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Preface

This document has two chapters on quasi-Monte Carlo (QMC) and one on
randomized quasi-Monte Carlo (RQMC) along with an appendix on the analysis
of variance. These are all extracted from the online book “Monte Carlo theory,
methods and examples” posted at https://artowen.su.domains/mc/.

There are already several good books covering QMC and RQMC, such as
Niederreiter (1992b), Sloan and Joe (1994), Dick and Pillichshammer (2010),
Lemieux (2009) and Dick et al. (2022). What is different about these chapters
is that they look at QMC and RQMC from a statistical point of view. The
goal is generally to estimate a quantity p written as the expectation of f(x) for
random x with a distribution p. The estimate, based on computing f(x;) at n
points x;, is then fi = fi,,. Usually fi,, = (1/n) > i, f(x;).

Multidimensional integration is a numerical computing problem but it is
different from others such as solving a system of equations, computing a fast
Fourier transformation, or evaluating a Bessel function. In ordinary uses those
problems can be handled for us by library functions using well tested code.
There is little need for a human in the loop. Multidimensional integration is
different. It suffers from a curse of dimension noted by Bakhvalov (1959) under
which general purpose methods cannot be universally accurate, even if we know
the integrand has many derivatives. See Chapter 7 of the online notes for the
details. On the other hand, Bakhvalov’s result does not assure us that our
computations will always be inaccurate. Neither success nor failure is assured
ahead of time. Instead there is an interplay between features of the problem
and the methods we choose to use. Making good choices raises the odds of a
good result, so there is value in human intervention.

In a multidimensional setting we can only evaluate a function at a sparse
selection of input combinations. Choosing where to do that is like a sampling
or experimental design problem. From this point of view, QMC points, derived
from abstract algebra are astonishingly good experimental designs for sampling
the unit cube. There is a tradition in statistics of basing experimental designs
on algebra that goes back to work of Kempthorne among many others. The
design stage is conducted not quite knowing what the function we are working
with will be like because the points we construct may be used by many different
people in different contexts. The design should therefore be devised in a robust
way to succeed on a wide class of problems.

Once the sampled data values are available we have a second problem. We
would like to have some idea of how large the error | — p| is. It is good for the
error to be small, but practically, it should also be known to be small. We will
see that QMC methods generally do not provide computable error estimates de-
spite the new information we get from having some observed values f(x;). By
injecting some randomness into the problem, methods of statistical inference
give some guidance to the size of this error using confidence intervals and vari-
ance estimates. This set of notes favors a frequentist statistical approach that
quantifies uncertainty in fi — p by using randomness injected into the sample
points x;. That randomness comes from a convenient fiction (or model) that
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the random number generators involved in constructing @; really use genuine
randomness based on independent UJ0, 1] random variables. There is an alter-
native, Bayesian approach, that could be used. There we could suppose that the
integrand f is drawn at random from some ensemble and that this randomness
can be used to quantify uncertainty in it — p. From the Bayesian view point,
one could argue that we care about the error from using the x; we actually
used and not any others that we might have used instead. A frequentist counter
argument is that we really want uncertainty about the expected value of our f
and then other f in that ensemble are not relevant. From a practical point of
view, the frequentist approach has the strong advantage that random number
generators are by now very well tested and reliable. There is, for example the
big crush test of L’Ecuyer and Simard (2007). Random number generators may
fail but reports of such failures are quite rare. There is no comparably tested
Bayesian model for random integrands and so this breaks the tie in favor of
the frequentist approach. The Bayesian approach to numerical analysis is in a
period of rapid development, so things may change later. Cockayne et al. (2019)
survey develoments there.

Now we come to the biggest practical problem. Suppose that today we
have a specific f and p and we want to estimate the expected value u. Which
method should we use? It is very hard to choose a method using facts that have
been proved about multivariate integration. There are positive/encouraging re-
sults and negative/discouraging results. Our problem could fit into the theorem
statements for both kinds of result.

One good guide is to study what worked well (and what did not) for similar
problems that we have faced in the past. We might also look to examples in the
literature that seem similar to today’s problems. Examples are useful but they
do not provide a rigorous connection between how well some algorithm worked
before and how well it will work now. In the language of causal inference, while
the results in prior examples may have internal validity for their past purposes,
they may lack external validity in generalizing to the present problem.

We can also look at theoretical guarantees in the form of upper bounds.
These commonly hold for a whole collection of functions and we might know
that our function is one of them. It can still be hard to choose a method.
Suppose that our error |fi — u| will be ej(n) with method one and ey(n) with
method two. The literature may show that e;(n) < Cin~ " for n > N; and
ea(n) < Cayn™"2 for n > Ny. We will also see rates involving log(n), but for now
let’s ignore those. It is common that r; are known while C; and N; are not.
A principled choice is to take the method with the larger r;. However, ro > 71
does not imply that e; < e;. It does not even imply that Con™"2 < Cin™".
The same difficulty arises when e; are expected errors or variances or root mean
squared errors.

The other results at our disposal are lower bounds. In these, we know that
the worst case error, for a whole class of problems, is bounded below by some
quantity such as en™" with r» known and ¢ not necessarily known. Here we may
know that the problem we study is in the class. However, our specific problem
is not necessarily as hard as the worst case or even the average case. Once
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again, a principled choice is to prefer a method with a smaller lower bound on
error, but that does not necessarily give better results for our specific problem.
The same issue comes up when the lower bound describes an average quantity
like the root mean squared error with respect to a distribution on f. Our given
function might not be typical in that setting.

Theoretical upper and lower bounds can also be understood in terms of
examples. These bounds usually apply to an infinite set of example problems.
Our given integrand is generally one of those example problems. The results of
a theorem could be asymptotic as n — oo and perhaps not apply to our sample
size. Or they could aggregate accuracy over an infinite set of problems while
the ones we care about are outnumbered by vastly different problems. So, while
theorems attain the pinnacle of internal validity, they leave open some questions
of external validity when we seek to interpret or apply them.

A person with a specific problem to solve cannot wait for the theory to be
perfected before proceeding. The practical approach is to use whatever we know
about f to select some methods that are reasonably expected to do well and
then try them out using methods that let us estimate the error. A method that
is seen to do well on our specific f can then be used with larger sample sizes
to get a more accurate estimate of . We might make that method a default
choice on future similar problems.

The practical approach is not very aesthetically satisfying. We would rather
just know what to do, a priori. Unfortunately, as noted above, we are unlikely
to find a universally acceptable solution. Fortunately, we are not generally
required to make an irrevocable commitment to using one method no matter how
badly it works. We can try several alternatives, and with a modern computing
environment, we may be able to try several of them in a very short time period.

There are too many alternatives for us to try them all. The promising
choices are based on properties of f like the ones described in these notes. For
instance: the dimension of the input space of f, the smoothness of f, whether
f is periodic, whether f is very nearly additive or similarly simple, whether f
is bounded and if not, whether its singularities are at known locations.

The useful properties of f are not always precisely defined. For instance, in
many QMC methods we stand to gain by defining f in a way that the impor-
tance of the inputs z; is a decreasing function of j € {1,2,...,d}. Importance
can be a subjective quantity, or it can be precisely defined but in more than one
way. The best definition might be the one that leads us to the most accurate
estimate, but that is unhelpful circular reasoning. Even though the concept
cannot be made both perfectly precise and useful, we still expect to benefit by
reasoning about the importance of the different variables or by using some pos-
sibly imperfect quantitative measures of importance such as the Sobol’ indices
from Appendix A.

In practical settings, we must also consider the computational costs of our
methods, not just their accuracy for a given number of evaluations. This is
challenging because the accuracy may be the same in every implementation on
every computer while the cost can vary greatly between those implementations.
What works quickly for somebody else might not be the best for us.
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The past decades have seen analytic methods that replace the smooth-
ness conditions from Bakhvalov’s time with more flexible models based on the
weighted Hilbert spaces discussed in Chapter 7 of the online notes. Those mod-
els capture the expectation that the integrands of interest are simpler than
those Bakhvalov considered. One way for them to be simpler is that the input
variables are not equally important but instead some are much more important
than others. A second kind of simplicity is that the input variables may only
matter primarily as individuals or pairs, triples or other small cardinality sets
with only minor interactions among many variables. The weighted spaces are
defined in terms of a nonnegative weight quantifying how ‘important’ each sub-
set of input variables is. The texts by Dick and Pillichshammer (2010) and Dick
et al. (2022) present QMC in the weighted space framework as does the survey
article Dick et al. (2013). The treatment there requires mathematics beyond
the prerequisites assumed for these chapters. In these notes, those two kinds
of simplifying assumptions are presented in terms of the analysis of variance
(ANOVA) decomposition.

The most important results using weighted spaces establish tractability where,
for example, the cost to attain a certain kind of accuracy depends on the num-
ber n of sample values used but not on the dimension of the space. Accuracy
can be measured by how much better off we are with n points than we would
have been with 0 points and simply guessing that ¢ = 0. This improvement
on the initial error can, for some assumptions on weights, decrease with n at
the same rate in every dimension. In practice we will not usually know what
initial error is appropriate for our next problem and therefore we do not know
how large n must be to reduce it to an acceptable level. Chapter 7 of the online
notes describes this issue in more detail. We can however estimate the attained
error by using independent random estimates.

To support a practical approach to integration these notes present intuitive
reasons behind some methods of estimation. The goal is to prepare the reader to
understand how features of their integrand connect with properties of the QMC
methods presented. This includes the use of examples of QMC computations
with finite n and some specific integrands. Integrands with known p can be used
to show how well different methods work. Integrands with unknown p can be
used to compare methods in a setting more like where they will be used. Some
example integrands are ‘positive controls’ where a method should work well
given our theoretical understanding. Others are ‘negative controls’ where the
assumptions behind a method do not hold and it would be a pleasant surprise
to see the method do well.

Having to iterate over different approaches with a human in the loop is
a burden. Here are some defaults that are not necessarily best for a given
situation but are generally useful. The first is Latin hypercube sampling (LHS),
from Chapter 10 of the online notes. It is not really a QMC or RQMC method.
However, it is very easy to do. If a problem is amenable to (R)QMC sampling
then there is a very good chance that LHS will also do well on it. Conversely if
LHS provides no significant improvement over plain Monte Carlo, then the odds
are lower that RQMC will do that. After reading these notes, the reader will
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know how to construct an integrand where RQMC actually does much better
than LHS, while LHS has about the same variance as plain MC. At present such
problems do not seem to arise much in practice.

The other reasonable defaults are randomized Sobol” sequences. There are
two main randomization methods: the random linear method of Matousek
(1998) and the nested uniform scrambling of Owen (1995). These are the au-
thor’s preferred methods and so they get the most detailed treatment in these
notes. The two methods have the same variance but different error distribu-
tions. Either method can be replicated to get a variance estimate. Converting
such variance estimates to confidence intervals is an area of ongoing research.

With a human in the loop, what we are doing is an adaptive integration,
and perhaps RQMC can eventually be automated. There are promising results
in the Gauranteed Automatic Integration Library (GAIL) project lead by Fred
Hickernell. There is a large body of theory on adaptive methods. Some re-
sults prove that adaptive methods cannot outperform nonadaptive ones. Other
results and some specific example show that adaptive methods can be much
better than non-adaptive ones. These are not contradictory because the two
kinds of results rest on different assumptions. For a survey of results on adap-
tive methods, see Novak (1996). Once a collection of adaptive methods has been
established the user will still face a problem of choosing which one to use for a
given problem.

Art B. Owen
January 2023
Menlo Park, CA

Note: these chapters contain some exercises. Few of them have been as-
signed to classes so use them with some caution.
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15

Quasi-Monte Carlo

Monte Carlo computation usually begins with points sampled from a uniform
distribution on the unit cube transformed as needed to other spaces and different
distributions on those spaces. Those uniform points «; tend to form clumps in
some parts of [0,1]¢ and leave voids in others. Whether any given region of
the unit cube gets a clump or a void is of course random. The idea in quasi-
Monte Carlo (QMC) sampling is to choose points that, to the extent possible,
are spread out uniformly through [0, 1]¢ with minimal clumps and voids. We
still estimate p = f[O,l]d f(x)dx by

1 n
h= = D, 15.1
= S (15.1)
but now xy,...,x, are deterministic points designed to fill [0,1]¢ as evenly as

mathematically possible, while f incorporates our transformations as well as our
original integrand. Roughly speaking, QMC is stratification taken to extremes.
For QMC it is easy to use transformations like inversion and not so simple to
use acceptance-rejection because the necessary d is not fixed. The chapeter end
notes have some discussion about acceptance-rejection for QMC.

The best use case for QMC arises when the integrand f has a high enough
dimension d that classic quadratures are infeasible, yet f is itself well approx-
imated by a sum of functions of one or two or a handful of its inputs. When
QMC works well on high dimensional functions, it can be a surprise. A famous
surprise found empirically by Paskov and Traub (1995) was that integrands
from finance with d in the hundreds could be well integrated by QMC. QMC is
also used in computer graphics (Keller, 1997) and in solving partial differential
equations over random environments (Graham et al., 2015).

9



10 Quasi-Monte Carlo

In this chapter we look at how to measure the uniformity of a set of points.
Such measures, of which there are many, are called discrepancies. Then we
compare QMC to MC, by considering the counterparts in QMC to the LLN
and CLT from MC. A key result, the Koksma-Hlawka theorem, shows how
bounds on discrepancy can be turned into bounds on quadrature error. It is
possible to achieve discrepancies that are O(n=17¢) for any € > 0, and we will
see conditions under which | — u| = O(n=1%¢) too. This rate is close to what
Monte Carlo would provide with on the order of n? function evaluations. One
of the difficulties with QMC is that empirical and theoretical results often fail
to match the way we might expect. Accordingly, some worked examples are
included with the theoretical findings.

The position in this book is that the practical reason to study QMC is to
get a better understanding of how randomized QMC (RQMC) works. RQMC
is the subject of Chapter 17. Using QMC without a randomization is generally
not advised. Randomization provides a mechanism to estimate the QMC error.
In some settings it can bring more accuracy, even a better rate of convergence in
n. RQMC applies more readily to unbounded or discontinuous integrands than
QMC does. Finally, some of the QMC constructions have very bad space fill-
ing properties that randomization fixes up. Those bad properties might bring
substantial inaccuracies even for methods with very good asymptotic conver-
gence rates. This is important because some asymptotic properties of QMC are
unlikely to hold for feasible n.

15.1 Introduction to QMC

To begin, it is important to point out one commonly overlooked difference be-
tween MC and QMC. With QMC, there are usually significant benefits to using
certain special values of n, such as powers of 2, large primes, and more generally,
powers of primes. Powers of ten are almost never especially good choices. Using
n = 100,000 could be much worse than using n = 27 = 131,072. It could even
be worse than using n = 2'¢ = 65,536. This distinction does not show up in
the commonly quoted asymptotic error rates for QMC. Those are usually given
as some power of n often with a power of log(n) and they hide the importance
of special sample sizes. Some QMC methods have errors that are o(1/n) for
special n. Then adding an n+ 1’st point changes i by O(1/n) which is of larger
magnitude than the prior error, thus destroying the convergence rate. Even
when the error rate is just slightly worse than O(1/n), using arbitrary sample
sizes is often detrimental. With QMC as with antibiotics, it is best to use the
complete sequence.

There are two main forms of QMC rule, lattices and digital nets. Small
examples of each are shown in Figure 15.1. After introducing QMC concepts,
this chapter looks at digital constructions. Then Chapter 16 presents lattice
rules. QMC methods are deterministic and it is hard to estimate their errors.
Randomized QMC (RQMC), presented in Chapter 17, provides a solution. Some
other advantages of RQMC over QMC are mentioned within this chapter.
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Introduction to QMC 11

MC and two QMC methods in the unit square

D . .

Monte Carlo Fibonacci lattice Hammersley sequence

Figure 15.1: The left panel shows 32 points sampled independently from the
UJ0, 1]? distribution. The center panel shows the 34 points of a Fibonacci lattice
from Chapter 16. The right panel shows the 32 point Hammersley sequence in
base 2 from §15.5. Reference lines show the boundary of the unit square.

Quasi-Monte Carlo algorithms may seem complicated at first. But they are
essentially the same algorithms that are used in pseudo-random number gener-
ators. The digital constructions are similar to feedback shift register random
number generators while lattice rules are similar to congruential generators. One
useful way to think of QMC is that we are taking a small random number gen-
erator and using it in its entirety (Niederreiter, 1986). Because the algorithms
have so much in common, QMC points are not materially slower to generate
than pseudo-random numbers.

When describing QMC, the unit cube is variously presented as (0, 1)<, [0, 1)¢
or [0,1]¢. Because f(O,l)d flz)de = f[o,l)d flz)de = f[o,l]d f(x) dz, the choice
would seem to make no difference. Sometimes it doesn’t matter and we can
make an arbitrary choice. At other times, there are useful distinctions. When
f might be infinite on the boundary of the unit cube, then choosing (0,1)¢ lets
us avoid having any f(x) = +oo. When f, defined on R?, is periodic with
period 1 in every variable, then we can define f on [0,1)? and know that we
have not introduced any contradictions; any function on [0, 1)? can be extended
periodically to all z € R?. A further advantage of [0,1)? is that it can be split
into similar pieces into which we will place the same number of sample points.
For instance, when d = 1 we have

1 12 2
n=p3)vlz3)vEY
0,1) 0 3 - 33 - 3
and we might put n/3 points into each of those subsets on the right. The
intervals [0,1] and (0,1) are more awkward to partition than [0,1). Finally, we

will see that the total variation of a function plays an important role in QMC,
and total variation is defined for functions on the closed unit cube [0,1]¢. In
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12 Quasi-Monte Carlo

short, being consistent about the unit cube to use would be a bigger nuisance
than being inconsistent.

15.2 Discrepancy measures

The first task in QMC is to define what it means for points to be more uniform
than uniform random points. We do this by making a numerical measure of the
non-uniformity of our points.

