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Ilya Meerovich Sobol’

At MCM 2001, Salzburg

Known for Sobol’ sequences

and Sobol’ indices

Every time I read one of his papers,

I wish I’d read it earlier
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Simplified Saint-Venant flood model
Overflow in meters (Lamboni, Iooss, Popelin, Gamboa, 2012) at a dyke

S = Zv +H −Hd − Cb, where

H =

(
Q

BKs

√
(Zm − Zv)/L

)3/5

(max annual river height)

Q Maximal annual flow m3/s Gumbel(1013, 558) ∩ [500, 3000]

Ks Strickler coefficient m1/3/s N (30, 8) ∩ [15,∞)

Zv River downstream level m Triangle(49, 50, 51)

Zm River upstream level m Triangle(54, 55, 56)

Hd Dyke height m U[7, 9]

Cb Bank level m Triangle(55, 55.5, 56)

L Length of river stretch m Triangle(4990, 5000, 5010)

B River width m Triangle(295, 300, 305)

Reduced from a Navier-Stokes model
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The cost model

Cp = 1S>0m (flood cost)

+ 1S60m(0.2 + 0.8(1− e−1000m
4/S4

)) (dyke maintenance)

+ 0.05 min(Hdm
−1, 8) (investment cost, from construction)

in millions of Euros

Quibble

A discontinuity at S = 0 would be better.
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Variable importance
Which of these variables is most important?

How important is any given subset of variables taken together?

How should one define/measure variable importance?

Similar problems come up in black box models for

• aerospace,

• semiconductor manufacturing,

• climate modeling, etc.
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Why do they care?
The ultimate goal may be to optimize something (a mean or variance or max or min) by choosing

levels for those variables under your control.

Understanding a function is an intermediate goal, not an ultimate goal.

Yet · · · variable importance is widely applied.

Similar question

Why compute R2?

Sobol’ indices yield many analogues of R2.

Quantitative measures of importance aid discussions.
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Quasi-Monte Carlo
QMC sometimes gives accurate estimates for high dimensional integrals.

Despite the curse of dimensionality.∗

When it happens, we usually find that the integrand was dominated by low order interactions

among the variables.

That understanding motivates trying to lower the ’effective dimension’ of our integrands.

(Analogous to variance reduction.)

∗ which never actually said that all high dim problems are insoluble.
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ANOVA
Fisher (1923) to Hoeffding (1948) to Sobol’ (1967) to Efron & Stein (1981)

then back to Sobol’ (1990/3)

Recall

Xij = X̄•• + (X̄i• − X̄••) + (X̄•j − X̄••) + (Xij − X̄i• − X̄•j + X̄••)

Take a grand average X̄••
Subtract it out and average over j, getting X̄i• − X̄••
Similarly get X̄•j − X̄••

Generally: subtract away all lower order effects and average out the extra variables.
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Extensions of ANOVA
From functions on {1, 2, . . . , I} × {1, 2, . . . , J} to

{1, 2, . . . , I} × {1, 2, . . . , J} × · · · × {1, 2, . . . , Z}

To functions in L2[0, 1]d.

To L2 functions of d arbitrary independent inputs.

Also d =∞ works via martingales.
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ANOVA for L2[0, 1]d
Goes back to Hoeffding (1948) for U -statistics (skillful reading may be required)

& Efron & Stein (1981) for jackknife

f(x) = f()() +

d∑
j=1

f(j)(xj) +
∑
j<k

f(j,k)(xj , xk) + · · ·+ f(1,2,...,d)(x1, . . . , xd)

= f()() +
d∑
r=1

∑
16j1<j2<···<jr6d

f(j1,j2,...,jd)(xj1 , xj2 , . . . , xjd)

More simply

f(x) =
∑
u

fu(x)

Sum over all u ⊆ D = {1, 2, . . . , d}
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Notation
For u ⊆ D ≡ {1, . . . , d}

|u| = card(u)

−u = uc = {1, 2, . . . , d} − u

v ⊂ u strict subset i.e. (

If u = {j1, j2, . . . , j|u|} then xu = (xj1 , . . . , xj|u|) and dxu =
∏
j∈u dxj
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Recursive definition
For u ⊆ {1, . . . , d}, fu(x) only depends on xj for j ∈ u.

