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Simplified Saint-Venant flood model

Overflow in meters (Lamboni, looss, Popelin, Gamboa, 2012) at a dyke

S=7,+H—H;—C},, where
3/5
H = ( ¢ ) (max annual river height)
BE\/(Zm — Zy)/L
()  Maximal annual flow m?/s  Gumbel(1013,558) N [500, 3000]
K,  Strickler coefficient m'/3/s  N(30,8) N [15, 00)
Z,  River downstream level m Triangle (49, 50, 51)
Z,, River upstream level m Triangle(54, 55, 56)
H; Dyke height m ul7,9]
C,  Bank level m Triangle(55, 55.5, 56)
L Length of river stretch m Triangle(4990, 5000, 5010)
B River width m Triangle (295, 300, 305)

Reduced from a Navier-Stokes model



The cost model

Cp =1ls>om (flood cost)

+ 1s<om (0.2 4+ 0.8(1 — 6_1000m4/54)) (dyke maintenance)

4+ 0.05 min(Hym ™', 8) (investment cost, from construction)

in millions of Euros
Quibble

A discontinuity at S = 0 would be better.



Variable importance

Which of these variables is most important?
How important is any given subset of variables taken together?
How should one define/measure variable importance?
Similar problems come up in black box models for
® aerospace,
® semiconductor manufacturing,

® climate modeling, etc.



Why do they care?

The ultimate goal may be to optimize something (a mean or variance or max or min) by choosing
levels for those variables under your control.

Understanding a function is an intermediate goal, not an ultimate goal.

Yet - - - variable importance is widely applied.

Similar question
Why compute R??
Sobol’ indices yield many analogues of 2.

Quantitative measures of importance aid discussions.



Quasi-Monte Carlo

QMC sometimes gives accurate estimates for high dimensional integrals.
Despite the curse of dimensionality.™

When it happens, we usually find that the integrand was dominated by low order interactions

among the variables.

That understanding motivates trying to lower the ’effective dimension’ of our integrands.
(Analogous to variance reduction.)

* which never actually said that all high dim problems are insoluble.



ANQOVA

Fisher (1923) to Hoeffding (1948) to Sobol’ (1967) to Efron & Stein (1981)
then back to Sobol’ (1990/3)

Recall

X?,j — X.o —|— (X’Lo T X.o) —|_ (Xoj T Xoo) + (X’Lj T X’io T X.j + X.o)

Take a grand average X.,.

Subtract it out and average over 7, getting X'z-, — X..
Similarly get X,; — X,,

Generally: subtract away all lower order effects and average out the extra variables.



Extensions of ANOVA

From functionson {1,2,..., 1} x {1,2,...,J} to
{1,2,..., I} x{1,2,....,J} x---x{1,2,..., 7}

To functions in L2[0, 1]¢.
To L? functions of d arbitrary independent inputs.

Also d = oo works via martingales.



ANOVA for L?[0, 1]¢

Goes back to Hoeffding (1948) for U -statistics (skillful reading may be required)
& Efron & Stein (1981) for jackknife

d
F@)=fo0+> foy@)+> fom@iz) + -+ faa. (@ .. 2q)
j=1

j<k

d
= [0+ D Fi1.32000030) (> T -+ Tja)

r=1 1<j1<j2<-<jr<d

More simply
f(®) =) ful@)

Sumoveralu C D ={1,2,...,d}
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Notation
Foru CD={1,...,d}

lu| = card(u)
—u=u"={1,2,...,d} —u

v Cu  strict subseti.e. C

Ifu={j1,72, s Jju|} then @y, = (25, ..., 25, ) and dz, = [[;¢, dz;
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Recursive definition

Foru C {1,...,d}, fu(x) only depends on x; for j € w.

Overall mean L= folx) = / f() da
Main effect J fi@) = [ (@)~ fo@) do_,
nteraction u fulw) = [ (5(@) - > fule) o
-/ f(e)de—, ~ 3 file)
Dependence -

fu(a:) is a function of x that happens to only depend on x,,
fu(a:') + fv(az) makes sense because they’re on the same domain



ANOVA properties

jEuj/Ofu(a:)dxj:O
uFv = /fu(a:)fv(a:)da::()
& [ ful@ @) de =0

Variances
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Sobol’'s decomposition

Let ¢o, ¢1, @2 ... be a complete orthonormal basis of LZ[0, 1] with ¢ () = 1.
Sobol’ (1969) expanded f(a:) in a tensor product basis (Haar wavelets).
He grouped the terms into 2% subsets depending on which inputs are ’active’.

Sobol’ has a synthesis not an analysis for this decomposition.

Thanks to A. Chouldechova for translation.



Variable importance

How important is a,,?