Our goal is to estimate p = [ f(z)dx for € [0,1]%, that is E(f(x)) for
xz ~ U[0,1]9. Our estimate is o = (1/n) >, f(z;) for points z; € [0,1]%,
which (assuming the x; are distinct) is E(f(x)) for & ~ U{xy,...,x,}. The
intuition behind QMC is that if the discrete uniform distribution U{x1,...,x,}
is somehow close to the continuous distribution UJ[0,1]%, then at least for rea-
sonable f, i should be close to p.

If any two of the x; are equal, then a technicality arises. The set {x1,...,x,}
has fewer than n points and then # is no longer the mean of f(x) for = ~
U{x1,...,x,}. We would instead need a mean that weights each QMC point
by its multiplicity. The QMC estimate is still an expectation, namely E(f(xr))
for a random index I ~ U{1,2,...,n}. We will assume that the x; are distinct
and work with i = E(f(x)) for & ~ U{ay,...,x,}. This case is simpler and
covers the great majority of applications.

There are many ways to define a distance between distributions on [0, 1]¢.
One that has served well in the theory of quasi-Monte Carlo is the star dis-
crepancy, developed next. First we generalize the notion of an interval to d
dimensions.

For a,b € RY, with a; < b;, the half-open interval [a,b) is the set

d
H[aj,bj):{meRd|aj <$j<bj, ]:1,,d}
j=1

Half-open intervals are convenient here for their partitioning property mentioned
at the beginning of this chapter. We take special interest in intervals of the form
[0, a). Such an interval is often called an anchored box where the more general
interval is an un-anchored box.

The local discrepancy of x1,...,x, at a € [0, 1]d is

n d
1
§(a) =d(a;xy,...,x,) = ﬁzlwie[&a) - Haj‘
i=1 J=1

The ratio (1/n) Y7 | 14,c[0,q) is the fraction of our n points inside [0, a). Ide-
ally, that fraction would match vol([0,a)) = H?Zl a;. Then é(a) is positive for
anchored boxes containing an excess of points x;, compared to their volume,
and is negative for anchored boxes with a deficit of points. If §(a) = 0, then

the points have sampled [0,a) in a perfectly balanced way. We may interpret
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Discrepancy measures 13

Local discrepancy at a, b

070f~----;=5° , »

s L
A

0 0.42 0.6

Figure 15.2: The plot illustrates the local discrepancy d(-) at points a =
(0.6,0.7) and b = (0.42,0.45) for 32 points x; in [0,1]2. Here [5(a)| =
113/32 — 0.6 x 0.7] = 0.01375 and |8(b)| = |2/32 — 0.42 x 0.45| = 0.1265.

4(a) as ;cﬁ([O, a)) —vol([0, a)), with ;(ﬁ(A) = (1/n) >, 1y,eca, an estimated
volume of A using points 1, ..., x,. Put another way, §(a) is the difference be-
tween P(z € [0,a)) under © ~ U{zy,...,x,} versus z ~ U[0, 1]¢. Figure 15.2
illustrates the local discrepancy function.

The star discrepancy of x1,...,x, € [0,1]¢ is
D =D} (xy,...,xn) = sup [0(a;x1,...,x,)]. (15.2)
ac0,1)d

When D} is small, then the fraction of n points in each anchored box is very
close to the proportion of the unit cube taken up by that box. For d = 1, the
star discrepancy reduces to the well-known Kolmogorov-Smirnov test statistic
for whether z1, ..., 2, have been sampled from UJ[0, 1].

The origin plays a special role in the star discrepancy, because all the an-
chored boxes include it. There may be nothing about f to make the origin any
more important than the other 2¢ — 1 corners of [0, 1]%. The next discrepancy
measure does not treat the origin specially.

The extreme discrepancy of xy,...,z, € [0,1]¢ is
1 n d

Dy, = Dy(21,...,xn) = SUII)) n Z laiclab) — H(bj — ay) (15.3)
@ i=1 j=1

where the supremum is taken over a,b € [0,1]¢ with 0 < a; < b; <1 for
i=1,...,d

Sometimes the extreme discrepancy is simply called the discrepancy. It is
in this sense the default discrepancy, although the star discrepancy is more
frequently used. One reason for the popularity of the star discrepancy is that
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14 Quasi-Monte Carlo

it has a simple and direct connection to integration error. The connection is
easiest to see when d = 1 and f(z) is a continuously differentiable function on
[0, 1].

Theorem 15.1. Let f have a continuous first derivative on [0,1]. Letxy,...,z, €
[0,1]. Then

1 1
LS flay) - / f(a)de = — / 5(z)f(z) da, (15.4)

where § is the local discrepancy function for x1,...,T,.

Proof. Integrating by parts,

/01 fla)do = af(w)] - / o f(a)do = £(1) - / (@) e

An analogous summation by parts gives us

Zfa:z =nf(1) =Y i(f(win1) — f(x:)
1=0

using z9p = 0 and z,41 = 1. Now suppose without loss of generality that
r1 < a9 < --- < xpy. Then

n 1 1 n

et = [ f@dr= [Cop@de =30 L7 - ).

i=1 0 i=0
We can write the sum as an integral

n

Z% faw) = 1@) =22 [ s

i= i=0 [zi,zit1)
1

)
/Zn z@§x<w¢+1f/(x)dx
0

=0
1
#{1<i<n|z <z}f(z)d

n

1
:/oﬁ

|
f/of

1y, <o f'(z)dz. (15.5)
i=1

Finally

f(xi)—/olf(x)dx=/( ;Z <o) f () da

1
- [ s@) @,
0
where 9 is the local discrepancy function for =1, ..., z,. O
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Discrepancy measures 15

From (15.4) we see that when we are lucky enough to have f’ orthogonal to
the local discrepancy function 4, then the integration error is zero. On the other
hand, if f/ = ¢d for ¢ # 0, then we get no cancellation in (15.4) and a large
error is the result. Strictly speaking, f’ cannot be cd because we assumed that
/' is continuous and 0 is discontinuous at each x;. But f’ might be a continuous
function arbitrarily close to ¢d, and so Theorem 15.1 does let us find integrands
that will be poorly handled by z1,...,z,.

There is a multidimensional version of (15.4), known as Hlawka’s identity
and also as Zaremba’s identity. For non-empty u C 1:d, let f(*) be the mixed
partial derivative of f taken once with respect to x; for each j € u. Then

pmp= % (_1)Iul/ FO (@0l (@l o) dze  (15.6)

Clidu#® (0,11

where x,:1_, is the point x after replacing x; by 1 for every j ¢ u. See Dick
et al. (2022) for more details and a proof.

More general discrepancies have been defined as supgcg |;a(5) — vol(9)|
for various classes S of sets. Examples include the set of hyper-rectangles not
necessarily parallel to the sides of [0, 1)%, the set of simplices and the set of balls.
Some references to that literature are in the chapter end notes. One of the most
comprehensive discrepancies is the isotropic discrepancy. Let C be the set of

convex subsets of [0, 1)?. The isotropic discrepancy of x1,...,x, € [0,1]¢
Jo(@y, ... ) = sup|— Z la,co — vol( 0)' (15.7)
ceC

Not all discrepancies are defined as suprema of |;a(5 ) —vol(S)] over classes
of sets S. The L2-star discrepancy of x1,...,x, € [0,1]¢

1/2
D! 5 =D} 5(x1,...,xy) = (/ 5(a)2da>
' ’ acl0,1]¢

where 0(a) = d(a;xq,...,x,) is the local discrepancy of xi,...,x, at a €
[0,1]%. Warnock’s (1972) formula for the square of Dy, , is

(D:;Q)Q:(f) ffZH( x” ) n2ZZH 1 — max(z;j, xir5)).

i=1 j=1 i=14'=1j5=1
(15.8)

The cost of Warnock’s formula grows like n2d. It is useful for investigating small
QMC rules.

Thus while the star discrepancy is [|0]lcc = Supgefo15¢ [0(a)l, the L2-star
discrepancy is ||0]|2. General LP norms [|6||, = (fae[o.l]d |0(a)l? da)l/p have
also been used as discrepancies.
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16 Quasi-Monte Carlo

Decomposition of the unanchored box [a,b)

Figure 15.3: An unanchored box [a, b) C [0,1]? is shown. Its indicator function
can be written 14 p)(x) = Lio,p)(Z) — Ljo,c) () — Ljo,q)(T) + Ljo,q)(x) in terms
of indicators of anchored boxes at a, b, ¢ and d.

The practical use of discrepancies is in proving bounds on the integration
error. The most important one is the Koksma-Hlawka inequality in §15.4. In
these error bounds, the first thing we look at is the rate at which discrepancy
decreases as n — oco. The ordinary and star discrepancy attain the same rate:

Proposition 15.1. For x1,...,x, € [0,1]%,
D} < D, <2'D:.

Note: The key to proving the upper bound in Proposition 15.1 is to express the
unanchored box [a, b) in terms of 2% anchored boxes, each extending from the
origin to one of the vertices of [a,b). Figure 15.3 illustrates the decomposition
for d = 2.

Proof of Proposition 15.1. The left side is immediate. For the right side, the
indicator function of the un-anchored box [a, b) is

d
Lia.b)(x H Lo, (%) — Lo, (25))- (15.9)

We will write this function as a sum of 2¢ signed indicator functions of anchored
boxes.
For w C {1,...,d} let c™ = a,:b_,, a merger of components from a and b,

() ()

given by ¢; " = a; for j € uw and ¢;* = b; for j ¢ u. Expanding (15.9) we get

Liap) () = Z (_1)‘U|1[0,c(“))(m)'

UC{ Ty}
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Discrepancy rates 17

Now
vol([a, b)) — vol([a, b))’
1 n
=|= Z Lia,b) (x;) — I[[mb)(il:) dw‘
n < [071]d
S (e~ [ 3D ) e
i=1 u [0,1]¢
1 n
< zu:’” ; Lig,ctmy (i) — /[O,W Lig c(w) () dw‘
<24Dr.
Since [a, b) is arbitrary, D,, < 2¢D. O

Discrepancies are mainly used to get rates of convergence. We will see below
that those rates show how QMC can be much better than MC. The factor 2¢
can be quite large, but it does not change rates in n for fixed d. It seems unlikely
that x; would really have a ratio of D} /D,, anywhere close to 2¢ for QMC points
in use.

15.3 Discrepancy rates

The star discrepancy of random points @; ~ U[0, 1]¢ is well studied. For any
point a € [0,1]¢, we easily find that E(6%(a;x1,...,2,))"? = /p(1—p)/n
where p = vol([0, a]), and so the local discrepancy decreases like 1/y/n at any
a. The star discrepancy, which must account for finding the least favorable
anchored box [0, @) for the sampled values ; is of just slightly larger order. It
is eventually no larger than / loglogn/ \/% with probability 1 as Theorem 15.2
shows.

Theorem 15.2. Let 1, ...,x, ~ U[0,1]¢ be independent. Then
V2n D: ...
]P’(limsup nDn(@y,. o 2n) = 1) =1.
n—00 v/ loglogn

Proof. Chung (1949) proved this for d = 1 and Kiefer (1961) proved it for
d>1. O

It is possible to attain much lower discrepancies than random points do.
We will see constructions of sequences that have low discrepancy, according
to the following criterion. The infinite sequence @1, xs,... € [0, l]d is a low
discrepancy sequence if

Di(xy,...,x,) = O(n *(log n)d)

© Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



18 Quasi-Monte Carlo

as n — oo. Any finite positive power of log(n) is asymptotically negligible
compared to any finite positive power of n. Thus a low discrepancy sequence
has

Di(xy,...,x,) = O(n~11¢)

for any € > 0 as n — co. It is also o(n~17¢) but O(n=*¢) is more commonly
used.

Even modest powers of log(n) like log(n)'® can be quite large compared to
n when n is small enough to be a feasible sample size. We return to this point
later when discussing how discrepancy affects the accuracy of QMC integration.

In practice, we only use a finite value of n, not an entire infinite sequence.
For finite n, we can find constructions that are better than O(n~!(logn)?).
Here O(-) refers to asymptotics as n — oo so we need to reconcile n — oo
with finite n. We consider an infinite sequence of finite sequences. The finite
sequences increase in length, and we take the limit as this length goes to infinity.
Specifically, let x;, € [0,1]¢ for all i = 1,...,n and all n € N where N =
{n1,mn2,...} is an infinite set of positive integers with n; < nj41. We call such
an arrangement a triangular array because it can be displayed as a table

mlnl CEin Tt xnlnl
ml’ng :BZTLQ Tt mnlng et wngng
a:l’n,g w2n3 T wnlng. T mng’ng e :l:ngng

of infinitely many rows of increasing length. The j’th row has n; elements. In
examples we may have n; = j which would give the table a truly triangular
shape, or perhaps n; = 27, among other choices.

Some triangular arrays of points in [0, 1] have

Dy, (®1nys -+ Enyn,) = O(n * (log(ny))*™)

as j — oo. Compared to a low discrepancy sequence, the triangular array saves
a factor of log(n), which is like reducing the dimension d by one.

A potential drawback to a triangular array construction is that the points
in the j + 1’st row need not include the ones in the j’th row. If we find that n;
points are not enough to get an accurate answer, then we may have to start all
over again computing f at n;11 new values and discarding the previous ones. A
triangular array is extensible if z;,;, = @, , forallj > 1 and i =1,...,n;.
An extensible array lets us reuse all the previous points. We can extend from one
good sample size n; to a larger good sample size n;; computing only n;; —n;
new function values. Extensible rules just use the first n; points of an infinite
sequence of x;.

The best possible rate for discrepancies is not known. Roth (1954) gives a
celebrated lower bound D}, , > ca(log(n))@=1/2/n for the L?-star discrepancy
which holds for any set of n points in [0,1]%. The constant cq; > 0 does not
depend on n. Roth’s result implies that D’ > c4(log(n))4=1/2/n too. Tt is
widely believed that the rate D = o(n~!(logn)?~!) cannot be attained by any
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The Koksma-Hlawka Inequality 19

triangular array. This has been proved for d < 2. Dick and Pillichshammer
(2010, Chapter 2) give more information on bounds for discrepancies. The
chapter end notes have some additional references on discrepancy.

15.4 The Koksma-Hlawka Inequality

When we replace randomly sampled points x; by deterministic ones, we can
no longer rely upon the law of large numbers to ensure convergence. We also
lose the central limit theorem. Here we look at replacement concepts for deter-
ministic quadrature rules. We’ll work with the star discrepancy. Qualitatively
similar results exist for many other discrepancies.

Definition 15.1. The infinite sequence x1,xs,--- € [0,1]¢ is uniformly dis-
tributed if D} (xy,...,x,) — 0 as n — oo.

Theorem 15.3. Let f be a Riemann integrable function on [0,1]%. Ifxy, xo, - €
[0,1]¢ are uniformly distributed then

1
‘fo(:c,») _/ f(:c)dm‘ =0 (15.10)
n i1 [071]d
as n — 0o.
Proof. Kuipers and Niederreiter (1974) give this as Exercise 6.1. O

Using Theorem 15.1 we can easily verify Theorem 15.3 for d = 1 and f’
continuous. We write

’iif(%‘)

and then D} — 0 by the definition of uniformly distributed z;.

Theorem 15.3 is the QMC counterpart to the law of large numbers. Our
estimate will converge to the right answer if we use a uniformly distributed
sequence of points. There is a new condition that we did not require for MC:
the function f must now be Riemann integrable. That rules out some functions
we might not have cared about. Omne such is the function which is 1 if all
components of x are rational and is 0 otherwise. Another is a classic pathological
example, the function f(x) which is 1 at each of the infinitely many sample
points x;, and is 0 everywhere else. Requiring Riemann integrability also rules
out unbounded functions, including many that are important to applications.
For example, we commonly apply the inverse Gaussian CDF ® ! to one or more
components of @ and subsequent steps don’t always leave us with a bounded
quantity. Theorem 15.3 has a converse:

1 1
| s@al< [wr@ie<n; 7@l

Theorem 15.4. If the limit (15.10) holds for all uniformly distributed sequences
x; € [0,1]%, then f is Riemann integrable.
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20 Quasi-Monte Carlo

Proof. The case d = 1 is due to de Bruijn and Post (1968) and Binder (1970)
proves it for d > 1. O

Quasi-Monte Carlo often attains good empirical results on unbounded func-
tions. From Theorem 15.4 we know that conditions beyond uniform distribution
must be imposed on x;. There are more remarks and references about QMC for
unbounded integrands in the chapter end notes, and §17.12 considers random-
ized QMC for unbounded integrands.

In Monte Carlo sampling, the central limit theorem is used to study the
error. For QMC, there is the Koksma-Hlawka inequality. It requires a new
quantity, Vak(f), which is the total variation of f in the sense of Hardy and
Krause. For d = 1, Vi (f) is the familiar total variation of f. See the chapter
end notes for a discussion of total variation, including the d-dimensional case.

Theorem 15.5 (Koksma-Hlawka inequality). For d > 1 and x1,...,x, €
[0,1]7,

\;Zf(wz)—/[ f(@)de| < Dj(@s, ..., Virk(f), (15.11)
i=1

0,1]¢

where Vi (f) denotes the total variation of f in the sense of Hardy and Krause.

Proof. This was proved by Koksma (1943) for d = 1 and Hlawka (1961) for
d > 1. Kuipers and Niederreiter (1974, Chapter 5) include a proof. O

Theorem 15.5 gives control over the quadrature error | — p|. The upper
bound is the product of a measure of roughness of f times a measure of non-
uniformity of @4, ...,x,. While it is a counterpart of the CLT, there are some
important differences. First of all, the Koksma-Hlawka inequality is not proba-
bilistic. It holds with certainty, or 100% confidence in statistical language. We
ordinarily prefer 100% confidence to 99%, except perhaps when the former in-
terval is far wider than the latter. Second, the Koksma-Hlawka inequality holds
for finite n, while the CLT only holds in the limit as n — oc.