Overall mean µ ≡ f∅(x) =

∫
f(x) dx

Main effect j f{j}(x) =

∫ (
f(x)− f∅(x)

)
dx−{j}

Interaction u fu(x) =

∫ (
f(x)−

∑
v⊂u

fv(x)
)

dx−u

=

∫
f(x) dx−u −

∑
v⊂u

fv(x)

Dependence

fu(x) is a function of x that happens to only depend on xu
fu(x) + fv(x) makes sense because they’re on the same domain
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ANOVA properties

j ∈ u =⇒
∫ 1

0

fu(x) dxj = 0

u 6= v =⇒
∫
fu(x)fv(x) dx = 0

&

∫
fu(x)gv(x) dx = 0

Variances

Var(f) ≡
∫

(f(x)− µ)2 dx =
∑

u⊆{1,...,d}

σ2
u

σ2
u = σ2

u(f) =


∫
fu(x)2 dx u 6= ∅

0 u = ∅.
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Sobol’s decomposition
Let φ0, φ1, φ2 . . . be a complete orthonormal basis of L2[0, 1] with φ0(x) ≡ 1.

Sobol’ (1969) expanded f(x) in a tensor product basis (Haar wavelets).

He grouped the terms into 2d subsets depending on which inputs are ’active’.

Sobol’ has a synthesis not an analysis for this decomposition.

Thanks to A. Chouldechova for translation.
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Variable importance
How important is xu?

Larger σ2
u means that fu(x) contributes more.

We also want to count σ2
v for v ⊂ u.

Sobol’s importance measures

τ2u =
∑
v⊆u

σ2
v v contained in u

τ2u =
∑

v∩u 6=∅
σ2
v v touches u, so interactions count

Identity: τ2u = σ2 − τ2−u

Normalized versions:
τ2u
σ2

and
τ2u
σ2
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More derived importance measures
Superset importance

Υ2
u =

∑
v⊇u

σ2
v Liu & O (2006)

Small Υ2
u means deleting fu and fv for v ⊇ u (to stay hierarchical) makes little difference.

Relevant to Hooker (2004)’s simplifications of black box functions.

Mean dimension

∑
u⊆D

σ2
u

σ2
× |u|

Measures ’dimensionality’ of f . Liu & O (2006)

Higher dimensionality makes for harder numerical handling.

Many quadrature problems have mean dimension near 1
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Estimation of τ2u and τ2u
Naive approach for τ2u:

1) Sample xi ∈ [0, 1]d and get yi = f(xi) for i = 1, . . . , n.

2) Statistical machine learning estimate f̂v(x) for all necessary v.

3) Put σ̂2
v =

∫
f̂u(x)2 dx, u 6= ∅.

4) Sum: τ̂2u =
∑
v⊆u σ̂

2
v .

This is expensive and has many biases.

Sobol’ has a much better way.
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Fixing methods
Evaluate f at two points:

repeat some components

independent draws for the others.

Hybrid points
For x, z ∈ [0, 1]d, y = xu :z−u means

yj =

xj , j ∈ u
zj , j 6∈ u.

We glue together part of x and part of z to form y = xu :z−u.

Sobol’ (1990/3) used the identities:

τ2u = Cov(f(x), f(xu :z−u))

τ2u =
1

2
E((f(x)− f(x−u :zu))2
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Identity for τ2u∫∫
f(x)f(xu :z−u) dx dz

=
∑
v⊆D

∫∫
fv(x)fv(xu :z−u) dx dz (orthogonality)

=
∑
v⊆u

∫∫
fv(x)fv(xu :z−u) dx dz (line integrals)

= µ2 +
∑
v⊆u

σ2
u

≡ µ2 + τ2u.

