension 1.
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1. INTRODUCTION

The purpose of this paper is to study some recent proposals for scrambling of digital
nets. These proposals can greatly reduce the time and especially the memory
required to scramble nets. Most of the alternative proposals produce the same
mean squared L2 discrepancy as the original scrambling proposal. Many have the
same variance. We analyze the structure of scrambling methods, show that one
computational shortcut adversely affects the rate of convergence of the sampling
variance, and present a new shortcut that, at least for one dimensional problems,
improves the convergence rate of the variance.

To frame the discussion, suppose that f is a function on the unit cube [0, 1)d

in d dimensions, and that f ∈ L2[0, 1)d. We will compute an approximation to
I =

∫
[0,1)d

f(x)dx of the form Î = (1/n)
∑n−1
i=0 f(xi). We index from 0 and work

with the half-open hypercube purely for notational convenience.
In crude Monte Carlo integration, the xi are sampled independently from the

U [0, 1)d distribution. Then Î has mean I and variance σ2/n where σ2 =
∫

(f(x)−
I)2dx < ∞. The root mean square (RMS) error in crude Monte Carlo is σn−1/2.
In practice pseudo-random numbers are usually substituted for random ones.

Author’s address: A. B. Owen, Department of Statistics, Sequoia Hall, Stanford CA 94305

This work was supported by U.S. NSF grant DMS-0072445.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2002 ACM 1529-3785/2002/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002, Pages 1–0??.



2 · Art B. Owen

The goal of quasi-Monte Carlo (QMC) methods (see Niederreiter [1992]) is not to
simulate randomness. The goal in QMC is to minimize a measure of the distance
between the continuous uniform distribution on [0, 1)d and the discrete uniform
distribution taking the value xi with probability 1/n. Such distance measures are
called discrepancies. QMC constructions give deterministic points xi with |Î−I| =
O(n−1+ε) under mild smoothness conditions on f , for any ε > 0. The factor nε is
there to hide powers of log(n).

Randomized versions of quasi-Monte Carlo were introduced in order to obtain
sample based error estimates. An early example is Cranley and Patterson [1976].
Randomization can also bring improvements. Roth [1980] introduced randomness
into Halton-Hammersley points to obtain asymptotically optimal L2 discrepancy.
The scrambled nets proposed in Owen [1995] were shown in Owen [1997b] to have
an RMS error of O(n−3/2+ε) under mild smoothness assumptions.

A straightforward implementation of the full scrambling in Owen [1995] requires
an amount of memory proportional to that required to store all the xi. Short-
cuts have been proposed by Tan and Boyle [2000], Matousek [1998b], Fox [1999]
and Friedel and Keller [2002]. Perhaps greater savings can be achieved by alterna-
tive scramblings. Hickernell [1996a] provides sufficient conditions for a scrambling
method to have the same mean square L2 discrepancy as fully scrambled points.
Matousek [1998b] provides slightly different sufficient conditions and gives many
specific examples of scrambles satisfying them. One key idea is to use a partial
derandomization replacing some independent random variables by pairwise inde-
pendent ones generated from a small set of independent random variables. Tezuka
[2002] and ?] consider a special class of i-binomial scrambles.

For a comprehensive treatment of quasi-Monte Carlo see Niederreiter [1992]. Sur-
veys of randomized quasi-Monte Carlo are presented in [Owen 1998a; 1999] and
L’Ecuyer and Lemieux [2002]. Comparative discussions of scrambling methods ap-
pear in L’Ecuyer and Lemieux [2002], Matousek [1998b], and in Hong and Hickernell
[2000].

The outline of this paper is as follows. Section 2 reviews digital scrambling
schemes. The scheme from Owen [1995], called nested uniform scrambling here, is
contrasted with alternatives from Matousek [1998b], in which uniform permutations
are replaced by random linear ones, and nested scrambling is replaced by positional
or matrix scrambling. Work of Hickernell [1996a] and Matousek [1998b] shows that
many of these schemes do not alter the mean squared L2 discrepancy. Section 3
shows by a one dimensional example based on the van der Corput sequence, that
replacing nested scrambling by alternatives can radically change the variance of
scrambled integration rules. The asymptotic variance rate can be changed for the
better or for the worse. Section 4 has some conclusions and raises some open issues.

2. PERMUTING AND SCRAMBLING

A scrambled quadrature rule starts with points a0, . . . , an−1 ∈ [0, 1)d. A mapping
from [0, 1)d onto [0, 1)d is chosen at random as described below, and applied to the
points ai. The result, denoted xi is the scrambled version of ai. Then I is estimated
by Î as in QMC or crude MC.

Most scrambling strategies proposed for [0, 1)d work by independently scrambling
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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the d components of ai. We assume such independence throughout, accepting
some loss of generality. The strategies are designed with the goal of preserving in
x0, . . . , xn−1 some good equidistribution properties built into a0, . . . , an−1, while
making x uniformly distributed on [0, 1)d.