Having a 100% confidence interval for the n specific points we use may sound
too good to be true. There is indeed a problem. While we are sure that the
interval i + D} Vuk(f) contains p, outside of very special cases, neither D
nor Vi (f) is known to us. Therefore we don’t get a usable 100% confidence
interval. The star discrepancy is very hard to compute for modestly large d
and no practical algorithms for it can handle n as large as we want to use in
QMC. While we could in principle compute D}, once and then use it for many
integrands f, we still would not know the value of Viyk(f). The total variation
is ordinarily harder to compute than g. It involves 2¢ — 1 multidimensional
integrals of some mixed partial derivatives of f as described in the chapter end
notes.

Theorem 15.5 is however an extremely important result. It shows that if we
use a low discrepancy sequence then for Vak (f) < oo we will achieve |fi — pu| =
O(n=1%¢), for any € > 0. As a result, we know that if Vizk(f) < oo, then for
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The Koksma-Hlawka Inequality 21

large enough n we should get much better accuracy from QMC than from MC.
Also, the search for good QMC methods may be organized around reducing D},
and other similar figures of merit.

The Koksma-Hlawka inequality is tight. We cannot replace the right hand
side of (15.11) by vDiVyxk for any v < 1, because given xi,...,x, € [0,1]¢
there is always some function f for which

‘igf(mi)—/[

| f(:c)dac‘ > AD: (@1, ..., ) Vi (f).
0,1d

Being tight (in the sense above) does not prevent the inequality from also being
loose in a given application. Equality holds in (15.11) for a worst case function
that is allowed to take account of the locations of the sampling points. For some
other function f we might well have | — p| < D Vak (f).

The quantity log(n)9~!/n causes a lot of difficulty even for moderate dimen-
sions, like d = 10. It can require quite enormous n before that quantity is below
n~1/2, and we have not yet considered the lead constant. Here we rule out n = 1
which is clearly not relevant to an asymptotic bound. One never actually sees an
error behaving like log(n)?/n, at least in published papers, for the usual QMC
points and real 10-dimensional integrands. The Koksma-Hlawka inequality pro-
vides that rate using a worst function of bounded variation on [0, 1]1° that could
be chosen by an adversary who knew the locations of the points x;,...,x, to
be used. It is known that for any sequence of QMC point sets there exist inte-
grands of bounded Hardy-Krause variation with |t — | > clog(n)”/n infinitely
often. This holds for any r < (d — 1)/2 and some ¢ < oo that can depend on
r (Owen and Pan, 2022). No such f has been constructed that needs r > 2
powers of log(n) for one of the usual QMC constructions. Colzani (2022) shows

that ) )
(%—F) log' T¢(log(2 + n)))7
for any € > 0 when fi,, is computed using n Kronecker points (see §15.14) and
the integrand f has an absolutely convergent Fourier series. We will see that
the Kronecker points are not very good QMC points. Perhaps the integrands
with | — p| > clog(n)”/n infinitely often for large r are quite odd and special.
We know that for some n, QMC will be better than MC, but we cannot tell
a user which n that will be. An additional difficulty is that the coefficient of
log(n)?!/n includes Vik (f). Morokoff and Caflisch (1995) compare

\ﬂn—M\ZO

d

d
[[zi and folx) =[]0 —xy). (15.12)
Jj=1

Jj=1

fi(z)

These certainly appear to be about equally challenging to integrate numerically,
yet Vax(f1) = 2% — 1, while Vi (f2) = 1. The difference stems from the way
that Vi is defined (see the end notes). There is thus an exponential in d
difference in the lead constants for the error bounds of these two quite similar
integrands.
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These problems with the theoretical accuracy of QMC have lead to some
empirical alternatives. Many authors fit a linear regression model log | — pu| =
ap — aplog(n) to example data where p is known, from which it will then
appear that the error is O(n~*') with a; commonly between 1/2 and 1. We
know theoretically that such rates are not the true asymptotic rates, while at
the same time, they can be much more realistic for a given range of n than the
asymptotic rates. It is then difficult to know for which other integrands and
sample sizes is the empirical rate O(n~**) a good guide.

A less common empirical investigation looks at alternatives to using Vuk (f)
to describe performance at finite n for different functions f. That is like seeking
an empirical ag in the regression above. In a set of examples, Schlier (2004)
finds that Vygk(f) has little to do with the QMC accuracy, confirming what
seemed clear in the discussion of fi and fo from (15.12). He then finds that
0% = Var(f(z)) provides a more reliable scaling. This measure is problematic
theoretically because we could choose f completely lacking any of the regularity
that QMC uses without that irregularity being reflected in Var(f(x)). We
therefore cannot know to which other integrands his findings might apply. His
test functions all had bounded variation and most were differentiable.

The empirical answers are not aligned with known theory. By the same
token, the theoretical guidelines fail empirically. Schlier (2004) reports inaccu-
racies of “tens of orders of magnitude” from using the Koksma-Hlawka bound.
Improved descriptions of QMC performance are available by considering coor-
dinate projections of the QMC points in §15.8. That connects to the notions of
effective dimension in §17.2 and weighted spaces in §7.7. Those concepts narrow
the gap between theoretical and empirical performance.

Some forms of randomized QMC in Chapter 17 provide control on those log-
arithmic powers. They ensure that the mean squared error in RQMC sampling
cannot be above I'o?/n for a constant I' < oo where o2 /n is the mean square
error in MC. That bound holds even for worst case square integrable functions
specifically chosen to make RQMC have a large variance relative to MC.

15.5 van der Corput and Halton sequences

Given a sample size n, a natural way to evenly distribute n points in [0, 1] is to
form n congruent intervals [(i —1)/n,i/n] for i = 1,...,n, and take their center
points (i — 1/2)/n. Niederreiter (1992b) shows that for z; € [0, 1],

1 i—1/2

D (xy,...,z,) = — + max |z —
n( ) ) n) m 1<i<n (i) n

where x(;y is the i’th smallest of the ;. Thus the midpoint rule z; = (i—1/2)/n
minimizes D} attaining the value 1/(2n). A similar representation shows that
the midpoint rule also minimizes D,,.

One problem with the midpoint rule is that it is awkward to extend. The
midpoint rule with n 4+ 1 points does not contain the n point rule. Neither does
the one with 2n points. The midpoint rule with 3n sample points does extend
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the one with n points. But if we start with n; points and keep extending our
rule this way we get a sequence of quadrature rules of size n; = 3/~1n; which
grows uncomfortably fast.

We would like to find an infinite sequence x; € [0, 1] for ¢ > 1 with a small
discrepancy D,, or D} for all n. The most reasonable one point rule is z1 = 1/2.
This splits [0, 1] into two equal intervals, left and right. The next point zs might
as well be in the middle of one such interval. If we take x5 = 1/4 then it is
reasonable to put z3 = 3/4 to recover some balance. Now we have four intervals
of equal length so it is reasonable to split one of them in two. If we’ve split a
subinterval of [0,1/2] with x4 then it seems fair to split a subinterval of [1/2, 1]
with Is5.

The van der Corput sequence carries out just such a myopic equidistribution
algorithm. To define it, we introduce a digit retrieval function. For integers
i>0,k>0,and b > 2, let dj (i) € {0,1,...,b— 1} be the coefficient of b* in
the base b expansion of i. That is

i= dpp(i)bF, (15.13)
k=0

where only finitely many of the dy; are nonzero. Equation (15.13) uniquely
determines dj 4(7) given 4, k, and b. When b is understood, we use di (i) as
shorthand for dg (7).

The radical inverse function ¢, in base b > 2 is defined as

Gp(i) = dip ()b (15.14)
k=0

The radical inverse function flips the base b expansion of i around the decimal
point (b-minal point), mapping the nonnegative integers into [0, 1).

The van der Corput sequence is defined by z; = ¢o(i — 1) for ¢ > 1.
See Table 15.1 for an illustration. It is customary to start the van der Corput
sequence with 1 = ¢2(0) = 0, instead of taking the first point to be z; =
1/2 as discussed above. However, having x1 = 0 often causes problems with
integrands that are unbounded. As a result we often take x; = ¢2(7) instead, in
applications.

Reading down the second and third column of Table 15.1 we see how van
der Corput’s sequence remains balanced. The integers ¢ alternate between odd
and even, ending in 1 or 0 modulo 2. When flipped at the binary point, they
therefore alternate between subintervals [1/2,1) and [0,1/2). If n is even, half
the points are on the left and half are on the right, while if n is odd, the disparity
between the half intervals is just one point. Similarly, the last k binary digits of
i cycle through 2% possible endings, and every consecutive 2¥ points are equally
stratified among 2% intervals [(27%, (¢ +1)27F) for 0 < £ < 2*.

The same idea works in any integer base b > 2. The van der Corput
sequence in base b > 2 is defined by z; = ¢p(¢ — 1) for i > 1. As with base 2,
we often take x; = ¢y (i) to avoid having x; = 0. The van der Corput sequences
are low discrepancy sequences:
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.

2(i)
1 1 0.1 1/2 05
2 10 001 1/4 0.25
311 011  3/4 075
4 100 0.001 1/8 0.125
5 101 0.101  5/8  0.625
6
7
8
9

110 0.011  3/8 0.375
111 o0.111  7/8 0.875
1000 0.0001 1/16 0.0625
1001 0.1001 9/16 0.5625

Table 15.1: The table illustrates computation of the base 2 radical inverse func-
tion ¢ used in the van der Corput sequence. From left to right: The integer
1 is converted to base 2. Then its binary digits are reflected about the binary
point. The result is then re-expressed as a fraction and as a number in base 10.

Theorem 15.6. Fori>1 and b > 2 let x; = ¢p(i — 1) € [0,1]. Then

b—1
o b odd
) nD}(z1,..., %) 4logb
limsup ——"F—"—= = 9
nree logn 7b b even
4(b+ 1) logd, '
Proof. Faure (1982). O

The same asymptotic star discrepancies apply if we start the sequence at
o¢p(1) instead of ¢p(0). Indeed, we could skip ahead any number of places,
taking x; = ¢p(N + i —1) for i > 1 and N > 0. The possibility to skip over
points is a special property of the van der Corput sequence and is not generally
advisable. For other QMC constructions, skipping over even one point can be
very damaging (Owen, 2022).

The limit in Theorem 15.6 is strictly increasing in b for b > 3. The value for
b = 2 is just slightly worse than the one for b = 3, and so b = 3 attains the best
limit.

Sample sizes n = 2™ are especially good for the van der Corput sequence.
Figure 15.4 shows

D (¢2(1), -+, 92(1)) /Dy (02(1); - .. da(m(n)))

where m(n) = 2l1°82(")] is the greatest power of 2 that is less than or equal to
n. That ratio is never below 1 for 1 < n < 2'4. In that range, extending the
sequence from a power of two can increase but not decrease the discrepancy
until one reaches the next power of 2. Perhaps that ratio is never below 1 for
any n > 1. The figure includes 1 < n < 4096 = 2'2. Exercise 15.6 asks you to
investigate b = 3.
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Star discrepancy at n vs previous power of 2
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Figure 15.4: For 1 < n < 4096, we see the star discrepancy of the first n
points of the van der Corput sequence divided by that of the first 2™ points for
m = m(n) = max{k | 2¥ < n}.

The greatest need for QMC methods is not for d = 1, but for d so large that
iterated one dimensional rules based on Fubini’s theorem are ineffective. One of
the simplest methods for higher d is the Halton sequence. The Halton sequence
uses radical inverse generators in bases b; > 2 for 7 = 1,...,d. In order for
these points to be equidistributed it is necessary for b; to be relatively prime to
each other. That is, for j # k the bases b; and by, should not both be divisible
by any positive integer other than 1. The definition below uses the usual choice.

Definition 15.2. The Halton sequence x1, T, -- € [0,1)¢ has
$7j:¢p](2—1), 2217 lgjgd,
where p; = 2, po = 3, and more generally, p; is the j'th prime number.

Figure 15.5 illustrates the Halton sequence for d = 2, skipping the point
at the origin. For d = 2, if we take n = 2%3® consecutive points from the
Halton sequence, for positive integers a and b, then from the radical inverse
construction, each interval [(¢ — 1)/2%,¢/2%) for £ = 1,...,2° has 3% of the z;;.
Similarly each interval [(¢—1)/3% ¢/3) for £ =1,...,3" has 2¢ of the x;3. Even
better, if we intersect these strata in the natural way, we get n rectangles each
with exactly one of the n Halton points.

More generally, the projection of n = H?Zl p?j consecutive Halton points
onto components j € u C {1,...,d} places ][4, p;-lj points into each of [ |, p;j
congruent hyper-rectangular regions.
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Halton sequence in the unit square

72 Halton points 864 Halton points 864 random points

Figure 15.5: The left panel shows the first 72 = 2332 points of the Halton
sequence x; = (P2(4), ¢3(é)) for i = 1,...,72. The reference lines divide the
unit square into a grid of 8 columns and 9 rows. Each grid rectangle has one
Halton point. The middle panel shows the first 864 = 2°33 Halton points. The
right panel shows 864 random points for comparison.

The reason for using the first d primes is that smaller bases give finer stratifi-
cation than larger ones. The smallest d relatively prime natural numbers (ruling
out 1 because it can’t be used as a base) are the first d primes.

For large d it would be cumbersome to have n be a multiple of a power of
each p; used. We then find that no values of n are especially good for Halton
sequences. Powers of 10 may then be ok, not because they are especially good,
but instead because no other sample sizes are especially good. The variables
getting base 2 or 3 in the Halton sequence will tend to have the best equidistri-
bution and so it makes sense to use them on the input dimensions thought to
be most important.

The Halton sequence is extensible. If we don’t want an extensible sequence,
then a scheme of Hammersley has better discrepancy bounds.

Definition 15.3. The Hammersley sequence x1,x2, - ,2, € [0, 1)d has
xy = (i—1)/nand x5 = ¢p,_, (i —1) for j = 2,...,d where p; is the j’th prime
number.

The Hammersley sequence samples the first variable z;; with equispaced
points and then uses a d— 1-dimensional Halton sequence for the rest of the vari-
ables. By taking smaller bases than the Halton points use, better equidistribu-
tion is obtained. In practice, the first dimension can instead be x;; = (i—1/2)/n
and the others can be any n consecutive values from a d — 1-dimensional Halton
sequence. The Hammersley sequence with d = 2 and b = 2 and n = 2™ is some-
times called the Roth sequence after Roth (1954). The Halton and Hammersley
sequences both achieve low discrepancy.
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Theorem 15.7. For the Halton sequence with n > 2

Di(wy,...,a, ndl H (LPJ/ZJ log(n) +d> +0 (bg(z)dl> . (15.15)

log( pj

For the Hammersley sequence with n > 1,

pit ) gy T (0 ) g (),

log(p;) n

(15.16)

Proof. These are derived from theorems presented in Chapter 2 of Dick and
Pillichshammer (2010). They are based on the work of Atanassov (2004) who
attained a notable reduction in the lead constant, compared to the original
results of Halton (1960) and Hammersley (1960). O

Equation (15.15) shows that D} = O(n~!(logn)?) for the Halton sequence.
The non-extensible Hammersley sequence attains the slightly better rate D} =
O(n~*(logn)4~1). Using bounds on the size of the j’th prime number, Dick and
Pillichshammer (2010) show that the lead term in D is at most 7log(n)?/(2%dn)
for the Halton sequence and 7log(n)?=1/(2¢71(d — 1)n) for the Hammersley
sequence.

The Halton sequence has a problem for large values of d. Figure 15.6 shows
three pairwise projections of the first 1000 points. They correspond to the last
two dimensions when d = 10 or 20 or 30. The projection of x; onto their 29’th
and 30’th dimensions will not be stratified if we use fewer than n = 109 x 113 =
12317 points. It will be exactly stratified if we use a multiple of 12317 points
and approximately stratified if n > 12317, but otherwise the projection might
be bad, as shown.

The bad projection in the third panel of Figure 15.6 becomes even worse
when we adjoin the 28’th prime and look at @; 28:30 in three dimensions. The
two dimensional projection shows a handful of nearly diagonal stripes. The
three dimensional projection similarly has a small set of line segments in the
unit cube, surrounded by a large void.

The Halton sequence can be improved, by scrambling its digits as described
next. First we introduce a generalized van der Corput sequence with x; =
@b,z (i — 1) where

= w(dpp(i))b (15.17)
k=0

where 7 is a permutation of {0,1,...,b— 1}, and as before, i has base b digits
di,5(7). There is a reason to prefer permutations with 7(0) = 0. The integer
i has only finitely many nonzero digits dj ;(¢), and taking 7(0) = 0 means we
only need to sum finitely many terms to compute ¢ (4; 7). The alternative is to
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Some projections of the Halton sequence

7 y,
a y

/;z, <4

177

Bases 23 & 29 Bases 67 & 71 Bases 109 & 113

Figure 15.6: Each panel shows a two dimensional view of 1000 points of the
Halton sequence, starting at ¢,(1). From left to right, the bases are for the 9’th
and 10’th primes, the 19’th and 20’th primes, and the 29’th and 30’th primes.

sum only those terms that affect a finite precision floating point representation
of z;.

A scrambled Halton sequence x1, 2, - has r;; = ¢, (i—1;7;) fori > 1
and j = 1,...,d, where p; is the j'th prime number and 7 is a permutation
of {0,1,...,k — 1} for which m4(0) = 0. Taking x;; = ¢, (i;7;) instead avoids
starting at (0,...,0). There are numerous proposals for the permutations .

A proposal due to Faure (1992) is widely used and one of the simplest to
describe. The first few permutations are:

o = (01)

w3 =(012)

m=(0213)

5= (0321 4) (15.18)
1= (024135)

T =(0253146)

s =(04261537).

These permutations may be defined recursively. For even b, there is a simple
pattern relating m, to my 0. Letting b = 2k with an integer k > 2, the rule is

my = (27, 27 + 1).