Bias adjustment

τ̂2u =
1

n

n∑
i=1

f(xi)f(xi,u :zi,−u)−
( 1

n

n∑
i=1

f(xi)
)2
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Even better
τ2u =

∫∫
f(x)

(
f(xu :z−u)− f(z)

)
dx dz

τ̂2u =
1

n

n∑
i=1

f(xi)
(
f(xi,u :zi,−u)− f(zi)

)
This avoids subtracting µ̂2. It is unbiased: E

(
τ̂2u) = τ2u

Kucherenko, Feil, Shah, Mauntz (2011), Mauntz (2002), Saltelli (2002)

Improved statistical efficiency

τ̂2u =
1

n

n∑
i=1

f(xi)f(xi,u :zi,−u)−
(

1

n

n∑
i=1

f(xi) + f(xi,u :zi,−u)

2

)2

Janon, Klein, Lagnoux, Nodet & Prieur (2012)

Efficient in a class of estimators · · · that does not include the unbiased one above.
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For τ2u
1

2

∫∫ (
f(x)− f(x−u :zu)

)2
dx dz

=
1

2

(
σ2 + µ2 − 2

(
τ2−u + µ2

)
+ σ2 + µ2

)
= σ2 − τ2−u
= τ2u.

Sobol’s estimates are like tomography: integrals reveal internal structure.
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τ2{j} for the flood model


τ2/σ2 Q Ks Zv Zm Hd Cb L B

Height H 0.72 0.29 0.0078 0.0077 0 0 7.4× 10−7 0.00021

Overflow S 0.35 0.14 0.19 0.0038 0.28 0.036 3.6× 10−7 0.00010

CostCp 0.48 0.25 0.23 0.0077 0.17 0.039 6.8× 10−7 0.00019


From n = 100,000 runs

Q Maximal annual flow m3/s Gumbel(1013, 558) ∩ [500, 3000]

Ks Strickler coefficient m1/3/s N (30, 8) ∩ [15,∞)

Zv River downstream level m Triangle(49, 50, 51)

Zm River upstream level m Triangle(54, 55, 56)

Hd Dyke height m U[7, 9]

Cb Bank level m Triangle(55, 55.5, 56)

L Length of river stretch m Triangle(4990, 5000, 5010)

B River width m Triangle(295, 300, 305)Stanford Statistics Dept Seminar
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For mean dimension

d∑
j=1

τ2j =
d∑
j=1

∑
v∩{j}6=∅

σ2
v

=
∑
v

σ2
v

d∑
j=1

1v∩{j}6=∅

=
∑
v

|v|σ2
v

Estimator from Liu & O (2006)

Generalizes to
∑
v

|v|kσ2
v for k > 1.
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Example
Kuo, Schwab, Sloan (2012) consider quadrature for

f(x) =
1

1 +
∑d
j=1 x

α
j /j!

, 0 < α 6 1.

For α = 1 and d = 500

R = 50 replicated estimates of
∑
v |v|σ2

v/σ
2 using n = 10,000

had mean 1.0052 and standard deviation 0.0058.

Upshot

f(x) is nearly additive, though it is hard to quantify near perfect additivity.

(The difficulty seems to be in forming the ratio.)
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For superset importance

Υ2
u ≡

∑
v⊇u

σ2
v =

1

2|u|

∫∫ (∑
v⊆u

(−1)|u−v|f(xv :z−v)
)2

dx dz

Mean of a square of differences · · · better than differences of means of squares.

From Liu & O (2006)

Generalizes τ2u formula from 2 terms to 2|u| terms.

As a design

Use n repeats of a 2|u| × 1d−|u| factorial randomly embedded in the unit cube.

Does best in comparisons by Fruth, Roustant, Kuhnt (2012)
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Generalized Sobol’ indices
What can be attained via fixing methods?