We present digital scrambles of [0, 1), obtained by randomizing the digits of a in
an integer base b ≥ 2. For a ∈ [0, 1) write a =

∑∞
k=1 akb

−k. Scrambling of a results
in a point x =

∑∞
k=1 xkb

−k where the digits xk ∈ {0, 1, . . . , b − 1} are obtained
by permutation schemes described below applied to the digits of a. Some points
in [0, 1) have two base b expansions, of which one ends in an infinite sequence of
b − 1’s and the other has an infinite sequence of 0’s. We adopt the representation
with an infinite sequence of 0’s for such points a. In some instances we will work
formally with infinite sequences of digits distinguishing the two representations of
such points. All the schemes below have probability zero of producing any xi with
two distinct representations, when applied to countably many ai.

The proposal in Owen [1995] scrambles the interval [0, 1) by applying random
permutations to the digits ak. Each random permutation is uniformly distributed
on the set of b! permutations of {0, 1, . . . , b − 1}. The permutation used for a1 is
π•. The permutation used for a2 depends on the value of a1, and is written π•a1 .
The permutation used for ak for k > 1 depends on all the values a1, . . . , ak−1. It
is written π•a1a2...ak−1 , and there are bk−1 such permutations. We use the term
nested uniform scrambling for this procedure: nested describes the dependence of
the permutations for digit k > 1 on the values of digits ` < k, and uniform describes
the use of all b! possible permutations. Some alternative methods use non-uniform
permutations while others employ non-nested strategies to combine permutations.
The non-nested strategies can lead to substantial reductions in the space needed to
store the permutations for scrambling.

This article focusses on alternatives to nested uniform scrambling. Here we men-
tion that some steps have been taken to mitigate the costs of nested uniform scram-
bling. Tan and Boyle [2000] apply nested scrambling to levels up to k′ and then
take π•a1a2...ak = π•a1a2...ak′ for k ≥ k′. Matousek [1998b] describes a method
of caching random seeds to reduce storage costs, while requiring some duplicated
computation. Friedel and Keller [2002] present a lazy permutation strategy. It may
also be possible to implement nested scrambling by using a prodigious number of
random seeds, computed by a hash function, though this does not appear to have
been tried. The input to the hash function would contain a position k ≤M , where
bM � n, a k − 1-tuple of base b digits a1, . . . , ak−1, a coordinate j ∈ {1, . . . , d},
and possibly a replicate number r ∈ {1, . . . , R}.

2.1 Random permutations

The building blocks in scrambling the base b digits of a ∈ [0, 1) are random per-
mutations of the symbols Zb = {0, 1, . . . , b − 1}. We write such a permutation as
a function π mapping Zb onto Zb. The nonzero elements of Zb are denoted by
Z

+
b = {1, . . . , b− 1}. Here we list some useful random permutations and some key

properties of them.

Definition 2.1. In a uniform random permutation all b! permutations of Zb have
probability 1/b!.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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Definition 2.2. Let b be a prime. A linear random permutation has the form
π(a) = h× a+ g mod b where h ∈ Z+

b and g ∈ Zb are independent and uniformly
distributed over their ranges.

Linear random permutations are restricted to prime b because for nonprime b
there are h 6= 0 for which h×a+ g is not a permutation. As an example take b = 4
and h = 2. When b is a prime number, then Zb is a finite field. For a general finite
field GF (b) the number of elements b is a prime number raised to a positive integer
power. Only for prime b can arithmetic modulo b be used. To extend the linear
permutation we employ invertible functions (bijections) from GF (b) to Zb. In the
definition below, a bijection maps Zb into GF (b) where the arithmetic is carried
out, and then a second bijection, possibly equal to the first, is used to bring the
result back into Zb:

Definition 2.3. Let b be a prime power. Then a generalized linear random per-
mutation has the form π(a) = Φ−1(h×Ψ(a)+g) where Φ and Ψ are bijections from
Zb onto GF (b), addition and multiplication are carried out in GF (b), h and g are
independent uniformly distributed elements of GF (b)−{0} and GF (b) respectively.

Definition 2.4. A digital shift random permutation has the form π(a) = a + g
mod b where g is uniformly distributed on Zb. For a prime power b, a generalized
digital shift random permutation has the form π(a) = Φ−1(Ψ(a) + g) where Φ and
Ψ are bijections from Zb onto GF (b) and g is uniformly distributed on GF (b).

Linear permutations are described in Matousek [1998b]. Digital shifts are men-
tioned in L’Ecuyer and Lemieux [2002]. They yield random cyclic permutations.
For linear permutations it suffices to store only 2 coefficients per permutation com-
pared to the b coefficients ordinarily used for a uniform random permutation, and
digital permutations reduce the storage to one coefficient.

Definition 2.5. The random permutation π has single-fold uniformity if

Pr(π(a) = x) =
1
b

(1)

for all a, x ∈ Zb, two-fold uniformity if

Pr(π(a1) = x1, π(a2) = x2) =
1

b(b− 1)
(2)

whenever a1, a2, x1, x2 ∈ Zb with a1 6= a2 and x1 6= x2, and it has k-fold uniformity,
for 1 ≤ k ≤ b if

Pr(π(a1) = x1, . . . , π(ak) = xk) =
1

b(b− 1) · · · (b− k + 1)
(3)

whenever a1, . . . , ak and x1, . . . , xk are both lists of k distinct elements from Zb.