Larger o2

We also want to count o' for v C .

~ means that f,, () contributes more.

Sobol’s importance measures

2_2: 2
Tu Ty

vCu
92 Z 2
Tu T av
vNu#D
|dentity: 72 =02 — 72
- u —U
2
Normalized versions: _—7“2” and
%

‘ﬂl
oSN

Q

v contained in u

v touches wu, so interactions count



More derived importance measures

Superset importance

=) o} Liu & O (2006)

vou

Small T,a means deleting f,, and f, for v O wu (to stay hierarchical) makes little difference.
Relevant to Hooker (2004)’s simplifications of black box functions.

Mean dimension

2

o
E — X
o2 [ul

uCD

Measures 'dimensionality’ of f. Liu & O (2006)
Higher dimensionality makes for harder numerical handling.
Many quadrature problems have mean dimension near 1
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Estimation of 72 and 7 2

Naive approach for 72:

1) Sample ¢; € [0,1]% and gety; = f(x;)fori =1,...,n.

)
2) Statistical machine learning estimate f,, () for all necessary v.
) Put 3—ffu )2 dx, u # 2.
~2
) — qugu Ty

This is expensive and has many biases.

3
4

Sobol’ has a much better way.
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Fixing methods

Evaluate f at two points:
repeat some components
independent draws for the others.
Hybrid points

Forx,z € [0,1]¢, y=x,:2_, means
Zj, ] EU
Yi = _
iy J g u.

We glue together part of  and part of z to formy = X, :z2_,.

Sobol’ (1990/3) used the identities:

7, = Cov(f(®), f(®u:2-u))

1

72 = SE((f(@) — f(@-uiz))’
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Identity for 77,

//f (y:2_y)daxdz

—Z//f,v ) fo(@y:z_y) dedz

vCD

_Z//f"’ ) fo(Ty:z_y) dedz

vCu

=2+ o

vCu

Ezu2-+gzi.

Bias adjustment

n

(orthogonality)

(line integrals)

2= Y S @) - Z )
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Even better

//f f(@y:z_y) — f(2)) de dz

o - Z f@:) (f(@in:zi—u) — f(2:))

This avoids subtracting /i%. It is unbiased: E(fi) =1,

u

Kucherenko, Feil, Shah, Mauntz (2011), Mauntz (2002), Saltelli (2002)

Improved statistical efficiency

fi = l zn: f(iBi)f(iBi,uiZi,—u) _ (l Z f(iL‘z) + f(wi,u:Zi,—u

Janon, Klein, Lagnoux, Nodet & Prieur (2012)

Efficient in a class of estimators - - - that does not include the unbiased one above.
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Sobol’s estimates are like tomography: integrals reveal internal structure.
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{ 1 for the flood model

72 /o2 Q K, Zy Zom Hy Ch L B

weight | 072 0.29 0.0078 0.0077 0 0 7.4x10"7 0.00021
ovefiows | 0.35 0.14  0.19 0.0038 0.28 0.036 3.6 x 10~7 0.00010
costC, | 048 025 0.23  0.0077 0.17 0.039 6.8x 1077 0.00019 |

From n = 100,000 runs

()  Maximal annual flow m?/s  Gumbel(1013,558) N [500, 3000]
K,  Strickler coefficient m'/3/s  N(30,8) N [15, c0)

Z,  River downstream level m Triangle (49, 50, 51)
Z,,  River upstream level m Triangle(54, 55, 56)

H,; Dyke height m U|7,9]

C,  Bank level m Triangle(55, 55.5, 56)

L Length of river stretch m Triangle(4990, 5000, 5010)

B River width m Triangle (295, 300, 305)



For mean dimension

d
-2 2
ZTJ = Ty

j=1

Estimator from Liu & O (2006)

Generalizes to Z lw|Fo? for k > 1.

v
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Example

Kuo, Schwab, Sloan (2012) consider quadrature for

1

= = -, O0<a<l.
L+2 27/

f(z)

Foraw = 1 and d = 500
R = 50 replicated estimates of >, |v|oZ /0% using n = 10,000
had mean 1.0052 and standard deviation 0.0058.

Upshot

f (w) is nearly additive, though it is hard to quantify near perfect additivity.
(The difficulty seems to be in forming the ratio.)
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For superset importance

T2 = ZU?) 9lul // Dl f (@2 ))Qda)dz

vIOU
Mean of a square of differences - - - better than differences of means of squares.
From Liu & O (2006)

Generalizes ?3 formula from 2 terms to 2/“/ terms.

As a design

Use n repeats of a olul x 14=ul tactorial randomly embedded in the unit cube.

Does best in comparisons by Fruth, Roustant, Kuhnt (2012)



Generalized Sobol’ indices

What can be attained via fixing methods?