Θuv =

∫∫
f(xu :z−u)f(xv :z−v) dx dz

Generalized Sobol’ index∑
u⊆D

∑
v⊆D

ΩuvΘuv = tr(ΩTΘ)

Θ ∈ R2d×2d is the “Sobol’ matrix”. Ω ∈ R2d×2d has coefficients.

Redundant (but useful)
We have a 22d dimensional space of estimators · · ·

for a 2d dimensional space of estimands:

δ∅µ
2 +

∑
|u|>0

δuσ
2
u
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NXOR

XOR(u, v) = u ∪ v − u ∩ v (exclusive OR)

NXOR(u, v) = XOR(u, v)c = (u ∩ v)
⋃

(uc ∩ vc) (not exclusive OR)

Θuv ≡
∫∫

f(xu :z−u)f(xv :z−v) dx dz

= µ2 + τ2NXOR(u,v)

Θ̂uv =
1

n

n∑
i=1

f(xi,u :zi,−u)f(xi,v :zi,−v)

Use tr(ΩTΘ̂)

often written XNOR
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Special GSIs
1) Mean squares Ω = λλT∫∫ (∑

u

λuf(xu :z−u)
)2

dx dz Nonnegative

2) Bilinear (rank one) Ω = λγT∫∫ (∑
u

λuf(xu :z−u)
)(∑

v

γvf(xv :z−v)
)

dx dz Fast

3) Simple∫∫ (∑
u

λuf(xu :z−u)
)
f(z) dx dz Only uses one row/col of Θ

4) Contrast ∑
u

∑
v

Ωu,v = 0 Free of µ2

N.B.: Here a contrast can also be a sum of squares.
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Cost of a GSI
C(Ω) counts the # of function evaluations per (x, z) pair.

Recipe

1) Count the rows u that are needed for some f(xu :z−u)

2) add the columns (where u appears as the needed ’v’)

3) subtract any doubly counted subsets

We can have tr(ΩT
1 Θ) = tr(ΩT

2 Θ) but C(Ω1) < C(Ω2).
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Squares
For a square (or a sum of squares) tr(ΩTΘ̂) > 0.

Also E
(

tr(ΩTΘ̂)
)

= tr(ΩTΘ)

Therefore tr(ΩTΘ) = 0 implies Pr
(

tr(ΩTΘ̂) = 0
)

= 1.

GSIs with sum of squares estimators

τ2u and Υ2
u and

∑
u

|u|σ2
u

No sum of squares exists for τ 2
u when |u| < d

Can show that the coefficient of σ2
D =

∑
u λ

2
u

generally
∑
u Ωuu i.e., tr(Ω)

Same thing happens in ANOVA tables:

every variance component has a contribution from the measurement error.
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Targeting one variance component

σ2
{1,2,3} = τ2{1,2,3} − τ

2
{1,2} − τ

2
{1,3} − τ

2
{2,3} + τ2{1} + τ2{2} + τ2{3}

A simple (contrast) GSI

f(x)
∑

u⊆{1,2,3}

λuf(xu :z−u), λu = (−1)3−|u|

[ ∅ 1 2 3 12 13 23 123

λu −1 1 1 1 −1 −1 −1 1
]

Cost is 8 + 1 = 9 function evaluations.
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A bilinear GSI
For u, v ⊆ w ≡ {1, 2, 3}


NXOR(u,v+wc) ∅ 1 2 3 12 13 23 123

∅ 123 23 13 12 3 2 1 ∅

1 23 123 3 2 13 12 ∅ 1


Ω = λγT


∅ 1 2 3 12 13 23 123

λ 1 0 −1 −1 0 0 1 0

γ 1 −1 0 0 0 0 0 0


Coefficients of τ 2

u are in

[(123)− (13)− (12) + (1)] − [(23)− (3)− (2) + ∅]

Cost is 6. (no duplication)
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Simple vs. bilinear for d = 5

f(x)
(
f(x1, x2, x3, z4, z5)

− f(x1, x2, z3, z4, z5)− f(x1, z2, x3, z4, z5)− f(z1, x2, x3, z4, z5)