When π has k-fold uniformity, the random vector (π(0), . . . , π(b−1)) ∈ Zbb has k
dimensional margins matching those of uniform random permutations. It is easy to
see that (b−1)-fold uniformity implies b-fold uniformity, which in turn is equivalent
to uniformity. The definition of k-fold uniformity is equivalent to π(a1), . . . , π(ak)
being a simple random sample (without replacement) from Zb whenever a1, . . . , ak

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



Variance and discrepancy with alternative scramblings · 5

are distinct elements of Zb. See Cochran [1977] for background on simple random
sampling.

Conditions (1) and (2) were used by Hickernell [1996a]. Matousek [1998b] shows
that linear random permutations satisfy them, as do generalized linear random
permutations. Digital shifts and generalized digital shifts have single-fold unifor-
mity (1). When b = 2 there are only 2 permutations, π(a) = a and π(a) = 1 − a.
Then uniform, generalized linear and generalized digital shift permutations coin-
cide. When b = 3 then (generalized) linear permutations have 3-fold uniformity.

Multiplicative permutations such as π(a) = ha mod b for prime b and h uni-
formly distributed on nonzero values, do not satisfy (1). For instance π(0) = 0
with probability 1 under multiplicative permutation. Similarly the random permu-
tation that has π(a) = a or π(a) = b − 1 − a each with probability 1/2 does not
satisfy (1) when b > 2.

2.2 Random scrambles

A scramble is a method of randomizing the digits ak in the base b expansion of
a ∈ [0, 1). A scramble applies random permutations which may be of the various
types described above.

Definition 2.6. In a nested scramble x1 = π•(ak), and xk = π•a1a2...ak−1(ak), for
k ≥ 2 for independent random permutations π• and π•a1a2...ak−1(ak) for k ≥ 2 and
a1, . . . , ak−1 ∈ Zb.

Nested scrambling uses bk−1 permutations to randomize the k’th digit. Useful
scrambles can be constructed with many fewer permutations. One proposal is to
use a single permutation xk = πk(ak) at the k’th position in the base b expansion
of a.

Definition 2.7. In a positional scramble xk = πk(ak), where πk for k ≥ 1 are
independent random permutations.

The nomenclature for scrambling strategies is not standardized. To distinguish
between alternatives to nesting and alternatives to uniformity, we suggest the names
positional uniform, nested linear, and positional linear to describe some of the al-
ternatives to nested uniform scrambling. The first term describes the scrambling
framework and the second describes the type of permutations used in that frame-
work. Positional linear scrambling corresponds to one proposal in Hickernell and
Yue [2000]. There are also positional and nested digital shifts.

Matousek [1998b] proposed random linear scrambling that for prime b can be
written

xk =
k∑
j=1

Mkjaj + Ck, (4)

where Mkj and Ck are elements of Zb. We’ll adopt a convention that elements
Mkj and Ck are independent and uniformly distributed over their ranges, unless
otherwise specified. One version has Ck = 0 and another has Ck ∈ Zb. Choosing
Ck ∈ Zb versus Ck = 0 has the effect of applying a positional digital shift scramble.

Matousek took Mkk ∈ Z+
b and Mjk ∈ Zb for 0 < j < k. Matousek’s scrambling

can be represented by a lower triangular matrix M . The structure of the scrambling
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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can be described by the structure of the matrix M . We use the term matrix
scrambling to describe Matousek’s random linear scrambling as well as some other
scrambles. In linear matrix scrambling Ck = 0 while for affine matrix scrambling
Ck is a random element of Zb.

Matousek [1998b; 1998a] takes the generalized Faure construction of Tezuka
[1995] as a starting point for his linear scrambles, and remarks that the affine
version might have some additional value. Generalized Faure sequences have digits
obtained by multiplying the generator matrices of the Faure [1982] nets on the left
by some invertible matrices. Faure and Tezuka [2002a] describe a randomization
obtained by multiplying the generator matrices on the right. Such randomizations
reorder the integration points. Hong and Hickernell [2000] discuss and implement
both types of randomization. ?] consider left and right versions of i-binomial
scrambling.

Definition 2.8. A linear matrix scramble of a =
∑∞
k=1 akb

−k takes the form
a → x =

∑∞
k=1 xkb

−k, where each xk is given by (4), for random elements Mkj

with Ck = 0. An affine matrix scramble of a =
∑∞
k=1 akb

−k takes the form a →
x =

∑∞
k=1 xkb

−k, where each xk is given by (4), for random elements Mkj with Ck
uniformly distributed in Zb independently of each other and independent of Mkj .

As k increases for fixed b, matrix scrambling requires O(k2) storage to permute k
digits compared to O(k) for positional scrambling and O(bk) for nested scrambling.
Tezuka’s [2002] i-binomial scrambling described below reduces the storage to O(k).

The permutation applied to ak is a linear one with h = Mkk and g = Ck +∑k−1
j=1 Mkjaj . As in nested scrambling the permutation applied to ak depends on

the digits a1, . . . , ak−1. We will consider some linear matrix scrambles where the
matrix has a distribution different from that proposed by Matousek [1998b]. A
matrix element uniformly distributed on Zb−{0} is represented by the letter h, an
element that is uniformly distributed on Zb is represented by a g, and one that must
be zero is denoted 0. Elements that are constrained to be equal to each other have
the same indices, otherwise all elements are independent. Scrambling by matrices

h11 0 0 0 · · ·
g21 h22 0 0 · · ·
g31 g32 h33 0 · · ·
g41 g41 g43 h44 · · ·
...