Oy = //f(a:u:z_u)f(mvzz_v)dmdz

Generalized Sobol’ index
DD QuOu =11(270)
uCDvCD

d d
O € R2"%2% i the “Sobol’ matrix”. Q) € R? *2" has coefficients.

Redundant (but useful)

224 dimensional space of estimators - - -

We have a

for a 2¢ dimensional space of estimands:
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NXOR

XOR(u,v) =uUv —unNwu (exclusive OR)

NXOR(u,v) = XOR(u,v)¢ = (uNwv) U(uc Nv°) (not exclusive OR)

O E// flxy:z_y)f(xy:z_y)dedz

2 2
ol Ui TNXOR(u,v)

. 1 <&
@uv — E Z f(wi,u:zi,—u)f($i,v:zz’,—fu)
1=1

Use tr(Q2TO)

often written XNOR

27
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Special GSls

1) Mean squares € = AT
2
// (Z )\uf(mu:z—u)) dxdz Nonnegative

) Bilinear (rank one) £ = Ay

// ZA f(@y: 2z )(ZU:%f(wviz—q)D drxdz  Fast

) Simple

// Z)\uf Ty Z_y ) f(z)dedz  Only uses one row/col of ©

4) Contrast

Z Z Qu,fu =0 Free of ,u2
u v

N.B.: Here a contrast can also be a sum of squares.



Cost of a GSI

C'(€2) counts the # of function evaluations per (x, z) pair.

Recipe
1) Count the rows u that are needed for some f(x,:2z_,)
2) add the columns (where u appears as the needed "v’)

3) subtract any doubly counted subsets

We can have tr(Q){ ©) = tr(21 ©) but C(€2;) < C(y).
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Squares
For a square (or a sum of squares) tr(QT(:)) = 0.
Also ]E(tr(QT@)) = tr(TO)
Therefore tr(27©) = 0 implies Pr(tr(QT(:)) =0) =1.

GSls with sum of squares estimators

u

72 and Y2  and Z |u|o?
u

No sum of squares exists for 72 when |u| < d
Can show that the coefficient of 0%, = > A2

generally > .y, ie., tr(§2)

Same thing happens in ANOVA tables:
every variance component has a contribution from the measurement error.

30



31

Targeting one variance component

0123} = T{123) — T{1,2} ~ T(1,3} ~ Tiz.3) T {1} + T2y + {3
A simple (contrast) GSI

@) Y Mfl@az_y), A= (=137

uC{1,2,3}

16} 1 2 3 12 13 23 123

Au[—llll—l—l—l 1]

Costis 8 + 1 = 9 function evaluations.
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A bilinear GSI

Foru,v C w =1{1,2,3}

NXOR(u,v4+w*) % 1 2 3 12 13 23 123
o 123 23 13 12 3 2 1 ©
1 23 123 3 2 13 12 @ 1
Q="'
16} 1 2 3 12 13 23 123

x| 1 o0 -1 -1 0 0 1 O
~| 1 -1 0 0 0 0 0 O

Coefficients of 72 are in

[(123) = (13) = (12) + (1)] — [(23) = (3) = (2) + 2]

Cost is 6. (no duplication)
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Simple vs. bilinear for d = 5

f(w) (f(ﬂfl,ZCQ,ﬂfg, 4 Z5)
T f(ZIfl,CIZQ,ZS,ZLL, 25) o f(.fl?l, 22,L3, 24, 25) o f(Zl,xQ,xg, Z4 25)

+ f(xla 224 R3y 24y Z5) =+ f(zlax27 23y 24, 25) + f(zh 224y X3y 24, 25)

— f(2))
Versus

(f(Z) o f(xla 224 23y 24, Z5)) X

(f(Z17 292423y L4, 5135) — f(21,$2, 23,$4,x5) - f(Z17 292433y T4, 55'5) + f(21,$2,$3,$4,$5))

N.B. The bilinear version is invariant under f — f + ¢



More generally

Simple estimator at cost olwl 4- Lyy|<d

O',LQU = Z (—1)|w_v|@u’p

uC w

Bilinear for w; € w and w9y = w — wq

T DD D S LN

u1 Cwi uz2 Cwa

Bilinear cost is 2/%1! 4+ 2wzl ~ olwl/2+1

Cbilinear ~ 2 V Csimple
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Superset importance

Let w be a nonempty subset of D for d > 1.
Let f € L?[0,1]%.

Choose w1 € w and put wo = w — wi. Then

T%U: Z Z (_1)|u1|+|u2|@wc+u1,wc+m

u1 Cwi u2 Cwo

compare 02, Z Z (—=1)lmltluzlg, e,

u1 Cwi u2 Cwo

Lower cost than a square estimator but probably much higher variance.
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Bilinear, with O(d) evaluations

Suppose A, = Ofor |u| & {0,1,d — 1,d}. Same for y,, = 0.