For odd b the rule is a bit more complicated. If b = 2k + 1 for integer k > 1,
then for j =0,...,2k — 1 let

o) man(d), mor(j) <k
) = {772k(j) +1, mox(j) =k,
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Projections of a scrambled Halton sequence

Bases 23 & 29 Bases 67 & 71 Bases 109 & 113

Figure 15.7: This figure shows the points from Figure 15.6 after applying Faure’s
permutations to their digits.

and put
Fapr = (0 (k= 1)),y nk: (2k —1))).

The bad projections from Figure 15.6 are replotted in Figure 15.7 after
applying the permutations from Faure (1992) to their digits. The result is a
substantial improvement, though Exercise 15.7 has a cautionary note. There
have been many more proposals for deterministic scrambling of the digits of
the Halton sequence. In §17.10 we will look at a proposal that chooses the
permutation at random.

Another strategy to improve the Halton sequence is to use leaped se-
quences, defined by z;; = ¢,,((i —1)). Here £ > 1 is a leaping constant
that should be relatively prime to all the p; that are used. While leaping can
be helpful in Halton sequences, it can be severely problematic with other QMC
constructions even leading to D7 failing to converge to 0 as n — oo (Owen,
2022). As a result, leaping is potentially harmful and should be avoided.

The Halton sequence is somewhat out of favor compared to digital nets
presented in §15.7 as well as the lattice methods in Chapter 16. It remains
popular, in part because it is very easy to program. It can be used for any
number of sample points n in any dimension d.

The Halton sequence is extensible in dimension, meaning we can add a d+
1’st dimension to our input points. Suppose for example that f(x) = fq(x) fol-
lows a process through d time steps using = € [0, 1]¢. If we later want to update
our n values yi.a = fa(wi1,-..,Ti,a) to get Yiar1 = fay1(Ti1, ..., Tia+1) we can
use input points x; 441 for ¢ = 1,...,n. Furthermore, when fgy1(zi1,..., 2 d41)
is of the form ggy1(vid,%ia+1) for some function ggqy1 then the updates are
simple and we don’t even need to store the prior x;; values. The Hammersley
sequence is similarly extensible in dimension d, but it is not extensible in n.
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Variable Range Meaning

St (150, 200] wing area (ft?)

Wiw [220, 300] weight of fuel in the wing (Ib)
A 6, 10] aspect ratio

A [—10, 10] quarter-chord sweep (degrees)
q 16, 45] dynamic pressure at cruise (1b/ft?)
A [0.5, 1] taper ratio

te [0.08, 0.18]  aerofoil thickness to chord ratio
N, (2.5, 6] ultimate load factor

Wag [1700 2500] flight design gross weight (I1b)
W, 0.025, 0.08] paint weight (Ib/ft?)

Table 15.2: Variables and their ranges for the wing weight function.

15.6 Example: the wing weight function

The following function is a model for the weight of a wing of an aircraft

A \06 100¢, \ 0.3
0.036.50-758 11700035 0.006 ,0.04 c NoWoyo )40 + S W,
w fw <0052 (A)) e (cos(A)) ( a) "+ P

taken from the virtual library of simulation experiments test functions of Sur-
janovic and Bingham (2013). The variables’ meanings and ranges are given in
Table 15.2. The virtual library contains code to implement this function as well
as references to its origin. Note that A is given in degrees, from —10 to 10. It
then lies between £107/180 radians, so cos(A) does not approach zero, and the
wing weights are bounded.

We will study the average of this function over the 10-dimensional hypercube
defined by its input variables’ ranges. Our integrand on [0, 1]!° first scales
each variable to its range and then computes the wing weight. One would not
ordinarily seek the average weight of a randomly designed airplane wing. This
example is useful for illustration because it has a scientific/engineering origin
while not requiring access to specialized proprietary software to compute it. We
will also ignore the fact that nine of the ten input variables can be integrated
out to yield an elementary closed form. The exception is A. FExercises 15.19
and 15.20 address a better motivated problem of quantifying and comparing the
importance of these ten input variables.

We can apply plain Monte Carlo as well as quasi-Monte Carlo sampling
to this integrand. Figure 15.8 shows cumulative averages of the wing weight
function using the first 20,000 points of the Halton sequence in 10 dimensions.
Only every 200’th point is plotted and we start plotting at n = 1000. The
Halton sequence in 10 dimensions does not have any especially good sample
sizes, so little to no harm is done by using round numbers for n.

From Figure 15.8 it appears that the QMC rule is doing better than plain
MC. The Halton cumulative values stabilize more quickly than the MC ones
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Cumulative mean wing weight
Solid = Halton Dotted = Random

Mean weight
266 267 268 269

I 4 I I I I I
0 2000 4000 6000 8000 10000

Figure 15.8: The horizontal axis is the sample size n from 1000 to 10,000 in
steps of 200. The vertical axis is the cumulative average of the first n wing
weight values. A solid line is used for the Halton sequence. Ten dotted lines
show plain Monte Carlo.

and they fluctuate less. Of course, we don’t know the error because we don’t
know the true integral p, and if we did know u we would not be using QMC.
By comparison, for MC, the fluctuations within curves are about O(1/n) while
distances between curves are about O(1/4/n), the same as our MC error. For
QMC, we do not have an estimate of between curve error until we randomize
as in Chapter 17. As noted above, the Koksma-Hlawka bound does not tell us
how accurate [i is and we cannot be sure whether n = 20,000 is large enough for
the asymptotic rate to be relevant. Despite this doubt, we are left thinking that
QMC is probably better in this instance, but we don’t have evidence as strong
as we would like, much less a numerical estimate of error. This is a fundamental
difficulty with QMC and it is the primary motivation for RQMC in Chapter 17.

The Halton cumulative means in Figure 15.8 appear to be drifiting up as n
increases. A possible explanation is that the cumulative means of the inputs
tend to approach 0.5 from below, and the wing weight function is monotone
increasing in most of its inputs. Perhaps antithetic sampling with the Halton
sequence would improve the estimation of mean wing weight. Exercise 15.8 asks
you to investigate that possibility.
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15.7 Digital nets and sequences

One problem with the Halton sequence is that as d increases, a larger value of
n is required to get meaningful stratification. For d = 5, consecutive blocks
of 2 x3 x5 x7x 11 = 2310 points have a full 5-dimensional stratification.
For d = 10, the product of the first 10 primes is 6,469,693,230, so that no
10-dimensional stratification appears until over 6 billion points have been used.

A second problem with the Halton sequence is that pairs (z;1, z;2) are strat-
ified in consecutive blocks of 6 points while pairs (x;1, z;3) are stratified every
10 points and pairs (z;2,z;3) are stratified every 15 points. It would be better
to have a rule where all (§) pairs of variables can be stratified with the same
value of n.

For large d it may be unrealistic to expect that we attain a full d-dimensional
stratification. But it should be feasible to stratify all the two dimensional
marginal distributions simultaneously using about d? points. For instance, us-
ing randomized orthogonal arrays (see §10.4) it is possible to stratify all (Z)
s-dimensional coordinate projections using p° points for any prime number
p=>d-—1.

What is needed is something like a Halton sequence with the same base
b used for all dimensions. The solution is found in digital nets as described
below. The digital nets we present are known as (t,m, s)-nets in base b, for
integer parameters t, m, s and b, with s corresponding to the dimension of the
space for . Usually s = d, that is we sample on a (¢,m,d)-net. It is useful
to let s differ from d, because there are ways to use an s-dimensional set of
points while solving a d-dimensional problem. For example, the higher order
nets in §15.12 as well as Latin supercube sampling in §17.9 use s # d.

Let d > 1 and b > 2 be integers. An elementary interval in base b is a
subinterval of [0,1)° of the form

s

- Cj Cj—|-1

E_H[bkf’ bk )
j=1

for integers k; and c;, with k; > 0 and 0 < ¢; < bk . Elementary intervals in
base b are also called b-ary boxes, b-adic intervals, or cells.

Figure 15.9 shows some elementary intervals in base b = 5 and dimension
s = 2. In the upper left corner we have the entire unit square [0,1)? which is,
trivially, an elementary interval with ¢; = k1 = ¢ = k3 = 0. The more inter-
esting ones are those that impose some restrictions on one or more components
of x. We say that I is genuinely r-dimensional if k; > 0 holds for at least
r of the indices j =1,...,s.

Definition 15.4. Let m > 0, b > 2 and s > 1 be integers. The sequence
T1,...,xpm € [0,1)° is a (0, m, s)-net in base b if every elementary interval
FE in base b of volume b~ contains exactly 1 of the points ;.

Figure 15.10 shows some (0, m, 2)-nets in base 5. The number of elementary

intervals balanced by a net can be much larger than n. The (0, 3,2)-net in
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Some elementary intervals in base 5

Figure 15.9: Each panel shows the unit square divided into elementary intervals
in base 5. Panels in the left, middle and right columns are divided into 1, 5, and
25 vertical strips respectively. Panels in the top and bottom rows are divided
into 1 and 5 horizontal strips respectively.

Figure 15.10 shows the first two dimensions of a (0,3,5)-net in base 5. For
each vector of scales (ki,...,ks) with k; > 0 and 25:1 k; = 3, there are 125
rectangular cells of volume 1/125 in [0,1)° that each contain exactly 1 of the
125 points. Some combinatorial arguments show that there are 35 such tilings,
and so n = 125 points of the net manage to balance 35 x 125 = 4375 cells of
volume 1/125. Of these, only 5 x 125 = 625 would have been balanced in a
Latin hypercube sample. The method of control variates §8.9 can be used to
take account of known stratum volumes by introducing regression coefficients.
But it would be difficult to use 4375 control variate regression parameters with
only n = 125 data points. As m increases, the number of elementary intervals
balanced grows more quickly than n = b™ does.

The very strong multiple stratification that (0, m, s)-nets have is not always
possible. For some choices of m, s and b, no such net exists. By weakening the
criterion somewhat, more constructions become available.

Definition 15.5. Let m >t > 0 be integers. The sequence 1, ...,z € [0,1)°
is a (t,m, s)-net in base b if every elementary interval in base b of volume
b'~™ contains exactly b’ points of the sequence.

Cells with volume b/n contain exactly b’ of the n sample points, match-

ing their proportion of the volume of [0,1)°. Smaller values of ¢ imply better
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Two digital nets in base 5
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Figure 15.10: This figure shows two digital nets in the unit square in base 5.
The one on the left has 125 points. The one on the right has 625 points. Dark
reference lines 1/5 apart and light ones 1/25 apart show boundaries of some
elementary intervals.

equidistribution. The upper limit on ¢ is from the trivial case t = m, which
only states that all points of the sequence are in [0,1)%. A (¢,m, s)-net in base
b is ordinarily a (t + 1,m, s)-net in the same base. The only exceptions are
from cases where ¢ is at the upper limit m and so cannot be raised. A strict
(t,m, s)-net in base b is one that is not also a (¢t — 1,m, s)-net in base b. Digital
nets have low discrepancy:

Proposition 15.2. The star discrepancy of a (t,m, s)-net in base b with m > 0
satisfies

1 s—1
D < Bls o)t P8 L 0 ((logn)*2)
n
where
b—1y\s-1
( ) ) s=2, orb=2,s=3,4
B(s,b) = 2logb
T ! < Lb/2] )S_l otherwise

(s —1)!' \logb ’ ’

Proof. This is Theorem 4.10 of Niederreiter (1992b). O

The (¢, m, s)-nets are finite sequences. There is an extensible version of them
as follows.
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Definition 15.6. For ¢ > 0, the infinite sequence x1, x2, -+ € [0,1)* isa (¢, s)-
sequence in base b if for all k > 0 and m > ¢ the sequence Typm 11, ..., T(pq1)pm
is a (t,m, s)-net in base b.

A (t, s)-sequence is really an astonishing object. It is the concatenation of an
infinite sequence of (¢, m, s)-nets for any m > ¢. Those nets can be grouped into
blocks of b consecutive ones. Each such block is a (¢, m + 1, s)-net. Similarly,
those (t,m + 1, s)-nets are nested within (¢,m + 2, s)-nets within (¢, m + 3, s)-
nets and so on. As n increases through powers of b, the volume of balanced
elementary intervals falls off as b*~™ = b /n and their number increases rapidly.

The construction and analysis of digital nets and sequences is a very spe-
cialized topic. We will look at the properties and algorithms for some nets,
but not delve into how they are constructed, apart from §15.10 which gives an
elementary example.

The Faure sequences are (0, s)-sequences in base p, where p > s is a prime
number. An early implementation of the Faure sequence is in Fox (1986). The
Faure net is a (0, m, s)-net in base p obtained as the first p™ points of the Faure
sequence. The nets in Figure 15.10 are leading subsequences of Faure’s (0, 5)-
sequence in base 5. The Hammersley device of adding one equispaced variable
also works for Faure’s (0, m, s)-net allowing the construction of a (0, m, p+1)-net
in base p for prime p.

Nets from the Faure sequences have a disadvantage when d is large. We need
p to be a prime number at least equal to d (or d — 1 if using the Hammersley
device). We may use the first d components of the base p Faure sequence, but
that sequence balances no genuinely 2-dimensional elementary intervals unless
n is a multiple of p?> > d?. If n is much below p?, then some two dimensional
projections of the Faure points will be very unevenly sampled. The appearance
is quite similar to stripes that we see in Figure 15.6 for the Halton sequence
projected on the j’th and k’th variables when n/(p;px) is somewhat smaller
than 1.

Even with n = p?, there can be bad higher dimensional projections. For
example, the first 121 points of the Faure sequence in base 11 have some strange
projections. From Figure 15.11 we see that x;4 + ;6 — ;10 + ;11 takes on only
3 distinct values —1, 0 and 1, for 1 < 7 < 121. As x varies through the unit
cube, this projection takes values from —2 to 2 (not uniformly distributed) and
so the sampled values are not only clustered but are also confined to a central
subregion. There are other undesirable projections and some pairs of them
reveal very structured patterns.

The first multidimensional digital sequences to be constructed were those
of Sobol’ (1967). He called them LP, squences but now they are more more
widely known as Sobol’ sequences. They are (¢, s)-sequences in base 2. Here
t = ts is a non-decreasing function of s. The first few values are given in
Table 15.3. The Sobol’ construction for dimension s + 1 is obtained by adding
the s 4 1’st variable to the points of the Sobol’ construction for dimension s.
That is, Sobol” sequences are extensible in dimension. The earlier dimensions
are constructed to have better equidistribution properties than the later ones.
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Two projections of 121 Faure points
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Figure 15.11: This figure shows two projections of the first 121 points of the 11-
dimensional Faure sequence in base 11. In the left panel, there are 61 points at
the center and 10 in each of the other sites. In the right panel, 57 points project
to the origin, 4 points project to each corner, and 12 points project to the center
of each side. These undesriable structures are broken up by scrambling methods
from Chapter 17.

When we are able to order the inputs to f from most important to least, then
we should use the first components of the Sobol’ points on the most important
inputs to f.

A (t,m, s)-net in base 2 can be formed from the first n = 2™ points of
Sobol’s (¢, s)-sequence. Such nets are not necessarily strict (¢, m,s)-nets. The
value of ¢ can be better (lower) for a net than the sequence it came from. For
each j =1,...,s, the points {z1;,...,22m;} C [0,1) of a Sobol’ net are in fact a
(0,m, 1)-net in base 2. That is, the Sobol’ points have very uniform univariate
projections. The Sobol” points can have some bad 2 dimensional projections.
Bad projections of Sobol’ points have quite a different appearance than bad
projections of Halton or Faure points. Figure 15.13 shows some of them, based
on the code from Bratley and Fox (1988).

There are multiple implementations of Sobol’s idea and they differ in which
projections are problematic. Pairs and triples and larger collections of the lower
numbered input variables generally have better uniformity than same sized col-
lections of higher numbered inputs. Because Sobol’s points are defined in base 2,
some of the implementations exploit bit level operations to gain greater speed.

There are many versions of Sobol’s construction differing in what are called
‘direction numbers’. The points in Figure 15.13 use direction numbers from Brat-
ley and Fox (1988). Those provide Sobol’ sequences for dimensions up to 40.
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Sobol' points
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Figure 15.12: Points (x;1, 242) for i = 1,...,n of a Sobol’ sequence.

A greatly expanded set of direction numbers going to much higher dimensions
and paying attention to two dimensional projections has been produced by Joe
and Kuo (2008). They give 21201 as the ‘target dimension’ of their searches
for direction numbers. Figure 15.14 shows greatly improved projection for x; 31
versus ;¢ that was problematic in Figure 15.13. It also includes two of the
subjectively worst projections of the first 1024 points for x; € [0,1]%°. Those
problematic projections fill in shortly after, with a complementary set of points
placed in the gaps. This takes place at sample sizes that are still not large
for 40-dimensional sampling. Sobol’ et al. (2011) provide direction numbers
for up to 65,536 dimensions and cite several other published papers providing
direction numbers. If the Sobol’ points really do have worse asymptotic dis-
crepancies than Halton points, then it might be due to projections like those in
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Three projections of 1024 Sobol points
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Figure 15.13: This figure shows three projections of the first 1024 points of the
Sobol” sequence in [0, 1]*° using direction numbers from Bratley and Fox (1988).
The left panel shows a very good projection of the first two components. The
middle panel shows shows a less satisfactory projection and the right panel
shows one with a serious flaw (that disappears when n = 24).

Figures 15.13 and 15.14 with relatively large gaps.

The lead constant in the discrepancy bound for digital nets used to be much
better, for large s, than that for the Halton and Hammersley sequences. That
was all changed by Atanassov (2004) who sharpened the bounds for those se-
quences. He reduced the upper bounds on their leading constants by a factor
of about s!. The sequences themselves did not change, and it is possible that a
sharper bound could yet be found for digital nets.

Digital sequences are extensible, though we should not extend them one
point at a time. If we use n = b™ points from a (¢, s)-sequence then (for m > t)
all elementary intervals of volume =™ are balanced. The next sample size that
retains all the balance we had at n = b™ is n’ = 2b™.