...
...

...
. . .

 ,


h1 0 0 0 · · ·
g2 h1 0 0 · · ·
g3 g2 h1 0 · · ·
g4 g3 g2 h1 · · ·
...

. . . . . . . . . . . .

 , and,


h1 0 0 0 · · ·
h1 h2 0 0 · · ·
h1 h2 h3 0 · · ·
h1 h2 h3 h4 · · ·
...

...
...

...
. . .

 (5)

corresponds respectively, to Matousek’s random linear scrambling (4), Tezuka’s
[2002] i-binomial scrambling, and a new matrix scramble proposed here. The third
matrix has constant vertical stripes below the diagonal, and is called striped matrix
scrambling below. Notice that for b = 2 striped matrix and i-binomial scrambling
both have 1’s on the diagonal, but they differ because i-binomial scrambling allows
0’s below the diagonal. Faure [2001] considered discrepancy of generalized Faure
sequences in which the generators are premultiplied by a lower triangular matrix
with ones on and below the diagonal.

In all these examples the diagonal has nonzero elements. It is important for
the upper m by m submatrix of M to be invertible, for otherwise two distinct
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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digit m-tuples (a1, . . . , am) and (a′1, . . . , a
′
m) can both give the same output digits

(x1, . . . , xm).
It is clear that matrix scrambles can be generalized to prime power bases b,

using bijections and finite field arithmetic. The details are straightforward and are
omitted.

The structure of matrix scrambling can be mimicked, using a matrix of uniform
random permutations, replacing addition by composition. For 1 ≤ j ≤ k < ∞ let
πjk be a uniformly distributed random permutation. A uniform matrix scramble
has

xk = πkk
(
πk k−1

(
· · ·
(
πk1(ak)

)))
.

A closer analogue to linear matrix scrambling would require that the digits aj for
j < k play a role in πkj . An example is

xk = πkk
(
ak + πk k−1

(
ak−1 + πk k−2

(
ak−2 + · · ·πk1

(
a1

))))
,

with addition interpreted modulo b.

3. VARIANCE AND DISCREPANCY EFFECTS

The primary application of scrambled nets is as an alternative to crude Monte Carlo
for integration problems. First we note that the expected value of Î remains I when
crude Monte Carlo is replaced by various scrambles of digital nets.

Proposition 3.1. For a ∈ [0, 1) let x be the scrambled version of a in base
b, under affine matrix scrambling, or under nested or positional scrambling with
permutations that satisfy (1). Assume that all of the permutations employed in
scrambling a are independent. Then x ∼ U [0, 1).

Proof: Write a =
∑∞
k=1 akb

−k. Under positional scrambling all of the xk = πk(ak)
are independent and by (1) uniformly distributed on {0, 1, . . . , b − 1}. Therefore
xk ∼ U [0, 1) under positional scrambling. The result is proved for nested scrambles
in Owen [1995]. The result follows for affine matrix scrambling because it is a linear
matrix scramble followed by a positional digital shift. 2

Proposition 3.1 applies to an individual point a ∈ [0, 1), and so it applies to
a ∈ [0, 1)d when independent scrambles are applied to each coordinate. Thus all
points ai in a scrambled quadrature rule are uniformly distributed in [0, 1)d under
the scramblings in Proposition 3.1. Unbiasedness under these scrambling rules does
not require that the ai are points of a net.

Remark 3.2. Unlike affine matrix scrambling, linear matrix scrambling does not
necessarily give a uniform distribution for x. For example x1 equals M11a1, and
therefore x1 = 0 if and only if a1 = 0, in the usual setting where M11 6= 0. Thus x
cannot have the U [0, 1) distribution. The estimate Î may still be unbiased if n is
a multiple of b. But, because affine matrix scrambling is unbiased and requires so
little extra time and space compared to linear matrix scrambling, we prefer affine
matrix scrambling to linear matrix scrambling.

Variance and discrepancy provide ways of quantifying the quality of alternative
unbiased scrambling schemes. For the scrambling schemes here with E(Î) = I, the

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.



8 · Art B. Owen

variance of Î is

E((Î − I)2) =
1
n2

n−1∑
i=0

n−1∑
i′=0

E
(

(f(xi)− I)(f(xi′)− I)
)
. (6)

While variance is specific to an integrand f , discrepancy measures can describe
integration error over a large class of integrands. Discrepancy bounds take the form
|Î − I| ≤ D(x0, . . . , xn−1)‖f‖ where D is a discrepancy, and ‖f‖ is a compatible
norm or semi-norm on functions. The Zaremba bound [Zaremba 1968] and the
Koksma-Hlawka bound [Hlawka 1961] are two well known examples. These have
been generalized and extended in a series of papers by Fred Hickernell [1996b; 1997;
1998].