+ f(x1, z2, z3, z4, z5) + f(z1, x2, z3, z4, z5) + f(z1, z2, x3, z4, z5)

− f(z)
)

Versus

(
f(z)− f(x1, z2, z3, z4, z5)

)
×(

f(z1, z2, z3, x4, x5)− f(z1, x2, z3, x4, x5)− f(z1, z2, x3, x4, x5) + f(z1, x2, x3, x4, x5)
)

N.B. The bilinear version is invariant under f → f + c
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More generally
Simple estimator at cost 2|w| + 1|w|<d

σ2
w =

∑
u⊆w

(−1)|w−v|Θu,D

Bilinear for w1 ⊆ w and w2 = w − w1

σ2
w =

∑
u1⊆w1

∑
u2⊆w2

(−1)|u1|+|u2|Θu1,u2+wc

Bilinear cost is 2|w1| + 2|w2| ≈ 2|w|/2+1.

Cbilinear ≈ 2
√
Csimple
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Superset importance
Let w be a nonempty subset ofD for d > 1.

Let f ∈ L2[0, 1]d.

Choose w1 ⊆ w and put w2 = w − w1. Then

Υ2
w =

∑
u1⊆w1

∑
u2⊆w2

(−1)|u1|+|u2|Θwc+u1,wc+u2

compare σ2
w =

∑
u1⊆w1

∑
u2⊆w2

(−1)|u1|+|u2|Θu1,wc+u2 .

Lower cost than a square estimator but probably much higher variance.
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Bilinear, with O(d) evaluations
Suppose λu = 0 for |u| 6∈ {0, 1, d− 1, d}. Same for γv = 0.

Then the rule ∑
u

∑
v

λuγv

∫∫
f(xu :z−u)f(xv :z−v) dx dz

takes O(d) computation · · · not O(d2).
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O(d) pairs, with k 6= j
For j 6= k, let j represent {j} and−j represent−{j} etc.

All the XORs



XOR ∅ j k −j −k D

∅ ∅ j k −j −k D
j j ∅ {j, k} D −{j, k} −j
−j −j D −{j, k} ∅ {j, k} j

D D −j −k j k ∅


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All the NXORs



NXOR ∅ j k −j −k D

∅ D −j −k j k ∅

j −j D −{j, k} ∅ {j, k} j

−j j ∅ {j, k} D −{j, k} −j
D ∅ j k −j −k D


For |u| and |v| in {0, 1, d− 1, d}.

We can estimate the corresponding τ2NXOR(u,v) with O(d) cost per (x, z) pair.

Saltelli (2002) already noticed this (or at least most of it).
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What we can get
After some algebra we can get unbiased estimates of∑

u

|u|σ2
u

∑
|u|=1

σ2
u∑

u

|u|2σ2
u

∑
|u|=2

σ2
u

at cost 2d+ 2. (Some parts can be gotten at C = d+ 1)
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Initial and final segments
Suppose that x1, x2 · · · xd are used in that order. E.g. time steps in a Markov chain

First j variables

(0, j] ≡

{1, 2, . . . , j}, 1 6 j 6 d

∅, j = 0

Last d− j variables

(j, d] ≡

{j + 1, . . . , d}, 0 6 j 6 d− 1

∅ j = d

There are 2d+ 1 of these subsets.
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Enumeration



NXOR ∅ (0,j] (0,k] (j,d] (k,d] D

∅ D (j, d] (k, d] (0, j] (0, k] ∅

(0,j] (j, d] D −(j, k] ∅ (j, k] (0, j]

(j,d] (0, j] ∅ (j, k] D −(j, k] (j, d]

D ∅ (0, j] (0, k] (j, d] (k, d] D


WLOG j < k.