If we increase n along a sequence of values of the form A0, where 1 < A\ < b
and m > t, then any elementary interval that was balanced at some value
of n remains balanced for all future values of n. The first n = Ab™ points
of the (t,s)-sequence are (when m > t) equidistributed over the same set of
elementary intervals that a (¢, m, s)-net is. For 1 < A < b, those points do not
form a (¢, m, s)-net because \b™ is not a power of b. A second equidistribution
property of @1, ..., &= is as follows: no elementary interval of volume b*~™~1
has more than b points of the sequence. This holds because such an elementary
interval has only b’ points of the first 5! points of the (¢, s)-sequence.

Definition 15.7. Let A\, t,m,s,b be integers with s > 1, m >¢ >0, b > 2 and
1 <A <b A sequence zy,...,xym € [0,1)% is called a (A, t,m, s)-net in
base b if every elementary interval in base b of volume b*~™ contains \b’ points
of the sequence and no elementary interval in base b of volume b*~™~! contains
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Sobol' points with improved direction numbers
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Figure 15.14: The first panel shows improved projection for x; 31 versus x; 26
using projection numbers of Joe and Kuo (2008). The next two panels show
subjectively poor projections of those points. Most projections are much better.
The holes in the first panel ‘fill in’ when n = 4096. The second and third ones
fill in for n = 2048.

7T 8 9 10

11 15 19 23
4 5 6 8

Dimensions 1 2 3 4 5
Sobol'st 0 0O 1 3 5
Niederreiter-Xing’st 0 0 1 1 2

W o | &

Table 15.3: This table shows the quality parameter ¢ for Sobol’ and Niederreiter-
Xing (¢, s)-sequences in base 2, where s < 10.

more than b points of the sequence.

The smallest known values of ¢ for digital nets come from a construction
of Niederreiter and Xing (1996). Pirsic (2002) describes a computer implemen-
tation. Table 15.3 shows some of the resulting ¢ values for the version in base 2.

The Niederreiter-Xing nets and sequences have superior ¢ parameters that
are close to known lower bounds for ¢t as a function of dimension s and base b.
They are not as widely used as the Sobol’” points. In some empirical comparisons,
they do not seem to give much more accurate results than other methods. For
example, see Hong and Hickernell (2003). Part of the reason is that the high ¢
value for Sobol’ sequences is somewhat misleading. Sobol’ nets (finite n) usually
have better ¢t parameters than their corresponding infinitely long sequences.
Moreover, lower dimensional projections of a net can have smaller ¢ values than
the net itself.
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15.8 Effect of projections

When investigating QMC points, we often consider their one, two, and three-
dimensional coordinate projections, that is, their marginal distributions. The
bivariate projections are most frequently investigated because we usually know
that the univariate projections are very good, and bivariate projections are
easier to investigate than the trivariate projections. In general, the lower the
dimension we project points into, the better the equidistribution. It is easy
to see, for example, that D} (€1 1:(a—1),- - > Tn,1:(d-1)) < Dy (®11:d5 -+, T 1:d)-
Furthermore, the asymptotic bounds on D} attain more favorable rates in low
dimensions than in high.

The role of coordinate projections can be understood through the ANOVA
decomposition of f (see Appendix §A). We write

f@= > fu= (15.19)

WS T}

where f,, depends only on the components z; with j € u. The component fz is
a constant function, fz(x) = p, which gets correctly averaged over any sample.
The other f, integrate to 0. Therefore the QMC error is

-l =] S fuw)| < S5 fulan)
u#D =1

uF#D i=1
<Y Di(@rus- - T ik (fu)- (15.20)
u#D

Now let |u| denote the cardinality of u. In examples, it is common to find that
subsets u with large |u| have effects f, that are so small that they contribute
little to the sum in (15.20). Then, while f is of nominal dimension d, it may be
closely approximated by a sum of functions of much lower dimension. It is in
this sense of lower effective dimension than d. See §17.2 for some definitions of
effective dimension.

For subsets u of small cardinality, the effects f, may be large, but our
points x; may have low dimensional projections x;, with small discrepancy. The
discrepancy bound for projected points is O(log(n)!*=*/n) not O(log(n)?~*/n).
For instance, if «; form a (¢,m, s)-net in base b then x;, form a (¢, m, |u|)-net
in base b too, where t’ is at most ¢ and could be lower. Even with ¢t = ¢,
if m > t + |u| then the z;, have some nontrivial stratification over elementary
intervals while the z; € [0, 1]% may fail to balance any d-dimensional elementary
interval smaller than [0,1]? itself. When @;, have small discrepancy then the
term for w in (15.20) is small if Vigk (f,,) is not large. In the best case, every term
on the right of (15.20) is small because at least one its factors is small. Then
QMC delivers an estimate for our high dimensional problem with the accuracy
we would have expected for a lower dimensional one.

It is not a theorem that f must be dominated by low dimensional parts that
are amenable to QMC sampling. It is a common though not universal empirical
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finding and it provides the best use case for QMC methods. Sets of such f can be
described through the weighted spaces in §7.7. QMC methods can be customized
to a specific weighted space; see the end notes on polynomial lattice rules.
Equation (A.9) decomposes f into ANOVA components but there are other such
decompositions (see Appendix §A.7) and the argument behind (15.20) applies
to any of them.

15.9 Example: synthetic integrands

We know from Theorem 15.5 that QMC is much better than Monte Carlo when
n is large enough and f is of bounded variation in the sense of Hardy and Krause.
Unfortunately, the proven bounds are hard to apply for specific n and f. Here
we look at some examples with known integrals to get a sense of whether the
advantage of QMC applies to realistic sample sizes n, or is purely asymptotic.

Numerical examples serve as spot checks on the theory. To investigate ev-
ery important issue numerically would require an unmanageable number of ex-
amples. Instead, we consider a small number of examples seeking qualitative
insights. In some examples, the ANOVA representation (15.20) makes it rea-
sonable that QMC should do well. In the examples here, we see QMC beating
MC by enormous factors when the function is smooth and low dimensional. For
a high dimensional function dominated by smooth low dimensional ANOVA
components, QMC holds a strong advantage. We also find that QMC can be
much worse than MC by using a high dimensional integrand constructed so
that fr12, . 251(x) is the only nonzero component in the ANOVA decomposi-
tion (A.9) and n < 22°. This section can be skipped on first reading.

It is convenient to take f to be a product of univariate functions. Let
g =(g1,---,94) be a vector of functions on [0, 1] satisfying fol g;j(z)dz =0 and

fol gj(z)?dr = 1. For B € R? define

d
f(®) = fpq(x H L+ Big(x;)) - (15.21)

We know that 4 = [ f(z)dz = 1 and so it is easy to compute the error of a
QMC rule for f. Similarly

d

a—/f d:r—l—H(l—l-B)

Jj=1

is known, so the Monte Carlo RMSE o/+/n, is available for comparison, with-
out having to actually do any MC sampling. What makes product functions
very convenient is that their entire ANOVA decomposition (Appendix §A) is
available:

flx) = Z fu(x) where f,(x Hﬁjgj xj),

uwCA{1,...,d} JEU
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which includes fg(x) = 1 by convention. For u # o, the variance of f, is
0121. = HjEu 532

Increasing the magnitude of 3 makes the higher dimensional ANOVA com-
ponents relatively larger and makes the quadrature problem harder. Also, in-
dividual variables z; with larger values of |3;| are more important than the
others.

We begin with an easy problem taking g;(z) = v12(z — 1/2) and 3; = 1/5
for j =1,...,5, leading to

fi(z) = ﬁ(l + @ (z — 1/2)).

This choice of 3 is one where even Latin hypercube sampling, which only strat-
ifies the one dimensional projections, makes a meaningful improvement. From
the ANOVA decomposition we obtain the best additive approximation to f,

5
fada(@) = Y ful@) =1+ Zﬁjgj(wj).

lul<1

This additive approximation has variance O’de = Z?=1 532 Latin hypercube

sampling (§10.3) has variance o _/n—+o(1/n) where %, = 02 —02,, = H?:1(1+

Bf) —-1- Z?Zl ﬁf For f;, Latin hypercube sampling reduces the variance by
a factor of about 13.

Figure 15.15 shows results for the Halton, Faure and Sobol’ sequences with
f1 for n < 5* = 3125. They all have errors smaller than o/\/n. The Halton
sequence has an error comparable to the Latin hypercube sampling RMSE (for
these n) while the other sequences yield smaller errors.

To judge the attained convergence rate for QMC, it is better to look at
errors on a logarithmic scale. One difficulty with the logarithmic scale is that
when two consecutive errors fi, — p and fi,4+1 — ¢ have opposite signs, one or
both may be very close to zero. We can’t know in practice when our error has
changed sign and so, when looking at errors on a log scale we should ignore a few
stray values that are far below the others; they don’t correspond to actionable
information. We can also mitigate this difficulty by plotting |/, — u| for every
k’th value of n.

Figure 15.16 shows the QMC errors for f; on a logarithmic scale for n up
to 5% = 15,625. The Halton sequence makes steady progress, showing a rate
better than n~!/2 though not, on this range of sample sizes, as good as n~!.
It eventually gets better than Latin hypercube sampling and by n = 15,625 it
shows an error between 1/10 and 1/100 of o/+/n. The Faure sequence attains
better results than the Halton sequence. It makes uneven progress resembling
stair steps. Its efficiency increases greatly as n approaches a power of 5, where
a new set of elementary intervals become balanced. In this example, both Faure
and Sobol” sequences perform close to the theoretical ~ 1/n rate when n is a
power of their respective bases. The Sobol’ sequence performs better than the
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QMC estimates for a 5 dimensional problem
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Figure 15.15: This figure shows quasi-Monte Carlo estimates g of p =
f[o 15 f1(zx) dzx for the example function f;. The horizontal axis has the sample

size n over the range from 52 = 125 to 5* = 3125. From top to bottom, light-
est gray to darkest, the results are for the Sobol’ sequence, the Faure sequence
(base 5) and the Halton sequence. The horizontal reference line is at the true
mean p = 1. The dotted reference curves are at p plus or minus one Monte
Carlo standard deviation. The dashed curves are at p plus or minus one Latin
hypercube sampling standard deviation.

Faure sequence between powers of its base. Its error changes sign numerous
times near the end of the run with the zero crossings complicating a logarithmic
plot of the errors.

It is interesting to consider the effects of dimension on accuracy for this exam-
ple. We can inspect the purely 5-dimensional component (v/12/5)° H?Zl(xj -
1/2) of fi and see how close its average is to 0. The results for n < 15,625
(not plotted) are that the Halton sequence makes absolute errors that fluctu-
ate around o/+/n. The Faure sequence has errors generally above o/y/n. The
Sobol’ sequence has errors, at powers of 2, that trend more steeply downwards
than 1/y/n, ending up below ¢/4/1000n. The Sobol’ sequence in [0,1]> for
n < 15,625 has more thorough 5 dimensional stratification than either of the
other two sequences. This brings it better performance on the highest ANOVA
component of f;. The Faure sequence remains competitive on f; because the
highest ANOVA component has small magnitude.

For a five dimensional and very smooth integrand, it would be possible to
use a quadrature rule based on a 5-dimensional grid. QMC is easier to use than
such 5-dimensional product rules. For example, the Sobol’ sequence works well
at values of n that are powers of 2. The simplest product rules would require
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QMC error trends for a 5 dimensional problem
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Figure 15.16: This figure shows quasi-Monte Carlo errors |fi— u| for the example
function f;. The horizontal axis has the sample size n from 52 = 125 to 5% =
15,625. From top to bottom, darkest gray to lightest, the results are for the
Halton sequence, the Faure sequence (at multiples of 25) and the Sobol’” sequence
(at multiples of 32). The solid reference lines are proportional to 1/n, the
approximate asymptotic convergence rate for QMC. The dotted reference lines
are the Monte Carlo RMSEs for sample sizes n, 10n, 100n, 1000n and 10,000n.
The open dots show Sobol’ errors when n is a power of 2. The solid dots show
Faure errors when n is a power of 5. At the final sample size the QMC errors
are just below 10730 //n.

n to be the 5'th powers of an integer, so while usable they would be quite
cumbersome.

Next we consider a function f5 in 25 dimensions, where product rules are
completely infeasible. We suppose this time that each successive component of
x is less important than the previous one. We take 5, = 1/(24) and retain
gj(z) = V12(z — 1/2). That is

T V3,
faa(m) = jl:[l(l + 7(90] 1/2)).

This function has finite variance for any d < oo because for  ~ U(0,1)4,

o0

d 2
log(E(f2,4(z)?)) = Zlog(l + 4]%) < EZ% = ;—4. (15.22)
J=1 j=1
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QMC error trends for a 25 dimensional problem
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Figure 15.17: This figure shows quasi-Monte Carlo errors | — u| for the example
function f5. The horizontal axis has the sample size n from 1 to almost 2 million.
Results from the Sobol’ sequence are plotted at n = 2¥ for k = 0,...,20. Results
from the Faure sequence in base 29 are plotted for n = A\29% < 2x29* for integer
n and . A solid point is shown for n = 29¥. The dotted reference lines are at
o /v 10Fn for (top to bottom) 0 < k < 6. The solid reference line is 1/n.

That is 02 < exp(7?/24) — 1 = 0.51. The small magnitude of this variance
does not make fy unrealistic, because effective (or otherwise) QMC methods for
integrating fo are similarly effective on cfy for ¢ # 0. In particular, their relative
error |ji — p|/p is unaffected by ¢ as is the comparison between QMC and MC.
The variance of fa 4 at d = 25 is roughly 90% of the variance bound (15.22).
For d = 25, we can work out that Latin hypercube sampling reduces the Monte
Carlo variance by about 9.1-fold.

Figure 15.17 shows results for this function using the Sobol’ sequence as well
as the Faure sequence in base 29. The Sobol’ sequence starts out with an error
equal to about o/+/n but turns the corner around n = 100 where the plot begins.
It makes steady progress roughly in proportion to 1/n from then on. The Faure
sequence has very large errors below n = 100, but we ordinarily would not
contemplate using fewer than 100 points in 25 dimensions so that shortcoming
is not serious. The Faure sequence at powers of 29 is nearly as good as the
Sobol’ sequence. Between powers of 29, the Faure sequence is not steady, and
makes some relatively large errors. It has one very small error, presumably
a lucky outcome, near n = 700,000. The Sobol’ sequence has the advantage
here of using better equidistribution on the earlier and more important input
variables.
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In this 25-dimensional example, QMC is able to attain, for n near 108, errors
comparable to the RMSE that Monte Carlo would have with n between 10'°
and 10'.

For 25 variables there are 22° — 1 (over 33 million) ANOVA components that
contribute to the function and so we can partition the error into that many parts.
Table 15.4 illustrates some of them. For the highest order ANOVA component,
the full 25 way interaction, the Sobol’ sequence has an error of about 900 times
the Monte Carlo standard deviation o, /y/n. The Faure sequence has an error
of about 10900, /1/n.

In this example, the 25 factor interaction H?il Bjg;(x;) is integrated with
an error equal to roughly 1000 times the plain Monte Carlo RMSE. No fully
25-dimensional elementary interval was balanced by either set of QMC points,
so perhaps we should not have expected them to be better than MC. For Faure
points, that balance could not happen until n = 29%% ~ 3.6 x 103¢. For base
2 sequences like Sobol’s, the best available value of ¢, from the minT project
(Schiirer and Schmid, 2009), is 31. So a 25-dimensional elementary interval
could be balanced by n = 231725 ~ 7.2 x 10'6 points. From that same source,
there do exist (28,53, 25)-nets in base 2 which could balance a 25-dimensional
elementary interval with n = 228%2% x~ 9.0 x 10'® points. Even for d as low
as 25, getting nontrivial d-dimensional stratification with these digital nets is
unreasonably expensive.

This bad performance on that 25-dimensional interaction hardly matters
because that highest interaction accounts for only about 1.32 x 10733 of the
variance of f. The interaction of the first 4 variables is relatively much more
important. The Sobol’ sequence makes an error about 10~%¢,/y/n for this
component while the Faure sequence error is about 1.67x 10~ %0, //n. While the
25-dimensional interaction hardly matters, for extremely large n it will dominate
asymptotic bounds that sum over log(n)|“| /m. Those asymptotics are then not
descriptive of actual accuracy for this integrand and practical sample sizes.

The Halton sequence was left out of this example. Exercise 15.10 is about
implementing Halton points for this example.

In these product functions, the accuracy promised by QMC is attained at
modest sample sizes for the low dimensional ANOVA components. We might
expect good results for QMC when f is dominated by smooth low dimen-
sional ANOVA components. We should not expect similar results for every
function, not even every product function. A spiky product using functions
such as g;(z) = V50(1<0.01 — Lu>0.99) Will obviously require larger n to get
good results. Similarly, we expect that highly oscillatory functions such as
g;(z) = V2sin(2Knz) with large K > 0 will require larger n before the QMC
rate is observed.