The squared L2 discrepancy, D∗22 = D∗22 (x0, . . . , xn−1) is

D∗22 =
(4

3

)d
− 2
n

n−1∑
i=0

d∏
j=1

3− x2
ij

2
+

1
n2

n−1∑
i=0

n−1∑
i′=0

d∏
j=1

(
2−max(xij , xi′j)

)
. (7)

The expectation of (7) over random xi is the mean squared L2 discrepancy, studied
in Hickernell [1996a] and Matousek [1998b]. The Zaremba bound uses D∗2 .

Both the mean square discrepancy and the variance depend on the joint distribu-
tion of x0, . . . , xn−1 only through pairwise joint distributions of xi and xi′ . Many
alternative scrambling schemes have been shown to leave the expected value of (7)
unchanged [Hickernell 1996b; Matousek 1998b].

3.1 Example

We show by an example that the variance (6) can change if nested scrambling is
replaced by positional scrambling or by certain matrix scrambles. The example
uses a scrambled (0,m, 1)–net in base 2, described below in concrete terms. For
now we note that such a scrambled (0,m, 1)–net consists of 2m points, of which
each interval [i2−m, (i+ 1)2−m) for integer 0 ≤ i < 2m contains exactly one point.
That point is uniformly distributed in the interval. Where the scrambling methods
differ is in the joint distribution of pairs of points.

We study the scrambling variance with a scrambled version of the van der Corput
[1935a; 1935b] points in [0, 1). Write the integer i ≥ 0 in base 2 as i =

∑∞
k=1 aik2k−1

for digits aik ∈ {0, 1} of which only finitely many are nonzero for each i. The i’th
van der Corput point is ai =

∑∞
k=1 aik2−k.

There are only two permutations of {0, 1}, the identity permutation a → a
and a → 1 − a. Thus for b = 2, the uniform, linear, and digital shift permu-
tations coincide. We compare scrambling strategies using the integrand f(x) =
x =

∑∞
k=1 xk2−k. Trivially I = 1/2 and ordinary Monte Carlo sampling has

V (Î) = 1/(12n).
Nested uniform scrambling of n = 2m points of the van der Corput sequence is

known [Owen 1997b] to be equivalent to stratified sampling in which one point is
chosen uniformly and independently from within each of n intervals [i/n, (i+ 1)/n)
for i = 0, . . . , n− 1. Accordingly V (Î) = 1/(12n3) for nested scrambling of 2m van
der Corput points with f(x) = x.

Now suppose that positional scrambling is used. Then xi =
∑∞
k=1 πk(aik)2−k

ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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(i)2 ai zi xi
0 0.0000̇ 0◦0000̇ 0.g1g2g3g4 · · ·
1 0.1000̇ 0◦1111̇ 0.ḡ1ḡ2ḡ3ḡ4 · · ·

10 0.0100̇ 0◦0111̇ 0.g1ḡ2ḡ3ḡ4 · · ·
11 0.1100̇ 0◦1000̇ 0.ḡ1g2g3g4 · · ·

100 0.0010̇ 0◦0011̇ 0.g1g2ḡ3ḡ4 · · ·
101 0.1010̇ 0◦1100̇ 0.ḡ1ḡ2g3g4 · · ·
110 0.0110̇ 0◦0100̇ 0.g1ḡ2g3g4 · · ·
111 0.1110̇ 0◦1011̇ 0.ḡ1g2ḡ3ḡ4 · · ·

...
...

...
...

Table I. This table shows the results of affine striped matrix scrambling of the van der Corput
sequence. The first column has i running from 0 to 7 in base 2. The second column shows the van

der Corput points obtained by reflecting the digits of i about the base 2 point. The third column
shows cumulative sums of digits of ai modulo 2. The open decimal point is a reminder that zi is

written in a formal representation of the points, in which, for example, 0◦01̇ is distinct from 0◦10̇.
The fourth column shows the scrambled points xi.

and Î becomes

1
n

n−1∑
i=0

∞∑
k=1

πk(aik)2−k =
1
n

m−1∑
k=1

[
πk(0) + πk(1)

]
2−k+m−1 +

∞∑
k=m

πk(0)2−k

=
1
2

(
1− 21−m

)
+
∞∑
k=m

πk(0)2−k.

Elementary arguments then give that E(Î) = I = 1/2 and

V (Î) =
1
4

∞∑
k=m

4−k =
1

12n2
.

Nested scrambling yields V (Î) = 1/(12n3) in this example, so positional scrambling
has adversely affected the asymptotic rate of variance. In this instance positional
scrambling is equivalent to a randomized shifted lattice rule [Cranley and Patterson
1976] in which xi = i/n+U mod 1 where U ∼ U [0, 1) and z mod 1 means z−bzc.