Then the rule
ZZAu% //f(wu:z_u)f(azvzz_v)dazdz

takes O(d) computation - - - not O(d?).
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O(d) pairs, with k # 7

For j # k, let j represent {j} and —j represent —{j} etc.

All the XORs
j k —j
J k —J
%) {j,k} D
D —{j,k} o
—J —k J

_{j7 k}
1, k}
k




All the NXORs

NXOR o ] k —j K D
s | D - —k k ]
j -5 D ik o {4k}
—j g9 ik} D {5k} —J
D | D ] k —J —k D

For |u| and |v|in {0,1,d — 1,d}.
We can estimate the corresponding 12NXOR( ) with O(d) cost per (x, z) pair.

u,v

Saltelli (2002) already noticed this (or at least most of it).



What we can get

After some algebra we can get unbiased estimates of

2 Il 2 o

2 2 2
> |uf*o, > o

at cost 2d + 2. (Some parts can be gottenat C' = d + 1)
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Initial and final segments

Suppose that x1, o - - -

T4 are used in that order. E.g. time steps in a Markov chain

First 4 variables

(O,J]{

a, j=0

Last d — 4 variables

. {j+1,...,d}, 0<j<d—-1
(J,d] = |
%] j=d

There are 2d + 1 of these subsets.
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NXOR

(0,4]

(4,d]

WLOG j < k.

Enumeration

(0,5]

(0,K]

(J,d]
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Effect of recent variables

First and last elements of u # &

[u] =min{j | j € uj
ju] =max{j[j € u}

Recency weighted variance components

d—1

Z(@D,u,d] —Opg) = Z (lu] —1)o2, and,
j=1 uCD

d—1

> (Op0j = Opz) = (d—[u])a.

j=1 uCD

Another measure of how fast f () forgets its initial conditions.

Weighting by |u](d — [u] + 1) also possible.



Test functions

Min function

fl®) = min z;

2 |U’ .
—_— L d O. (2006
T = @y 12Qd—[u +2) Ueneo e




44

2
9(1,2.3)

Product function — numerically same estimate for simple or bilinear.
Therefore bilinear is better because of lower cost.

For min(x) and d = 6 the bilinear estimator was about 5 times as efficient as the simple one
based on n = 1,000,000 (x, z) pairs.

2
T{1,2,3,4}
Product function withd = 8 and u; = land 7 = (4,4, 3,3,2,2,1,1) /4.

Square beats bilinear:

Measure Value R? Square’s efficiency
T%1’2’3’4} 0.558 0.034 14.7
T%5’6’7’8} 0.0024 0.000147 2710.0

Hard to beat a sum of squares when the true effect is small.



Lower index I%L

No sum of squares is available.
Contrast
£ M@ i) = £(20)
Simp_le estimator (bias adjusted)

mn - ’
%Zf($i>f($i,uizi,—u) - (% Zﬂw") + f<wi’uzzi’_u)>
1=1 =1

The contrast has an advantage on small 72.
The simple estimator sometimes beats it on large ones.
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GSls so far

Just use 2 inputs, & and z

What about 37
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For small I%

Here it pays to use 3 vectors «, y, « € [0, 1]¢

% 22”; f@:) (f( @i yi—u) — f(y)) (Mauntz-Saltelli)

% .”1 (f(@:) = ) (f @iy, —) = [ () (Oracle centered)

% .”1 (f(@i) = 1) (f(®iu:9i, ) — 1) (Double oracle)

% ,nl (f(@i) = f(ziwmi—u)) (f(@iw:yi—u) — f(y))  (Use3vectors) (x)
where (z:,y,;, 2;) o U[0,1]3 fori = 1,...,n.

Simulations: On small effects the new estimator beats both oracles.
Double oracle wins on large effects.



Conclusions

Sums of squares are very good.

Bilinear estimators )\T(:)v work well, especially when 1T7 =1"A=0.

Further work

|

Pursue variance inequalities

Find nice confidence intervals for ratios of means over U -statistics

3

4

)
2) Replace plain MC by Quasi-Monte Carlo and/or
)
) Variance reductions
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Optimal estimates

Letn? = >, 0,02,

We would like

E(7*) =n* and, Var(f?) x cost = minimum.

Using variance components theory
Unfortunately Var(7)?) depends on 4’th moments
Fortunately = There is a theory of MINimum Quadratic Norm UNbiased Estimates (MINQUE)*
Unfortunately They do not appear to be available for crossed random effects

Fortunately = The computed case gives us more options, e.g., quadrature.

*C. R. Rao (1970s)