We have used Latin hypercube sampling as a baseline. To live up to its
promise, QMC should at least be better than LHS. For product functions (15.21)
with monotonic g;(x), we know that antithetic sampling will improve on plain
Monte Carlo providing another baseline. We can work out the antithetic sam-
pling variance of such products and they take a simple form for functions like
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Variable Sobol’ Faure
subset u o2/a? Error vs MC Error vs MC
First 1 3.45x10~1  826x10~7  1.69x10~2  1.22x10=% 2.06x10~3
First 2 8.62x1072  8.80x10~'1 7.21x10~7 2.11x10710 1.42x10-6
First 3 1.44x1072  2.55x10711  1.25%x107%  1.76x107Y  7.09x10°°
First 4 1.80x1073  2.68x107'% 1.05x107°  5.16x10719 1.67x10~*
First 5 1.80x107%  7.54x1071% 2.97x10"® 1.70x10"%  5.50x10~2
First 10  1.85x10719 1.33x10~ 5.05x1072 1.26x10~13 3.93x10~1
First 15 1.61x10717  6.09x10720 2.67x10° 1.24x1071%  4.46x10°
First 20 2.70x10725 2.23x10726 5.84x10! 5.34x10726  1.15%x102
Last 1 1.38x1072  3.30x107%  1.69x1073  4.90x10"%  2.06x1073
Last 2 2.87x107*  2.27x107'® 559x1077  7.02x1071 1.42x1076
Last 3 6.24x107%  2.44x1071% 2.76x10~''  7.64x10~13 7.09x10°5
Last 4 1.42x1077  6.75x10721  3.36x10~11  4.08x10~' 1.67x10~*
Last 5 3.38x1072  2.01x107%7 4.20x107%  3.20x10713 5.50%x102
Last 10  5.67x10717 574x1072! 7.14x1072 3.84x1020 3.93x10°!
Last 15 4.92x1072* 2.26x1026 3.24x10° 3.78x10726  4.46x10°
Last 20  5.09x10739 4.14x10~3! 5.74x10! 1.00x1073%  1.15x10?
All 25 1.32x10733  1.69x1073% 9.00x 102 2.50x1073%  1.09x103

Table 15.4: QMC results for selected ANOVA components of the function fs 25.
The first column gives u C {1,2,...,25}. The second column shows o2 /02,
the fraction of variance from the interaction w. The third column shows the
error of the Sobol’ sequence |fi,| = |(1/n) > "1, fu(;)|. The fourth column has
/1 fiy| /oy for the Sobol” sequence. The next two columns give accuracy for the
Faure sequence. The Sobol’ data are for n = 229 = 1,048,576. The Faure data
are for n = 29* = 707,281.

g9; = V12(x — 1/2).

Proposition 15.3. Let f(x) have the product form (15.21) in which each func-
tion g; is antisymmetric: g;(x) = —g;(1 — ). For an even number n > 2, let
franti = (1/n) Z:l:/?(f(asz) + f(1 — x;)) where ©; ~ U[0,1] fori=1,...,n/2.
Then

ld/2]
. 2 2
Var(flany) = — >y H 2. (15.23)
k=1 uwC{1,..., d} JjEu
|u|=2k
Proof. See Exercise 15.11. O
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15.10 How digital constructions work

This section gives a simple illustration of the construction of a digital net. It
can be skipped by readers who simply want to use those nets. For a complete
account, see Dick and Pillichshammer (2010).

Digital nets are constructed by working with the base b expansion of the
digits of integers. As a simple example, we can construct a (0, m, 1)-net in base
b by using the first b™ points of the van der Corput sequence in base b.

To get the idea of how a multidimensional digital net can be constructed we
look first at a small two dimensional example, a (0,4, 2)-net in a prime base p,
used by Dick and Pillichshammer (2010). Then we consider the more general
setting.

We begin with the matrices

100 0 000 1
w_[o 100 @_[0 0 10
¢ 001 0o #dC 010 0

00 0 1 100 0

Now suppose that we construct another matrix placing the first k; rows of C(1)
above the first ko rows of 0(2), where k; > 0 and ki + k2 = 4. The resulting

matrix is @
Cri ks = (Cl:h)

1,82 — (2)

Cl:kz

where C’f],z has the first k& rows of C4). In this small example we will need each
Ck, k, to be invertible in arithmetic modulo p.

Here we find that Cj, , is a permutation matrix: the product C, ,v re-
verses the order of the last k elements of v. As a result C, x, is its own inverse
matrix. This can be seen by squaring C, x, in arithmetic modulo p.

More generally, matrices whose leading rows can be extracted and reassem-
bled into a combined matrix of sufficiently high rank are the crucial ingredient
in digital net constructions.

Now we construct our digital net. For integers i > 0, write i = Y - dy.(i)p*
with the digit retrieval function of §15.5. For 0 < i < p*, the expansion of %
requires at most 4 digits in base p. We put them in a vector of length 4, writing

for O<i<p4.

Now let ;1 = CW i and y;2 = C® 7 in arithmetic modulo p. For our very
simple example

do(l:) d

Yi1 = j;g; and  y;o = j

d3(4) d

7
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Finally, the point @; = (2;1, x;2) is made from the digits in y;—1 via
Tig =Y Yu-nikp " (15.24)
k=1

where m = 4 in our example.
By construction, z;; € [0,1) for i = 1,...,p* and j = 1,2. Now let’s check
that x1,...,x,s are a (0,4,2)-net in base p. Consider the elementary interval

C1 Cl+1 Co 02+1
E=ar ) % o e
pri’ pk pk2’ pha

where k; > 0 with by +k; =4 and 0 < ¢; < pkj. If every such E contains
exactly one of the @;, then the @; are a (0,4, 2)-net in base p.

We need to solve for i such that x; € E. If such ¢ exists then we know
it satisfies ¢; < pF'a;; < ¢ + 1. That is ¢; < 22:1 y(i,l)lkpkl_k < e+ 1.
Therefore

k1 k1—1
€= Zy(i—nmpkl*k = Z Y110k —k) P
k=1 k=0

In other words, the digits of ¢; are di.(c1) = y(i—1)1(ky —k41) for k=0,... k1 —1.
Notice that the order of the digits is reversed.

We require that 4 satisfies y;—1)1(x+1) = dx—r,(c1) for 0 < k < ky. Tak-
ing account of the second dimension as well, the value ¢ must also satisfy
Y(i—1)2(k+1) = dr—py(c2) for 0 <k < ka.

For 0 < i < p*, let Yi:k, ko, De made up of the first k; elements of y;; and
the first ko elements of y;5. Then

d
Yi1,1:ky d
ik ke = ’ =Chy
Yiskr o <yi2:1:k2) veld

d

We find i by solving
dg, —1(c1)

) _ do(Cl)
Yisk k2 = di,—1(c2)

do(CQ)
so that
di,—1(c1)
(4) :
(4) 1 do(c1)
(4)
(4)

= Criks di,—1(c2)

do (.Cg )
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in arithmetic modulo p. The solution exists because Cy, , is invertible. From
the digits we recover the integer i = Ei:o dy(i)p*. Now x;41 € E is the point
we needed to find, and we have shown that @; are a (0,4, 2)-net in base p.

A general digital net construction in a prime base p starts with s > 1 matrices
cW,....,Cc® €{0,1,...,p—1}™*™ for m > 1. Suppose that the matrix

containing the first k; > 0 rows of CU) always has rank at least m — t when
E;Zl k; = m. Then we may construct a (t,m, s)-net in base p as follows:

1) place the base p digits of i — 1 into the vector i,

2) for j=1,...,s, multiply y,; = C) 7, in arithmetic modulo p, and,

3) for j =1,...,s, form z;; from digits of y; as in equation (15.24).

When t > 0, the m x m matrices above have rank m — ¢t < m. As a result
we expect a t-dimensional space of solutions. Working in integers mod p that
leads to p* solutions corresponding to the p! points that the (¢,m, s)-net places
in a given elementary interval.

A (t,m, s)-net requires s matrices of size m by m and it generates b™ points
with m digits each. A (¢, s)-sequence uses s matrices with infinitely many rows
and columns both indexed from 1 to co. Only finitely many rows and columns
are needed in practice because n < oo and floating point representations use
only finitely many bits.

More information on these constructions, and especially on how to find suit-
able matrices may be found in the text by Dick and Pillichshammer (2010).
When the base b is a prime power, but not a prime number, then similar con-
structions are available, but they do not use arithmetic modulo b.

15.11 Infinite variation

The Koksma-Hlawka inequality (Theorem 15.5) does not help us when Vi (f) =
0o. It reduces to |fi — p| < oo, which we already knew. We have Vik(f) =
oo whenever |f| is unbounded, and that is a common occurence when f first
transforms x into one or more Gaussian variables. If f is unbounded, then
there exists a point Zom with |f(Zom)| large enough to make |1 — p| > 1 for
n = 2™. Replacing our original xom by that @om for all m > 1 would not
stop D} from converging to zero but it would stop i from converging to u. By
contrast, unbounded integrands are not a severe problem for plain Monte Carlo,
so long as they are square integrable.

In applications, it is common that | f| only diverges to co as & approaches the
boundary of [0,1]%. Then QMC samples that approach the boundary, but not
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too quickly, can make fi converge to u. We will see in Chapter 17 that having
each z; ~ UJ0,1]¢ induces about the right amount of singularity avoidance to
get convergence, and one does not have to know where the singularities are.

It is not just unbounded functions that have Vik(f) = co. The indicator
function of T(0) = {x € [0, 1]¢ | Z;l:l x; < 6} has infinite variation when d > 2
and 0 < € < d. More generally, we typically find that Vak(1lg) = oo, for a set
S C [0,1]%, unless the boundary of S is formed from hyperplanes parallel to the
coordinate axes of [0,1]?. There are more details in the chapter end notes. If
S is well enough behaved that f(x) = 1g(x) is Riemann integrable, then we
know that D} — 0 implies that & — p as n — oco. Also, because both /i and p
are in [0, 1] we know that | — p| < 1, but the Koksma-Hlawka inequality does
not refine this bound.

It is not just unbounded or discontinuous functions that have infinite varia-
tion. The function (1 — Z?:l zj)+ = max(0,1— 24:1 x;) has infinite variation
when d > 3. Functions of the form f(x) = max(g(x), h(x)) for two smooth
functions g and h commonly arise in finance where one has the option to choose
either outcome g or h. There is typically a cusp at points & where g(x) = h(x)
and this cusp leads to infinite variation when d > 3.

Infinite variation of f means that i — p might fail to converge to 0 when we
use a low discrepancy sequence though this does not necessarily happen for the
low discrepancy sequences in common use. Infinite variation in f can still co-
incide with good results from QMC. Griebel et al. (2010, 2013) give conditions
where integrands f that have infinite variation due to cusps or even discon-
tinuities can be dominated by low dimensional ANOVA components that are
smooth and of finite variation. The high dimensional non-smooth components
then have a small norm and QMC works well despite the infinite variation of f.
If f(x) = f(x) + e(x) where Vak(f) < oo and sup, |e(x)| < € then the QMC
error in f must be within € of the QMC error in f because QMC uses a simple
average of function values.

The case where [ |f(x)|de < Vik(f) = oo has a parallel in ordinary Monte
Carlo when [ |f(z)|dz < [ f(z)?dx = cc. In that case Monte Carlo estimates
satisfy fi,, — g as n — oo but the central limit theorem fails to give a usable
confidence interval. This trap is comparatively rare in Monte Carlo, though
it can be brought on by a poorly chosen importance sampling distribution.
We will see in Chapter 17 that some RQMC methods will still asymptotically
outperform plain MC on integrands with finite variance even if Vg (f) = oo.

15.12 Higher order nets

Digital nets attain a quadrature error that is O(n=17¢) for any € > 0 as the
number n of points tends to infinity. This rate is achieved when the function f
has bounded variation in the sense of Hardy and Krause. A sufficient condition is
that the mixed partial derivative of f taken once with respect to all components
of & be continuous on [0, 1]%.

When the integrand f is even smoother, with continuous mixed partial
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derivatives of order two (or more) with respect to each component, digital nets
still only attain the rate O(n=1*¢). Higher order nets described here are able
to attain better convergence rates for smoother integrands.

We begin with the interleaving function. Suppose that x = 0.x122x3... and
y = 0.y19y2ys ... are two points in [0,1), written in base b. For definiteness,
suppose that neither ends in an infinite sequence of the digit b — 1. The digit
interleaving function yields the point

z = inter(z,y) = 0.21y122Y223Ys3 - - -

also in base b.

A higher order digital net is constructed from the variables of an ordinary
digital net via the interleaving function. For example, a second order net is
constructed by interleaving pairs of variables from an ordinary digital net:

Zij = inter(mi’gj,l,xi’gj), 1 < 1 < n, 1 <j < d

where @1, ...,x, are a (t,m, s)-net in base b and s > 2d.

A second order net can attain the error rate O(n=2%¢) for integrands as
smooth as those described in Theorem 15.8 below for k = 2. Even better rates
can be attained by interleaving more than two variables from a digital net. For

Y; = O.yjlngyj;g .o let

inter(yhym cee ,yk) =0.911Y21 - - - Yk1 Y12Y22 - - - Yk2 Y13Y23 " * * -

1st digits 2nd digits
A Ek’th order net has
zi; = Inter(x; gj—k+1, - »Tik;), 1<i<n, 1<j5<d
where x1, ..., x, are points of a (¢, m, s)-net in base b with s > kd.

Theorem 15.8. Let k > 1 be an integer. Let f be a function on [0,1]¢ such
that any mized partial derivatives of f taken up to k times with respect to each

component x; s square integrable. Let T1,...,2T, be a k’th order digital net.
Then

1 n

‘ > fmi) —/ f(x)dz| = O(n *(logn)*?).

n P [O,l]d
Proof. See Dick (2008, page 1120). O

The larger k is, the better the asymptotic rate of convergence is. The im-
proved asymptote comes at a cost. To solve a d-dimensional problem with an
order k net requires an ordinary net in kd dimensions. For larger £ we can
expect the asymptotic rate to take hold at larger n. Published examples typ-
ically have low dimensional integrands. For instance Dick (2011) illustrates a
randomized version for d =1 or 2. Kuo and Nuyens (2016) point to a difficulty
in numerical precision that arises when n = b™ with both m and k large. We
would then need to represent x; to mk places in base b to fully benefit from
interlacing.
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15.13 Haar wavelets and Walsh functions

Haar wavelets and Walsh functions provide some insight into how digital nets

can improve on Monte Carlo. This section looks at the case b = 2. There

are generalizations to integers b > 2. Those work similarly to the case b = 2

but are more complicated to present. This section presents an intuitive sketch.

For details of wavelets, see Owen (1997a). For Walsh functions, see Dick and

Pillichshammer (2010, Appendix A) who cite Pirsic (1995) for the formulation.
The Haar analysis begins with a ‘mother wavelet’,

1, 0<z<1/2
YE)=¢-1, 1/2<z<1
0, else.

Haar wavelets take the form
wm,k(x) = 2m/2¢(2m1, - k)7 0 < k< 2m’ m = 0.

Figure 15.18 shows some Haar wavelets on [0,1). The factor 2™ makes the
nonzero part of the wavelet take place over an interval of width 27™. Subtract-
ing k shifts the wavelet. They all integrate to 0 over the unit interval. The
external factor 2"/2 scales them so that fol Ymk(z)>dz = 1. These wavelets
are orthogonal: if m # m/ or k # k’, then fol Y k()Y 1 () dz = 0. We say
that wavelets with small m are coarse while those with large m are fine.

For d = 1, if fol f(r)?dr < oo, we may write

oo 2M-—1

flx)y=p+ Z Z Br.m¥m.k(x), where (15.25)

m=0 k=0
1
/Bk,m:/o Y (z) f(z) dz.

Equation (15.25) holds in a mean square sense. For the purposes of a simple
exposition we will suppose it holds pointwise for f, i.e., that the sum is absolutely
convergent. This will hold under some smoothness conditions on f that we won’t
need for randomized QMC methods. Then for z1,...,z, € [0,1]

oo 2M—1

= %Zf(ml) =u+ Z Z ﬁkTmzwm,k(ﬂﬂi)’
i=1 i=1

m=0 k=0
and so the quadrature error satisfies

oo 2M—1

|ﬂ—ﬂ| < Z Z |Bkm| X

m=0 k=0

. (15.26)

% ; wm,k(xi)

The wavelet 1y, () is piecewise constant on intervals [¢/2mT1 (¢41)/2mT1)
for 0 < £ < 2mFL, If n = 2+ 1+t for ¢ > 0 and each of those intervals contains
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Some Haar wavelets
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Figure 15.18: This figure shows a selection of Haar wavelets ., () on [0, 1).

2 of the z;, then (1/n)> "1, ¥m k(z;) = 0 holds for all 0 < m’ < m and
0 < k < 2™ . Sampling on a (t,m+1,1)-net in base 2 would then leave us with
an error determined only by the fine contributions By m/ ¥ k(x) for m’ > m.
As the sample size increases through powers of 2, more and more of the Haar
wavelets are integrated without error.

Using the mean value theorem for integrals, we can get a rough idea of the
magnitude of By, for large m. If f is continuous, then

1
Breom = 2m/2/ V(©2™x — k) f(z) da
0

27" (k+1/2) 277 (k+1)
:2m/2/ f(x)dx—2m/2/ f(z)dz
2-mk 2-m (k+1/2)

= 272 (f(w1) = f(w2))27 " =272 (f(@n) — fl@a)),

for some points z1 € [27k,27™(k+1/2)] and 22 € [27™(k+1/2),27™(k+1)].
If f” is continuous on [0, 1], then f(z1) — f(x2) = f'(x3)(x1 — z2) for some point
xr3 € [.1‘1,.’1?2]. Then

|Brm| <2727 (23)[|2n — 22| < 27327 (23)],

and so the contribution from fine wavelets decays for smooth f.
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For functions on [0,1)? we form wavelets by taking products of the one
dimensional wavelets above. For nonempty v C {1,2,...,d}, for vectors m €
Nl and for vectors k with k; € {0,1,...,2™ — 1}, we use multidimensional
Haar wavelets defined via

'L/}u,m,k(x) = H Q/ij,kj (xj)

JEU
The notation Zm‘u below indicates that we sum only over the values of m that

are ‘legal’ for the given u, i.e., belong to NI“!. Similarly Zk‘u’m sums over k with
0 < k; < 2™ for j € u and fixes k; = 0 for j & u. Then if f[o 1yd f(x)?dz < o,

f(w) =M + Z Z Z Bu,m,kwu,m,k(w)> for

u#2 mlu klu,m

ﬂu,m,k = 1Z)u,'rn,k:(w)f(w) d$7

[0,1)4

again in a mean squared sense. Digital nets in base 2 correctly integrate 1)y, m,
for the ‘coarse’ wavelets with a small value for } ., m;. The fine wavelets tend
to have small coefficients 3, m.kx When f is smooth.

A very similar understanding of digital nets can be obtained via Walsh func-
tions. For an integer k£ > 0, we can write k = ko + 251 + 4ko + -+ + 2Ky,
where each k; € {0,1}, for some finite m depending on k. We let m(k) de-
note the smallest m for which this can be done. Now for z € [0,1) write
x=§&/2+&/44&/8+ ..., taking care to choose an expansion that does not
end in an infinite tail of 1s. For instance x = 1/4 is represented by 0.01000 - - -
not 0.001111--- in base 2.