Stanford Statistics Dept Seminar



Generalized Sobol’ Indices 42

Effect of recent variables
First and last elements of u 6= ∅:

buc = min{j | j ∈ u}
due = max{j | j ∈ u}

Recency weighted variance components

d−1∑
j=1

(
ΘD,(j,d] −ΘD,∅

)
=
∑
u⊆D

(buc − 1)σ2
u, and,

d−1∑
j=1

(
ΘD,(0,j] −ΘD,∅

)
=
∑
u⊆D

(d− due)σ2
u.

Another measure of how fast f() forgets its initial conditions.

Weighting by buc(d− due+ 1) also possible.
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Test functions

f(x) =
d∏
j=1

(µj + τjgj(xj))∫
gj = 0

∫
g2j = 1 and

∫
g4j <∞.

σ2
u =

∏
j∈u

τ2j ×
∏
j 6∈u

µ2
j

g(x) =
√

12(x− 1/2)

Min function

f(x) = min
16j6d

xj

τ2u =
|u|

(d+ 1)2(2d− |u|+ 2)
Liu and O. (2006)
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σ2{1,2,3}
Product function =⇒ numerically same estimate for simple or bilinear.

Therefore bilinear is better because of lower cost.

For min(x) and d = 6 the bilinear estimator was about 5 times as efficient as the simple one

based on n = 1,000,000 (x, z) pairs.

Υ2
{1,2,3,4}

Product function with d = 8 and µj = 1 and τ = (4, 4, 3, 3, 2, 2, 1, 1)/4.

Square beats bilinear:

Measure Value R2 Square’s efficiency

Υ2
{1,2,3,4} 0.558 0.034 14.7

Υ2
{5,6,7,8} 0.0024 0.000147 2710.0

Hard to beat a sum of squares when the true effect is small.
Stanford Statistics Dept Seminar
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Lower index τ2u
No sum of squares is available.

Contrast
1

n

n∑
i=1

f(xi)(f(xi,u :zi,−u)− f(zi))

Simple estimator (bias adjusted)

1

n

n∑
i=1

f(xi)f(xi,u :zi,−u)−
(

1

2n

n∑
i=1

f(xi) + f(xi,u :zi,−u)

)2

The contrast has an advantage on small τ2u.

The simple estimator sometimes beats it on large ones.
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GSIs so far

Just use 2 inputs, x and z

What about 3?

x, y, z
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For small τ2u
Here it pays to use 3 vectors x,y,x ∈ [0, 1]d

1

n

n∑
i=1

f(xi)
(
f(xi,u :yi,−u)− f(y)

)
(Mauntz-Saltelli)

1

n

n∑
i=1

(
f(xi)− µ

)(
f(xi,u :yi,−u)− f(y)

)
(Oracle centered)

1

n

n∑
i=1

(
f(xi)− µ

)(
f(xi,u :yi,−u)− µ

)
(Double oracle)

1

n

n∑
i=1

(
f(xi)− f(zi,u :xi,−u)

)(
f(xi,u :yi,−u)− f(y)

)
(Use 3 vectors) (∗)

where (xi,yi, zi)
iid∼ U[0, 1]3d for i = 1, . . . , n.

Simulations: On small effects the new estimator beats both oracles.

Double oracle wins on large effects. Stanford Statistics Dept Seminar
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Conclusions
Sums of squares are very good.

Bilinear estimators λTΘ̂γ work well, especially when 1Tγ = 1Tλ = 0.

Further work

1) Pursue variance inequalities

2) Replace plain MC by Quasi-Monte Carlo and/or

3) Find nice confidence intervals for ratios of means over U -statistics

4) Variance reductions
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Optimal estimates
Let η2 =

∑
u δuσ

2
u.

We would like

E
(
η̂2) = η2 and, Var

(
η̂2
)
× cost = minimum.

Using variance components theory

Unfortunately Var(η̂2) depends on 4’th moments

Fortunately There is a theory of MINimum Quadratic Norm UNbiased Estimates (MINQUE)∗

Unfortunately They do not appear to be available for crossed random effects

Fortunately The computed case gives us more options, e.g., quadrature.

∗C. R. Rao (1970s)
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