Next consider affine striped matrix (ASM) scrambling corresponding to the third
matrix pattern in (5). There is only one nonzero element in {0, 1} and so Mkj = 1
for 1 ≤ j ≤ k <∞. Each Ck is 0 or 1 independently with probability 1/2. We take
the digit sequence ai = 0.ai1ai2ai3 · · · in base 2 and apply first the Mkj producing
zi with formal digits zik =

∑k
j=1 aij mod 2. The digits of zi are cumulative sums of

those of ai and because every ai ends in an infinite sequence of zeros, every zi ends in
an infinite sequence of either zeros or ones, depending on what the cumulative sum
was when the tail of zeros began. Finally xi =

∑∞
k=1 xik2−k where xik = zik + gk

mod 2 with gk = Ck.
Table I illustrates ASM scrambling of van der Corput sequence. The table shows,

and it is easy to prove directly, that x2` + x2`+1 = 1 for ` ≥ 0. It follows that if n
is even then ASM scrambling of the van der Corput sequence takes observations in
antithetic pairs and so V (Î) = 0 for f(x) = x or any other f with f(x)+f(1−x) =
2I. To summarize:
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Proposition 3.3. Let f(x) = x on [0, 1) and put n = 2m for an integer m ≥ 1.
Let a0, . . . , an−1 be the first n points of the van der Corput sequence, suppose that
xi is a base b scrambled version of ai, and let Î = (1/n)

∑n−1
i=0 f(xi). Then

V (Î) =


1

12n3 for nested scrambling
1

12n2 for positional scrambling
0 for affine striped matrix scrambling

Proof: The first three results follow from the preceeding discussion. If m = 0
then all three methods have variance 1/12. The result for ASM scrambling extends
to any even n. 2

3.2 Local antithetic property

The previous example shows that the variance differs according to the type of
scrambling used. The function f(x) = x from that example is clearly special. But
some superiority of ASM scrambling of the van der Corput sequence extends to
more general functions on [0, 1).

The scrambled points are more than just antithetic with respect to the interval
[0, 1). The n/2 points in [0, 1/2) are arranged in pairs centered on 1/4 and the
n/2 points in [1/2, 1) are arranged in pairs centered on 3/4. More generally the
n/2m̄ points in the interval [i2−m̄, (i+ 1)2−m̄) for 0 ≤ i < 2m̄ and 0 ≤ m̄ < m are
arranged in pairs centered on the point (i+ 1/2)2−m̄.

For i = 0, . . . , 2m−1 − 1 the points xi and xi+2m−1 are antithetic complements
in a subinterval of width 2−m+1. We refer to this as a local antithetic property.
Local antithetic sampling was studied by Haber [1967]. ASM scrambled points are
locally and globally antithetic.

All the randomness in ASM scrambling of the van der Corput sequence is con-
tained in the Mk0 which are the digits of x0. Accordingly the whole sequence can
be simulated to K bits of accuracy using just K random bits, and various reflec-
tions to produce xi from x0. Such extreme multiple use of a single random value
x0 complicate expressions for the variance of Î, but for integrands with bounded
second derivatives we can get an upper bound on the variance. We use a Lemma
from De Boor[1978] on piecewise linear interpolation:

Lemma 3.4. Let f(x) be a function with sup 0≤x≤1 |f ′′(x)| ≤ B < ∞ on [0, 1).
Let 0 = t0 < t1 < · · · < tJ = 1 and set ∆ = max0≤j<J tj+1 − tj. Let f̃(x) be the
unique continuous function, linear over [tj , tj+1] for 0 ≤ j < J , with f̃(tj) = f(tj)
for 0 ≤ j ≤ J . Then

sup
0≤x≤1

|f(x)− f̃(x)| ≤ B∆2

8
, (8)

and when tj = j/J , then sup0≤x≤1 |f(x)− f̃(x)| ≤ B/(8J2).

Proof: Equation (8) is obtained from Chapter III (equation (2)) of De Boor [1978].
The second conclusion follows because ∆ = 1/J for the J + 1 equispaced points. 2
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Proposition 3.5. Suppose that sup0≤x≤1 |f ′′(x)| ≤ B <∞ on [0, 1). Then for
n = 2m where m ≥ 1,

V (Î) ≤ B2

n4
= O(n−4)

under ASM matrix scrambling in base 2 of the first n points of the van der Corput
sequence.

Proof: Assume that m ≥ 1, so n ≥ 2. Let f̃m−1(x) be a piecewise linear function
that interpolates f(x) at x = i/2m−1 for i = 0, 1, . . . , 2m−1. Then sup0≤x≤1 |f(x)−
f̃m−1(x)| ≤ B/(2n2) by Lemma 3.4 with J = n/2. The function f̃m−1 is integrated
without error by ASM matrix scrambling because of the local antithetic property.
Now

|Î − I| ≤
∣∣∣∣ 1n

n−1∑
i=0

f̃m−1(x)−
∫

[0,1)

f̃m−1(x)dx
∣∣∣∣

+
∣∣∣∣ 1n

n−1∑
i=0

(
f̃m−1(x)− f(x)

)
−
∫

[0,1)

f̃m−1(x)− f(x)dx
∣∣∣∣

≤ B/n2.

Finally V (Î) = E((Î − I)2) ≤ B2n−4 = O(n−4). 2

The proof of Proposition 3.5 applies to any unbiased locally antithetic method.
Local antithetic sampling applied independently within each of n/2 strata attains
a variance that is O(n−5) in this case as shown in Haber [1967]. Proposition 3.5
would still be true if the variance were o(n−4), but simple numerical experiments
with f(x) = x2 on [0, 1) show that the rate is no better than n−4. Independent local
stratification yields a beneficial error cancellation not seen in ASM scrambling.