Using these expansions of x € [0,1) and &k > 0, the k’th Walsh function is

waly,(z) = (—1)ros1FRiSatrabatthmin Emx) 41,

The Walsh functions only take values £1. They are constant in elementary
intervals of width 2=™(*)=1_ Figure 15.19 shows some Walsh functions.

Each Haar wavelet can be written as a linear combination of Walsh functions
and vice versa. Like Haar wavelets, Walsh functions include coarse ones over
wide intervals (for small k) and fine ones over narrow intervals (for larger k).
Walsh functions are not localized in space like the Haar wavelets. The Walsh
functions are orthogonal to each other.

The multivariable version of Walsh functions is slightly easier to write than
the one for Haar wavelets because the above development of Walsh functions
includes the constant function via walg(x) = 1, and because we have not used
two parameters, one for m(k) and one for k given m(k). For a vector k €
{0,1,2,...}% and a point = € [0,1)¢, we may define

d
walg (x) = H waly, (7).
j=1
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Some Walsh functions
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Figure 15.19: This figure shows a selection of Walsh functions waly(x) on [0, 1).

Similarly to Haar wavelets, we expand square integrable f as

flx) = Z vewalg(x), where g :/ walg (x) f(x) dx.

keNd [0,1)4

For smooth f, the coefficients g tend to decay as the components of k
increase, but not in precisely the same way that Haar wavelet coefficients 3, m, &
do. Dick (2009) shows that for a smooth function f on [0, 1), the vast majority of
coefficients 7y, for a given value of m(k), must decrease rapidly as m(k) increases
while some sparse subset of them decay more slowly.

15.14 Kronecker sequences

The term quasi-Monte Carlo is due to Richtmyer (1952). The points he used
are sometimes called Richtmyer sequences and are perhaps better known as
Kronecker sequences. They are included primarily for their historical interest.
We begin with the Weyl criterion: x7,xzs,--- € [0,1) are uniformly distributed
if and only if

lim D eVl = g (15.27)

n—oo N
1=1
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for all integers ¢ # 0. There is a d-dimensional version where non-zero integers ¢
are generalized to vectors £ € Z%\ {0} and fz; generalizes to £'x; for x; € [0,1)?
(Kuipers and Niederreiter, 1974, page 48).

Now let z; = {@i} = ai — |ai] for some « > 0. This is the fractional part of
ai also called its remainder modulo 1 and should not be confused with the set
containing ai. If « is a rational number, then the values x; will eventually start
repeating in a cycle. If instead, « is irrational then z; are uniformly distributed
as can be shown by applying the Weyl criterion. Popular choices for « are
square roots of prime numbers.

For d > 1, we can use x; = ({ia1}, {iaa}, ..., {iagq}) for distinct irrational
numbers «;. It would not work to have o = V2 and ay = 2\/5/3. Then x;;
and x;2 would each be uniformly distributed in [0, 1) but (2,1, z;2) would fail to
be uniformly distributed in [0,1)?. We need a; where

d
a0+ E CLjO[j :0
Jj=1

does not hold for any rational numbers ag,...,a4. Then 1 and «y,...,a4 are
said to be linearly independent over the rational numbers.

Theorem 15.9. If 1 and a1, ..., aq are linearly independent over the rational
numbers and x; = ({icr}, {iaa},. .., {icg}), then x; for i = 1 are uniformly
distributed over [0,1)%.

Proof. Kuipers and Niederreiter (1974, Chapter 6). O

Figure 15.20 show some two dimensional projections of Kronecker points.
The bottom row has x;9 versus x;4, which upon inspection appears to be one of
the worst pair plots among the first 10 dimensions. As n increases, the diagonal
stripes there become wider and eventually fill in the plane. As n continues to
increase, some diagonal stripes get about double the sampling intensity of the
rest of the figure and those double wide stripes grow slowly to cover the square,
before a small triple wide stripe appears.

The discrepancy bounds for Kronecker sequences involve somewhat higher
powers of log(n) than for the digital sequences in this chapter. It is also hard
to make a good choice of o; when d > 1. See Niederreiter (1992b) for both of
these points. The most widely used choices are a;j = ,/p; where p; is the j’th
largest prime number but as we see in Figure 15.20, even some two dimensional
projections look bad. Like Halton sequences, Kronecker sequences do not seem
to have any especially good values of n.

Kronecker sequences resemble lattice rules of Chapter 16 except that they
are extensible instead of being periodic. These sequences have been criticized
because their theoretical properties depend on irrationality of «; and in floating
point computations rational approximations to o;; must be used. Some authors,
for example Vandewoestyne (2008), report good results from the Richtmyer
sequence despite this concern.

© Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



58

Kronecker points

Quasi-Monte Carlo
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Figure 15.20: The top row plots z;0 = {iv/3} versus z;; = {iv2} for n =
500, 1000, 1500, 2000. The bottom row plots ;9 = {iv/23} versus z;s = {iv/13}
for the same value of n.

The year of Richtmyer’s technical report is variously given as 1951 or 1952.
It was written in October 1951 but published in April 1952. Richtmyer also
refers to the effective number of dimensions in an integrand, in what we would
now call the truncation sense. That is, a notion of effective dimension appears
already in the first QMC paper. Richtmyer (1952) finds theoretical superiority
for his quasi-Monte Carlo points but concludes that there is no practical superi-
ority. His example functions were of high, in fact indefinite dimension and were
discontinuous. The function f implicit in his computation had infinite variation.
Richtmyer’s technical report was not optimistic about the performance of QMC.
The poor performance he saw could have been due to a lack of smoothness in
his integrands or to the poor finite sample equidistribution of the Kronecker
points.

Chapter end notes

Dick et al. (2013) present QMC using methods from reproducing kernel Hilbert
spaces. They pay special attention to the weighted spaces of §7.7.
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Acceptance-rejection

Suppose that acceptance-rejection is used to generate one or more of the compo-
nents of a random vector in R?. We use some number of uniform random vari-
ables to generate the proposal and one or more others to make the acceptance-
rejection decision or decisions. Doing this we use a point in [0, 1]* where gener-
ally s > d to sample x;. If the i’th point in [0,1]® is rejected then we ignore it
and only evaluate f on the accepted points. There is a set A C [0, 1]* for which
x € A implies acceptance. Let f be the function that subsumes the transforma-
tions from [0, 1]° to proposed points as well as the ultimate integrand applied
to an accepted proposal. Then, using QMC this way estimates p = fA f(x)de

by
1 — 1 —
- E;lmzeAf(xl) / E;lmieAa

for low discrepancy points ;. That is, we have a ratio estimate with a numerator
estimating [ 1yecaf(z)dx and a denominator estimating [ Lzeca de. When A
has an arbitrary boundary that is not a box parellel to coordinate axes, then the
numerator and denominator integrands ordinarily have infinite variation in the
sense of Hardy and Krause, as discussed below. QMC sampling will converge
to the right answer if both 14(x) and f(x)1 4(x) are Riemann integrable. Zhu
and Dick (2014) study this process and find empirical evidence that it has better
than O(n~'/?) errors despite the infinite variation.

Another approach is to make the first » > 1 proposals and decisions based
on a point in [0,1]° for some s. If that ends in a rejection, carry on from
there using pseudo-random numbers to propose and accept or reject until an
acceptance occurs. The result is a hybrid of MC and QMC. The hybrid might
still be better than plain MC, but the Koksma-Hlawka theorem would not be
applicable to it because the dimension is not bounded.

=

Discrepancy

Discrepancy as a branch of mathematics is older than quasi-Monte Carlo. It is
sometimes called ‘irregularities of distribution’. It goes back at least to Weyl
(1914, 1916) and the Weyl criterion (15.27). There are texts by Beck and Chen
(1987), Matousek (1999), Chazelle (2000) and Chen et al. (2014). Chazelle
(2000) emphasizes applications to theoretical computer science. Many authors
use n x D} an integer count, instead of D}. We call those ‘integer discrepancies’
below. One of the first problems was to show that this integer discrepancy could
not remain bounded as n — oo.

Integer discrepancies taken over sets other than axis-parallel boxes generally
cannot be made as small as log(n)?~!. Lower bounds worse than that are known
for circular disks in [0, 1]¢, axis parallel triangles in [0, 1]2, rotated d-dimensional
boxes and many more geometrical quantities. See Alexander et al. (2018) for
results and references. Axis-parallel boxes are much easier to sample uniformly
than those other sets. Fortunately, low discrepancy over axis-parallel boxes is
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already sufficient to provide good numerical integration for functions of bounded
variation.

Doerr et al. (2014) give a comprehensive survey of methods to compute
L? and star discrepancies. The L? discrepancy formula (15.8) of Warnock
(1972) requires O(dn?) computation, if performed as written. Heinrich (1996)
presents an algorithm to compute it in O(nlog(n)?) work as n — oo for fixed d.
There is more interest in computing the star discrepancy, which is much harder.
Gnewuch et al. (2009) report that all known algorithms are exponential in d.
They show that the problem is NP-hard when n = d and both go to infinity
together. Doerr et al. (2014) describe some algorithms that approach O(n%/2)
cost for n — oo and fixed d, as well as some faster algorithms that approximate
the star discrepancy.

Hickernell (1998) points out some connections between discrepancy mea-
sures and goodness of fit tests in statistics. For instance, for d = 1, the L?-
star discrepancy reduces to the Cramer-von Mises distance between UJ0, 1] and
U{xl, ceey :Bn}

Nets

The first digital nets were the Sobol’ sequences (Sobol’, 1967). The next major
family of nets were the Faure sequences (Faure, 1982). Niederreiter (1987)
merged Faure’s and Sobol’s concepts to produce the definitions of digital nets
and sequences used here. He also created additional constructions, including a
generalization of Faure’s (0, s)-sequences to prime power bases ¢ = p” > s. The
best available ¢ parameters are for the nets of Niederreiter and Xing (1996).
The minT project (Schiirer and Schmid, 2009) maintains an online reference to
net constructions. Higher order nets are due to Dick (2008).

The value of ¢t in a digital net can be strictly less than the value of ¢ in a
digital sequence of which the net is the first ™ points. The attained ¢ value of
digital nets extracted from digital sequences has been studied by Schmid (1999,
2001).

The projections shown in Figure 15.11 were found using the projection pur-
suit option in Ggobi (Swayne et al., 2003). Projection pursuit is a numerical
optimization designed to find projections of data that are highly structured.
There are several ways to measure the strength of structure. Of these, the cen-
tral mass option seemed most useful at finding bad projections of QMC points.

Although nets have been presented as an improvement on Halton sequences,
there is still interest in generalized Halton sequences employing permutations
to break up the striping artifacts. Vandewoestyne and Cools (2006) compare
permutations via the resulting mean squared discrepancy and find good results
for a ‘reversed Halton’ scramble that permutes 0,1,...,b — 1 via 7, = (0,b —
1,b—2,...,2,1). Faure and Lemieux (2009) study several proposals and make
their own. See also Chi et al. (2005). Random scrambles of Halton points are
considered in §17.10.
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QMC versus MC

An interesting point of view, advanced by Zaremba (1968), is that Theorem 15.3
is the real reason that Monte Carlo sampling works. By that line of reasoning,
it does not matter that we tried to get independent UJ[0, 1]¢ points. All that
matters for ji is which points @1, ..., x, we actually got. At the time Zaremba
wrote, random number generators were not as well tested as they are now, and
he remarked that the only really worthwhile tests should be for properties like
discrepancy that affect the accuracy. By now random number generators are
much more thoroughly tested, theoretically and empirically, and many of those
tests refer to properties like discrepancy. The tests however verify that the
discrepancies behave as predicted under randomness. Zaremba would have pre-
ferred discrepancies far smaller than under genuine randomness. The random-
ness in Monte Carlo does serve a very practical purpose in letting us quantify
the uncertainty in our estimates.

Total variation

When f is a Continuously differentiable function on [0, 1] then it has total varia-
tion V(f fo |f'(z)| dz. Variation sounds like variance, and the concepts are
similar but with important differences. For a constant c, V(c f) = |c|V(f) while
Var(cf) = ¢?Var(f) so it is more reasonable to compare V(f) to the standard
deviation y/Var(f). If f’ is continuous on [0, 1], then

V(f) = f’(a:)dx:/ hmf|f z+€) — f(z)]dz,
(0,1) (0,

1) el0 €

while the standard deviation can be written

JVar(f) [// @) drdi

Variation is based on local differences (closer than €) while variance is based on
global differences © — z € [—1,1].

We need to define the total variation for functions that are not necessarily
continuously differentiable or even differentiable at all. Let X,, = {x € [0, 1]™ |
0 <z <@ < -+» <z, = 1} and by convention take zo = 0. The total
variation of a function on [0, 1] is

1/2

n

V(f) =sup sup > |f(x;) = flai1)l. (15.28)
nzlxeX, i—1
When f’ is continuous on [0, 1], then V' (f fo |f'(z)|dz. For the nondiffer-

entiable function f(z) = 1,51/2 the total varlatlon (15.28) is easily seen to be
1. The supremum in (15.28) can be infinite. For example, V(f) = oo for the
function f with f(z) = 1/ for > 0 and f(0) = 0. A standard bounded
function of infinite variation is f(z) = sin(1/z) for > 0 and f(0) = 0.
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There are numerous generalizations of total variation to functions on [0, 1]¢
for d > 1. Clarkson and Adams (1933) consider 6 of them and Adams and
Clarkson (1934) include two more. In quasi-Monte Carlo, we use total variation
in the sense of Hardy and Krause. That in turn is based on total variation in
Vitali’s sense.

Here is a brief synopsis of total variation for QMC that avoids some cumber-
some d-dimensional notation. The full details are in Owen (2005). Vitali’s vari-
ation Vit(f) is a d-dimensional version of (15.28). The list of points x; € [0, 1]
is generalized to a d-dimensional grid within [0,1]¢. In each d-dimensional
cell of that grid, the difference f(z;) — f(z;—1) is replaced by an alternat-
ing sum. For d = 2, the alternating sum is a difference of differences like
flar,a2) — f(a1,b2) — f(b1,a2) + f(b1,bs). For general d > 1 it is a d-fold differ-
ence of differences. Vitali’s variation is the supremum over d-dimensional grids
in [0, 1] of the sum over grid cells of the absolute values of the alternating sums.
If fld(z) = 99f(x)/0z exists, then [|fY4(x)|de > Vit(f) with equality when
f14 is continuous on [0,1]¢ (Fréchet, 1910).

Vitali’s variation is unsuitable for QMC because Vit(f) = 0 if f does not
depend on one of its components. For example,

fu(z) = {07 2 =0 (15.29)

Sin(l/l‘g), 0<zo <1

does not depend on z; and so Vit(f,) = 0 over [0, 1]%.

To get a suitable definition of variation, we begin by specifying an anchor
point ¢ € [0,1]%. Next, for every u C {1,...,d}, let x,:c_, be the point
y € [0,1]? with y; = z; for j € uw and y; = ¢; for j € u. Now define the function
few on [0, 1]l through feu(xy) = f(xy:c—y). This function is not the same as
the ANOVA component f,. The total variation of f in the sense of Hardy and
Krause with anchor ¢ is

VHK,c(f) = Z Vit(fqu)- (15'30)

uF#D

Now for f. from (15.29), Viik «(f«) = oo for any ¢ € [0,1]¢ and any d > 2. The
original and customary definition of Viyk uses ¢ = 1, the vector of d ones. That
is

Vak (f) = Vax,1(f), (15.31)

is the measure of variation used in the Koksma-Hlawka Theorem. Aistleitner
and Dick (2015) have found it useful to move the anchor to 0 when studying
discrepancies with respect to distributions other than UJ[0, 1]¢. The location of
the anchor affects the value of the total variation but not whether it is finite.

Unbounded integrands
Theorem 15.3 ensures that 4 — u when x; € [0,1]? are a low discrepancy

sequence and f is a Riemann integrable function on [0, 1]¢. From the converse
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Theorem 15.4, we see that if f is not Riemann integrable then low discrepancy
alone is not enough to ensure convergence. Unbounded functions on [0, 1]¢ are
not Riemann integrable.

The Riemann integral can be extended to some unbounded functions by
taking appropriate limits. For some unbounded functions f the integral p. =
f[€71_€]d f(x) dz will converge to p as € — 0F. That limiting process cannot help

us if 1 = 0 and f(x;) = oco. Random sampling handles singular integrands
well because if E(f(x)) exists then P(f(z) = o0) = 0.

For unbounded integrands, the uniformly distributed points must also avoid
the singularity to some extent. Sobol’ (1973a,b) shows that some of his se-
quences tend to avoid a region around the origin, and this helps when the
integrand has a known singularity at the origin. The Halton points, if started
with x1; = ¢,,(1) and not x1; = ¢,,(0) = 0 have a tendency to avoid the
origin (Owen, 2006a) and, to a lesser extent, every corner of [0,1]?. Hartinger
et al. (2005) study corner avoidance properties of some generalized Niederreiter
sequences and Faure sequences. In these problems, there is a delicate interplay
between the speed at which the points approach the origin and/or the bound-
ary of [0,1]¢ and the rate at which the (integrable) function diverges near its
singularity; discrepancy alone is not sharp enough to give a sufficient condition
for convergence.

Skipping/burn-in and thinning/leaping

Many integrands have a singularity near the origin. This is especially common
when the values in [0,1]¢ are transformed into unbounded random variables
such as Gaussians. It then becomes a problem that the first point in the Halton
and Sobol’” and Faure sequences (and in many other sequences) is 1 = 0. One
proposed solution to this problem is to skip the first B points of the sequence
and estimate pu by i = (1/n) Zf;’;ﬂrl f(x;), with B = 1 a common choice. This
skipping procedure is a QMC counterpart to burn-in in Markov chain Monte
Carlo. It is a reasonable choice for Halton points, but it can be a severe problem
for other point sets. In particular, using B = 1 with a Sobol’ sequence will
generally not yield a (¢, m, d)-net in base 2. When the errors are O(n =€) then
the effect of replacing one point by another (e.g., 1 by ¢, 1) makes a difference
comparable to the error that the original method had with all n points.

