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Adaptive importance sampling
1) We use importance sampling

2) From data · · · see that we could have done it better

3) So we iterate

This talk

How to combine results from multiple iterations.

Weight k’th iteration proportionally to
√
k.

Simple, safe, effective.

University of Florida
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Genesis
This is from the Appendix to

“Adaptive importance sampling by mixtures of products of beta distributions”

O & Zhou (1998)

University of Florida
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Importance sampling notation

µ =

∫
f(x)p(x) dx

µ̂ =
1

n

n∑
i=1

f(xi)p(xi)

q(xi)
, xi

iid∼ q

where q(x) > 0 whenever f(x)p(x) 6= 0.

Variance

var(µ̂) =
σ2
q

n
, where

σ2
q =

∫
f2p2

q
− µ2 =

∫
(fp− µq)2

q

f > 0 =⇒ σq = 0 can be approached

Avoid small q
University of Florida
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Self normalized I.S.

µ̃ =
1

n

n∑
i=1

f(xi)p(xi)

q(xi)

/ 1

n

n∑
i=1

p(xi)

q(xi)
, xi

iid∼ q

Less restrictive: p and q don’t have to be normalized

More restrictive: we need q > 0 whenever p > 0

Nota Bene

SNIS cannot approach zero variance unless f is constant.

lim
n→∞

n× var(µ̃) >

[∫
|f(x)− µ|p(x) dx

]2

We focus here on adaptive plain IS.

Some findings apply to SNIS too.

University of Florida
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Parametric AIS

µ̂ =
1

n

n∑
i=1

f(xi)p(xi)

q(xi; θ)
, xi

iid∼ q(·; θ)

Core iteration

1) choose θ,

2) get x1, . . . ,xn,→ µ̂,

3) update θ

University of Florida
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Basic TODO list
1) pick a family q(·; θ), θ ∈ Θ

2) choose starting point θ1

3) choose sample size n and number K > 2 of steps

4) design a rule to pick θk using data from steps 1 · · · k − 1

5) sample xik
iid∼ q(·; θk) and compute

µ̂k =
1

n

n∑
i=1

f(xik)p(xik)

q(xik; θk)
,

6) combine µ̂1, µ̂2, . . . , µ̂K into µ̂

There are N = nK data values.

This talk

is all about step 6

University of Florida
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Example AIS
Ryu and Boyd (2014)

Adapt after every data point. n = 1, K = N , using convex optimization

Zhang (1996)

K = 2. First sample is a pilot sample. Second sample from a kernel density

estimate.

Kollman, Baggerly, Cox, Picard (1999)

Get var(µ̂) ≈ exp(−A×K). Possible because

f(x)p(x) ∝ q(x; θ) some θ ∈ Θ ⊂ Rr .

Kong and Spanier (2011)

Geometric convergence in radiative transport problems.

De Boer, Kroese, Mannor, Rubinstein (2005)

Adaptive cross-entropy. University of Florida
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Martingales

History prior to step k: Hk ≡ (xi`, i = 1, . . . , n, ` < k)

A martingale argument underlies the analysis of mean, variances, covariances.

Unbiasedness

E(µ̂k | Hk) = µ

=⇒ E(µ̂k) = E(E(µ̂k | Hk)) = µ.

University of Florida
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Variance

var(µ̂k | Hk) = σ2
k ≡

1

n

∫
(f(x)p(x)− µq(x; θk))2

q(x; θk)
dx

NB σ2
k = σ2

k(Hk) is random

var(µ̂k) = E(σ2
k) ≡ τ2k

Variance estimates

σ̂2
k =

1

n

1

n− 1

n∑
i=1

(f(xi)p(xi)

q(xi; θk)
− µ̂k

)2
(if n > 2)

E(σ̂2
k | Hk) = σ2

k

E(σ̂2
k) = E(σ2

k) = τ2k

σ̂2
k is unbiased for both σ2

k and τ2k
Take τ̂2k ≡ σ̂2

k

University of Florida
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Covariance
For ` > k

cov(µ̂k, µ̂`) = E(E((µ̂k − µ)(µ̂` − µ) | H`))

= E((µ̂k − µ)E(µ̂` − µ | H`))

= 0

Upshot

µ̂k are unbiased and uncorrelated

University of Florida



Bayescomp 2020 12

Fixed linear weights

µ̂ =
K∑
k=1

ωkµ̂k ωk > 0 and
∑
k

ωk = 1

Variance

var(µ̂) =
K∑
k=1

ω2
kτ

2
k

Unknown optimal weights

ωk ∝ τ−2k

Why simple?