While the variance of ASM scrambling is complicated, one generally useful tech-
nique is to analyze it in two steps, the first generating the Mkj and producing a
formal base b expansion, and the second generating Ck conditionally on Mkj .

Proposition 3.6. Let a0, . . . , an−1 ∈ [0, 1)d. Suppose that the d components of
the ai are scrambled independently using affine matrix scrambling. Then V (Î) =
E(V (Î |M)).

Proof: We may write V (Î) = E(V (Î | M)) + V (E(Î | M)). The inner means
and variances are with respect to Ck with Mkj fixed for 0 < j ≤ k, while the outer
ones are with respect to Mkj . Given Mkj adding Ck introduces a positional digital
shift scramble satisfying (1). Therefore E(Î | M) = I by Proposition 3.1 and so
V (E(Î |M)) = 0. 2

Using Proposition 3.6 and a notion in which b ≥ 2 points can be locally antithetic,
it is possible to extend Proposition 3.5 to radical inverse schemes in integer bases
b ≥ 2. To define the radical inverse points let i =

∑∞
k=1 aikb

k−1 where aik ∈ Zb,
and put ai =

∑∞
k=1 aikb

−k.

Proposition 3.7. Suppose that sup0≤x≤1 |f ′′(x)| ≤ B < ∞ on [0, 1). Let b be
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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a prime number and let n = bm for m ≥ 1. Then

V (Î) ≤ B2b4

16n4
= O(n−4)

under ASM scrambling in base b of the first n points of the radical inverse sequence
in base b.

Proof: We will show that conditionally on the values of Mkj for 1 ≤ j ≤ k <∞,
the scrambled points integrate without error a piecewise linear continuous interpo-
lation of f at bm−1 + 1 points tb−m+1 for 0 ≤ t ≤ bm−1. Then from Lemma 3.4
we can conclude that |f̃ − f | is uniformly smaller than B/(8b2m−2) = Bb2/(8n2).
Then |Î − I| ≤ Bb2/(4n2), so V (Î | M) ≤ B2b4/(16n4), and the result will follow
by Proposition 3.6.

Let Z be the infinite matrix with elements

zik =
k∑
j=1

Mkjaij =
k∑
j=1

hjaij (mod b)

for indices i ≥ 0 and k ≥ 1 and independent hj uniformly distributed on Z+
b .

Because Mkk = hk 6= 0 the upper left m by m submatrix of M is invertible. Thus
the upper left bm by m submatrix of Z contains each of the bm points of Zbm exactly
once. Because aik = 0 for k > m and i < bm it follows that zik = zim for k > m
and i < bm. Thus every row i < bm of Z has an infinite tail of repeated values,
from element m onwards.

Each distinct m − 1 tuple in Zbm−1 appears exactly b times as the first m − 1
rows of Z. Among every such set of b rows there is one row with an infinite tail of
0’s, one with an infinite tail of 1’s, and, · · · one with an infinite tail of b− 1’s.

Let X be the infinite matrix with xik = zik + gk mod b where gk = Ck are
independent uniform random elements of Zb. Each distinct m − 1 tuple in Zbm−1

appears exactly b times as the first m− 1 rows of X.
It happens with probability one that gk for k ≥ m are not all equal to a common

value. Because we are working out the variance of a bounded function we can
simply assume that the gk for k ≥ m are not all equal. Then for each non-negative
integer t < bm−1 the interval [tb−m+1, (t + 1)b−m+1) contains exactly b of the
points xi =

∑∞
k=1 xikb

−k for 0 ≤ i < bm. Let It be the set of indices i < bm−1 with
bbm−1xic = t. For each c ∈ Zb there is one i ∈ It such that xik = c+ gk mod b for
k ≥ m.

The average value of xi for i ∈ It is

tb−m+1 +
∞∑
k=m

b−k
(

1
b

b−1∑
c=0

c

)
= tb−m+1 +

(
b−m

1− b−1

)(
b− 1

2

)
=
(
t+

1
2

)
b−m+1.

It follows that a piece-wise linear function, continuous on [b−m+1t, b−m+1(t + 1)),
for t ∈ Zbm−1 is integrated without error by averaging over xi for i ∈ Zbm . 2

Scrambling schemes may be applied very generally without assuming that ai are
a net. This example shows that even in the special case of a scrambled (0,m, s)-net,
positional, ASM, and nested scrambling are not variance equivalent, even to the
extent of having different rates of convergence.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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3.3 Worst case comparisons

The three methods of scrambling the van der Corput sequence differ in their worst
case performance relative to crude Monte Carlo. Let σ2 =

∫
[0,1)

(f(x) − I)2dx be

the variance of f . In Monte Carlo sampling V (Î) = σ2/n. For nested scrambling
of the van der Corput sequence and n = 2m it is known [Owen 1997a] that V (Î) ≤
σ2/n. For positional or ASM scrambling we can construct a function (depending
on m) for which f(xi) is constant in i with probability 1 leading to V (Î) = σ2.
Such unfavorable functions for positional scrambling are periodic with period 1/n.
Unfavorable functions for ASM scrambling are periodic with period 2/n and are
symmetric about 1/n within the interval [0, 2/n).

3.4 Discrepancy

To see why the scrambling strategies from Section 3.1 don’t affect mean squared
L2 discrepancy, note that for d = 1 formula (7) reduces to

D∗22 =
4
3
− 1
n

n−1∑
i=0

(
3− x2

i

)
+

1
n2

n−1∑
i=0

n−1∑
i′=0

(
2−max(xi, xi′)

)
. (9)

The expected value of x2
i is common to all scrambling methods because in all cases

xi has the U [0, 1) distribution.
The double sum in (9) appears to depend on pairs of xi but the dependence is not

essential. For each 0 ≤ i < n, there is exactly one xi′ in [i/n, (i+1)/n). Suppose the
xi are written in increasing order x(0) ≤ x(1) ≤ · · · ≤ x(n−1). Then x(i) = (i+Ui)/n
where the Ui are uniformly distributed on [0, 1) but are not necessarily independent.
Then

n−1∑
i=0

n−1∑
i′=0

max(xi, xi′) =
n−1∑
i=0

n−1∑
i′=0

max(x(i), x(i′))

=
1
n

n−1∑
i=0

n−1∑
i′=0

max(i+ Ui, i
′ + Ui′)

=
1
n

n−1∑
i=0

(i+ 1)(i+ Ui),

which has an expectation unaffected by the joint behavior of the Ui. Dependence
among the Ui does not play a role because the points x(i) cannot cross each other
no matter what values the Ui take.

3.5 Discussion

If we follow through the development in Owen [1997a] of the variance under nested
uniform scrambling, we find that one argument in Lemma 4 can fail to hold if
nested scrambling is replaced by another scrambling, such as positional or ASM
scrambling. The issue that arises for non-nested scramblings is that the k’th digits
of ai and ai′ can get a statistically dependent permutation even if one or more of the
j’th digits of ai and ai′ differ for 1 ≤ j < k. With nested scrambling these digits are
randomized independently. For example any nested scrambling with permutations
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that satisfy one and two-fold uniformity, (1) and (2), has the same variance as
nested uniform scrambling. In particular, nested random linear scrambling has the
same variance as nested uniform scrambling.

A quadrature rule with small discrepancy has a correspondingly small error for
a large class of integrands. In a sequence of such rules indexed by the number
n of points, the relative error bound holds even if a different function fn is cho-
sen for each rule. Hickernell [1996a] shows that the mean squared L2 discrep-
ancy for scrambled (0,m, d)–nets (and some alternatives scramblings) decreases as
O(n−2(log n)d−1). As a consequence positional scrambling should yield errors that
are Op(n−1(log n)(d−1)/2).

Under mild smoothness conditions on f , the variance of nested scrambled net
quadrature decreases as O(n−3(log n)d−1), corresponding to RMS errors that are
O(n−3/2(log n)(d−1)/2). Hickernell [1996a] explains the better rate as a consequence
of having an integrand that does not change with n.

The rate at which V (Î) converges to zero for nested uniform scrambling depends
on the decay rate of coefficients in an expansion of f into products of base b Haar-like
functions. Rates of this type apply equally to nested uniform and nested pair-wise
uniform scrambling. The variance rate O(n−3(log n)d−1) has been obtained under
varying assumptions on f and the scrambled quadrature rule, in Owen [1997b],
Owen [1998b] and Yue and Hickernell [2002].

4. CONCLUSIONS

Scrambling techniques vary greatly in the costs of storage and execution. The
mean squared discrepancy is common for a great many scrambling techniques. But
integration variance can be strongly affected by the scrambling method. Positional
scrambling can greatly increase variance over that of nested scrambling while ASM
scrambling can greatly reduce it. Even the rate of convergence for variance can be
changed by scrambling methods that leave the discrepancy unchanged.

Haber [1966] shows that stratified sampling of [0, 1)d with congruent cubical
strata, has variance O(n−1−2/d) which deterioriates with dimension. In one dimen-
sion, nested scrambling generalizes stratified sampling and has variance O(n−3) for
smooth f . Nested scrambling in d dimensions attains a variance ofO(n−3(log n)d−1)
in which the dimension effect is less than for stratification. For d = 1 ASM scram-
bling of radical inverse sequences has a local antithetic property that leads to a
variance that is O(n−4). It is remains to be seen how ASM scrambling compares
to other methods for d > 1.

Haber [1967] shows that for d ≥ 1 local antithetic sampling (within congruent
subcubes) attains a variance that is O(n−1−4/d) for f with uniformly bounded
second derivatives. There remains the possibility of incorporating additional ran-
domness into ASM scrambling to preserve its good properties while getting an
additional error cancellation like that attained by local antithetic sampling.

Schemes that replace uniformity by pairwise uniformity can leave discrepancies
and variances unchanged, but they would be expected to change third and higher
moments. Accordingly a central limit theorem like the one of Loh [2002] for nested
scrambling might not hold for ASM or other alternative scrambling methods.

Finally, it takes only a small number of random digits to implement ASM scram-
ACM Transactions on Computational Logic, Vol. V, No. N, November 2002.
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bling, and it emerges that for unfavorable integrands ASM scrambling of nets can be
worse than ordinary Monte Carlo sampling. It remains to be seen whether schemes
that consume a small number of random digits must necessarily have bad worst
case performance.
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