Consider AMIS Cornuet, Marin, Mira, Robert (2012)

Weight on µ̂k can depend on future iterations. Very hard to analyze.

“· · · the convergence properties of the algorithm cannot be

investigated · · · ”
University of Florida
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What not to do
Do not take ωk ∝ τ̂−2k = σ̂−2k

Positive skew is common

E((µ̂k − µ)3 | Hk) > 0

=⇒ cov(µ̂k, τ̂
2
k ) > 0

=⇒ Get small µ̂k with small τ̂2k (large ωk)

and large µ̂ with small ωk

Result

We would downweight large µ̂k (large ωk)

and upweight small ones

Bad for failure probabilities

Also

var(σ̂2
k | Hk) =∞ possible.

σ̂2
k = 0 possible

University of Florida
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Model for steady gain

τ2k = τ2 × k−y, 0 6 y 6 1, 0 < τ <∞

Invoking G.E.P. Box: This model might never hold exactly but it captures

qualitative behavior and variance is a continuous function of the weights used.

Too pessimistic case

y = 0 =⇒ no learning

Too optimistic case

y = 1 =⇒ get var(µ̂) = O(N−2)

Not reasonable unless f(x)p(x) = q(x; θ) some θ

We guess τ 2k ∝ kx

µ̂ = µ̂(x) =

K∑
k=1

kxµ̂k

/ K∑
k=1

kx 0 < x < 1

University of Florida
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Variances

τ2k = τ2k−y

µ̂(x) =
K∑
k=1

kxµ̂k

/ K∑
k=1

kx

var(µ̂(x)) = τ2
K∑
k=1

k2x−y
/ ( K∑

k=1

kx

)2

At x = optimal unknown y

var(µ̂(y)) = τ2

(
K∑
k=1

ky

)−1
Rate

var(µ̂(y)) = O(K−y−1) = O(N−y−1)

University of Florida
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Inefficiency

We should have used y but we did use x

ρK(x | y) ≡ var(µ̂(x))

var(µ̂(y))
=

(∑K
k=1 k

2x−y)(∑K
k=1 k

y
)(∑K

k=1 k
x
)2

Just use x = 1/2

sup
16K<∞

sup
06y61

ρK

(1

2
| y
)
6

9

8

O & Zhou (2019)

Unknown optimal rate; mildly suboptimal constant.

University of Florida
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Steps in the proof
Lemma 1

sup
06y61

ρK(x | y) =

ρK(x | 1), x 6 1/2

ρK(x | 0), x > 1/2.

Trivial for K = 1. For K > 2, ρK(x | y) is strictly convex in y

Also: ρK
(1

2
| 0
)

= ρK

(1

2
| 1
)

.

Lemma 2

ρK+1

(1

2
| 1
)
> ρK

(1

2
| 1
)
, K > 1

Long argument using very tight inequalities for sums of powers of integers.

Theorem

L’Hôpital’s rule: limK→∞ ρK

(1

2
| 1
)

=
9

8

Also

Any x 6= 1/2 gives some ρK(x | y) > 9/8. University of Florida
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Robustness
O & Zhou (2019) looks at other models

Diminishing returns model:

τ2k ∝

k−1, 1 6 k 6 k1

(1 + k1)−1, k1 + 1 6 k 6 k1 + k2

Square root rule has

max
16k16100

max
16k26100

ρ 6 1.121

Bad case for sqrt

First iterations make no progress.

Then variance drops sharply.

Self normalized

Above argument applies to variance

Have to contend with bias.
University of Florida
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Asymptote => OK,   Step => inefficient
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Realistic patterns
1) τ2k > η > 0 for k = 1, . . . ,K

2) τ2k+1 6 τ2k

3) And maybe diminishing returns

(a) τ2k+2/τ
2
k+1 > τ2k+1/τ

2
k , or

(b) τ2k+1 − τ2k+2 6 τ2k+1 − τ2k
O & Zhou (2019) have some more examples.

Convex minimax

Pick ωk in simplex to

min
ω

max
τ∈T

∑
k

ω2
kτ

2
k

Choosing T = {(τ21 , . . . , τ2K)} for future work

University of Florida
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