It is possible to safely use skipping in some contexts. After skipping the
initial B = b points in a (¢, d)-sequence in base b the next b™ points will be
a (t,m,d)-net provided that m < M. If however, one extends the sequence
to m > M the resulting points could fail to be a (¢,m,d)-net. The safer way
to avoid getting x; = 0 is to use RQMC. The methods in Chapter 17 have
P(z; = 0) = 0. Indeed P(z; = ¢) = 0 for any singularity point ¢ € [0,1]¢
reducing the singularity risk to the possibility that finite precision error places
a point x; at a singular point of f.

In Markov chain Monte Carlo there are benefits to thinning the Markov
chain, taking every k’th point @y, for some k > 2 (Owen, 2017). In QMC
this is often referred to as ‘leaping’ and some software even recommends this.
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Leaping/thinning is quite dangerous in QMC methods. It can be ok if used
with extreme care in some methods and disastrously bad in others. It should
not be used for Sobol’ sequences. The documentation for the sobolset function
in Matlab R2022b https://www.mathworks.com/help/stats/sobolset.html
includes examples skip=1000 and leap=100. Taking skip=0 and leap=100 for
Sobol” points will give 0 < x;;7 < 1/4 for all i > 1 because the first component
of the Sobol’ sequence is the Halton sequence. Fortunately, the default is not to
skip or leap, but it is unfortunate that the listed examples show leap and skip
options that will give points which avoid at least three quarters of the volume
in [0, 1]¢. Exercise 15.18 is about leaping the Halton sequence.

Polynomial lattice rules

Polynomial lattice rules (Niederreiter, 1992a) are a beautiful generalization of
ideas from lattice rules (see Chapter 16) but they produce digital nets instead
of such lattices. Their presentation requires methods beyond the prerequisites
for this book. The interested reader may see Dick and Pillichshammer (2010,
Chapter 10) for details. As with lattice rules, polynomial lattice rules require
a search process to pick parameters. Compared to Halton, Faure or Sobol’
nets that are more or less automatic, that choice is a burden. On the other
hand, having that choice allows one to select a digital net customized to a given
problem instance. See Nuyens (2014) and also Kuo and Nuyens (2016) who
customize polynomial lattice rules for problems involving partial differential
equations over random environments (Graham et al., 2015). L’Ecuyer et al.
(2022) discuss how to customize polynomial lattice rules for a given problem
and present software for that purpose.

Non cubical domains

Many integration problems arise for points @ in domains like the simplex {x €
[0, 1] | Z;l:l z; = 1}, the sphere {z € R? | ||z|| = 1}, the ball {x € R? | ||z| <
1} as well as Cartesian products of these domains. We can sample these domains
by transforming points from [0, 1]® onto them where s is not necessarily equal to
d. Fang and Wang (1994) present some of those transformations taking care to
match s to the intrinsic dimension of the space. For instance for the ball, s = d
while for the simplex and sphere above they only need s = d — 1. Sampling
within triangles (simplex with d = 3) and spherical triangles is important in
computer graphics.

Brandolini et al. (2013) devise a measure of discrepancy for the simplex and
establish a Koksma-Hlawka for points there. Basu and Owen (2015a) present
two low discrepancy constructions for sampling within the triangle including one
that attains the best possible rate O(log(n)/n) for the discrepancy of Brandolini
et al. (2013).
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Exercises

15.1. This exercise is based on an observation of Sobol’” who recommends in-
creasing sample sizes through a geometric progression, not an arithmetic one.
Let fi, = (1/n) Y., f(2;). Suppose that for some A < co and € > 0 and all
integers n > 1 we have |fi, — u| < An™17¢ and |fi,41 — pu| < A(n +1)717C.
Using these facts, find an upper bound on |f(x,+1) — p| strong enough to show
that lim,, oo | f(€nt1) — 1| = 0. The interpretation is that if we could really
get O(n=17¢) error for every sample size n, then we really only need to use one
sample point x,, for a very large n.

15.2. The left endpoint rule is z; = (¢ — 1)/n for ¢ = 1,...,n. Find D} and
D,, for this rule. For n > 1, does the rule with 3n points extend the rule with
n points? (This happens for the midpoint rule.) Is there a smaller rule that
extends the left endpoint rule of size n?

15.3. The function log(n)?~!/n over 2 < n < oo first increases and then de-
creases as n — oo for fixed d > 2. At what value of n does it start decreasing?
Non-integer answers are ok.

15.4. The QMC bound is predicted to stay below the root mean squared error
when Clog(n)4~!/n < n~'/2 holds for all n > N, for some C > 0.

a) For what n does that happen when C' =17
b) For what n does that happen when C' = 1079?
c) For what n does that happen when C' = 109?

Here C is the total variation of the integrand in the sense of Hardy and Krause,
multiplied by the implied constant in the discrepancy bound. This is a ‘predic-
tion’ in the sense that the discrepancy is only asymptotically of the given form
and the integrand is not necessarily worst case.

15.5. By using Warnock’s formula (15.8), find E((D;; ,)?) when x; are sampled
values of z; ~ U(0,1)<.

15.6. Let x; = ¢3(i) be the ¢’th point of the van der Corput sequence in base
b= 3. Let Dy, 5 be the star discrepancy of x1,...,z, for 1 <n < 6561 = 38,
Over this range, is D;, 3 ever below D;(n)’S where m(n) is the greatest power
of 3 that is not larger than n?

15.7. The Faure scrambled Halton sequence is known (Okten et al., 2012) to
produce some bad projections in higher dimensions.

a) Plot the pOiDtS ((251031 (Z — 1), ¢1033(i — 1)) for 1 < ) < 500.

b) Repeat the plot, this time using Faure’s scramble of the Halton sequence,
as described at and just below Equation (15.18).

c) Repeat the two previous plots for n = 1000 and n = 10,000. Do either of
them look satisfactory?
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Average of first 10000 van der Corput points

van der Corput mean
0.42 0.44 0.46 0.48 0.50
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j'th dimension

Figure 15.21: The vertical axis is the average of the first 10,000 points of a van
der Corput sequence in base p;, where p; is the j’th prime. The horizontal axis
is 7 =1,...,1000. See Exercise 15.8.

d) Replace the Faure permutations by permutations chosen at random, sub-
ject to the constraint that 7(0) = 0. Plot the first 1000 randomly scram-
bled points. Compare 5 such randomly scrambled images to the Faure
scrambled points.

e) Repeat the previous exercise, but this time do not force 7(0) = 0.

15.8. The wing weight function appears to be increasing in all of its inputs
except A. That one varies over a small range, so maybe it is not important.
Cumulative means of van der Corput points used in the Halton sequence tend
to approach 0.5 from below. Figure 15.21 shows those cumulative means for the
first 1000 dimensions. The bias is present but smaller in the first 10 dimensions
that the wing weight function uses.

These two observations suggest that antithetic sampling of the Halton points
might be an improvement. Evaluate the wing weight function on the first n =
5000 points of the Halton sequence. Repeat on antithetic pairs ¢; = 1 — x;,
componentwise for ¢ = 1,...,n. Make a plot comparing the cumulative mean
wing weight under antithetic sampling of the Halton sequence to cumulative
mean wing weight without antithetic sampling. Take care to have the same
number of evaluation points in the horizontal axis for both methods.

15.9. A (0,5, 7)-net in base 7 has n = 7° points. How many distinct elementary

intervals of volume 7~° does it balance?
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15.10. The Halton sequence was left out of the comparison for the test func-
tion fa95 of §15.9. It has some very bad projections in high dimensions, so
it might do worse than the Faure and Sobol’ sequences. Then again, the Hal-
ton sequence uses its most equidistributed components on the first and most
important variables of fs 25, and so it might do very well.

a) Apply the Halton sequence to the function fs 25 of §15.9 over the range
125 < n < 1.5 x 10%. Determine how best to display its accuracy and then
compare it to the other methods. Is it superior, inferior, or comparable to
those other methods? You can refer to the values displayed in Figure 15.17
without recomputing them.

b) Repeat part a) using Faure’s scrambling of the Halton sequence, as de-
scribed at and just below Equation (15.18). Also comment on whether
the scrambling improves the Halton sequence for this function. If there is
a clearly quantifiable trend then measure it (as for example a typical ratio
of absolute errors).

c) Suppose that through bad luck or bad planning we had the variables in
reverse order of importance. That is we used instead

d
Fouale) = [ (1 n f(wm - 1/2))

Jj=1

for d = 25. Make a graphical evaluation of integration of }Tg’d using the
Halton sequence. Determine whether Faure’s scrambling improves it. For
both methods compare (graphically) how well they do on f~27d to how well
they do on f3 4.

15.11. We have studied QMC on some test functions formed by products of
univariate functions. Here we investigate the effectiveness of antithetic sampling
on such product test functions.

a) Prove Proposition 15.3.

b) For the function f; of §15.9 determine whether antithetic sampling is
better than Latin hypercube sampling.

¢) Suppose now that fol 9j(2)g;(1 — xz)dx = p; € [-1,1]. What now is the
variance (15.23)7

15.12. For n > 1 let x4, ..., z, be fixed distinct points in (0,1). Let f(z) =1
if x = a; for one of these points and let f(x) = 0 otherwise. This seems like an
unfavorable integrand for the given set of integration points, but perhaps it is
not the worst case.

a) Find both p = [ f(«)de and g = (1/n) Y1, f(x:).
b) What is the total variation of f on the interval [0, 1]?

c) The function f is a worst case function if |4 — u| = DV (f) holds. For
what point sets x1,...,x,, if any, does this happen?
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d) [Harder] Suppose instead that have used a closed rule with 1 = 0 and
r, = 1. Repeat parts b and c.

15.13. Let f(x) = H;l:l zj‘j on [0,1]¢ where A; > 0. Similarly, let flx) =
ITj— (1 — ;)% on [0,1]%,

a) Show that Vg (f) =2¢— 1.

b) Show that VHK(f) =1.
15.14. Consider the function f(x) = 12%/2 H?:1($j —1/2).

a) Show that if  ~ U(0,1)? then f(z) has variance 02 = 1 regardless of d.
b) Show that Viuk(f) increases exponentially in d.

c) For d = 10, it is interesting to know the smallest integer ny such that
Vik (f) multiplied by the first term in the bound on D} in (15.16) (i.e.,
excluding what is in O(-)) is smaller than n~'/? whenever n > ng. Find
the smallest such ng to within a factor of 2. That is, use ng = 2* for some
k>=0.

15.15. Show that the function

1, m2<m

J(@) = {0, else

for £ = (21, 22) € [0, 1]?, has infinite variation in the sense of Hardy and Krause.
15.16. Construct a function f on [0, 1]% such that Vi (f) = oo but Vi (f?) < oo.

15.17. Construct a function f on [0, 1] that is discontinuous but for which fant;
has infinitely many continuous derivatives.

15.18. From the first 6000 points of the Halton sequence in [0, 1], retain every
k = 6’th point.

a) Plot the second component of those points against the first. Be sure that
your plot region contains all of [0, 1] x [0, 1]. [This leaping strategy should
not be used with Halton points. Leaping with k relatively prime to all
the bases used in the Halton sequence might be ok.]

b) Explain why leaping with & = 12 is even worse. That is, what is worse
about the resulting points?

c) What changes for the k = 6 case if we skip the first B = 5 points? [These

points should also not be used.]

For this exercise we use a Halton sequence that starts at (0,0) before imposing
any skipping/burn-in or leaping/thinning.
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15.19. Appendix §A describes Sobol’ indices. Using the Halton sequence, and
one of the pick/freeze algorithms from Appendix §A, estimate the normalized
upper and lower Sobol” indices for each of the 10 variables in the wing weight
function. Specifically, plot their estimates versus a grid of values n < 10°. Take
some care to be sure that your plotted curves can be easily distinguished from
each other.

Notes: Halton points do not have very special sample sizes. You can use soft-
ware that you find online, or write your own as Halton points have a particularly
simple implementation.

15.20. Solve Exercise 15.19 using instead the Sobol’ points with n = 2™ and
10 < m < 20. Report which implementation of Sobol’ points you used. Does it
appear that the estimates converge faster with Sobol’ point inputs than Halton
point inputs?

15.21. Sobol’ points are designed so that the first components of the points x;
tend to have better equidistribution than later ones. This is true for Halton
points too, with the possible exception that base 3 has better discrepancy than
base 2 does.

This exercise is a somewhat open ended project where you explore whether a
better answer can be obtained by first estimating Sobol’ indices for the variables
and then reordering them so that the variables with the largest Sobol’ indices
get the first indices of the QMC points.

Design and test a plan to do this. You can choose how many points to use to
estimate the Sobol’ indices, which Sobol’ indices to use, whether to use Halton
or Sobol’ points, how many of those points to use and how to decide which
approach is better.

At the time of writing there is no precise theoretical connection to show
the role that a higher Sobol’ index plays in input variable ordering, so the
comparison must be made empirically. Use the wing weight function. For
definiteness: select two specific strategies to compare.

Note to instructors: you can also provide students with a different test func-
tion or ask them to use RQMC or ask specify the algorithmic choices to be
compared.
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Lattice rules

Lattice rules are a second major family of QMC methods. They have developed
in parallel with the digital nets and sequences of Chapter 15. The points we use
in a lattice rule have the same geometric structure as the multiplicative congru-
ential random number generators that we saw in Chapter 3, just as algorithms
for digital nets are like shift register random number generators. In both cases,
QMC can be likened to finding a small random number generator and using all
of its points. Lattice rules are well suited to Fourier methods of analysis and
periodic integrands, but they work well more generally. The presentation in this
chapter follows the text by Sloan and Joe (1994) and Chapter 5 of Niederreiter
(1992b). It also incorporates some subsequent developments. Dick et al. (2022)
is a comprehensive treatment of lattice rules.

As in Chapter 16, we are going to create n points in the d-dimensional unit
cube. For lattice rules it is most convenient to use [0, 1)? for that cube, instead
of [0,1]%, because periodic functions will play a critical role. As before, U[0,1)?
random variables might first be transformed into some other distribution before
applying an integrand of interest. Letting f incorporate both our transfor-
mations and the integrand of interest, we will estimate p = f[071)d f(x)dx by

(1/n) >°1, f(=;) as before, using x; from the lattice rules described here.

16.1 Rank one lattices

Given a strategically chosen vector of integers z = (z1,. .., z4) and a compatibly
chosen sample size n > 1, the rank-1 lattice rule has points x; € [0,1)¢ with
components

N
i = % mod 1 (16.1)
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fori =1,...,nand j = 1,...,d. As usual, y mod 1 means y — |y| and we
adopt a convenient shorthand {y} for this. The intent {y} = y mod 1 will
always be clearly distinct from that of the set containing y. These lattices have
rank 1 because they use only one vector z of integers. Lattices of rank-2 and
higher using more than one vector are described in the end notes. They are not
commonly used now.

We could replace equation (16.1) by z;; = iz;/n mod 1 fori =1,...,n. We
would get the same set of points in a different order. It is however standard
to present lattice rules with @; = (0,0,...,0) as in (16.1) instead of x, =
(0,0,...,0).

It is critically important to use all n points of a lattice rule. For instance,
using just the first n/2 points omits the whole region {z € [0,1)¢ | 1/2 < z; <
1}. This requirement is not much of a problem, because we can choose the
sample size n to fit within our computing budget.

It is clear at the outset that z; and n should not share a common factor £ > 1.
If they did, then there would be at most n/k distinct values for {(i — 1)z;/n}.
Instead, choosing z; to have no common factor with n means that the values
Z1j,...,%n; will take on all n values 0, 1/n, 2/n, ..., (n—1)/n. It is typical to
take z; = 1, so that z = (1, 29, ..., 24)-

Using the points @; of a rank-1 lattice rule, we estimate pu = f[0,1)d f(x)de
by

fiat = :Lg;f(mi) = ;Lz:éf <{;z}> . (16.2)

That is, the indices of @; run from 1 to n but the argument of f uses ¢ from 0
to n — 1. Obviously, the difficult part will be to choose parameters n and z that
lead to a good rule. Figure 16.1 shows three small rank-1 lattices, one good
lattice, one not so good, and one clearly flawed because it leaves wide empty
diagonal gaps.

Before discussing how to choose z well, it is worth mentioning some special
cases. The Fibonacci lattices are especially good for d = 2, as described
in the end notes. The Fibonacci numbers are defined by F; = F» = 1 and
F; = F;_1+ Fj_, for j > 3. A Fibonacci lattice has n = F,, and z = (1, Fi,—1)
for m > 3. The illustrations in this section include some Fibonacci lattices.
Some other lattices with n = F,,, but z9 other than F,,_1 are then used to
illustrate what can happen with a poorly chosen z. For d > 3 there is no
comparably simple way to generate a very good lattice.

A second special case of rank-1 lattices are the Korobov rules. These
have z = (1,a,a® mod n,...,a?! mod n) for a carefully chosen integer a €
{2,3,...,n — 1}. Having z; = a’~! mod n means that given n, the search
for a good Korobov rule only requires a search for a, instead of a search for
Z9,%23,...,24. Furthermore, a choice for a can be used with more than one
dimension d, unlike a choice for (1, 22,...,24). That means we do not have to
have a table of vectors z € Z% indexed by n, with a separate table for each d.
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Some lattice rules for n=377

z=(1,41) z=(1,233) z = (1,253)

Figure 16.1: Each panel shows a lattice rule z; = ((i—1)z (mod n))/n in [0,1)?2
with n = 377 (a Fibonacci number) and z = (1, z2). The values of z; are, from
left to right: 41, 233 and 253. The middle panel is a Fibonacci lattice. The
other panels show poor lattices, that one should avoid using.

The numbers a’ mod 1 eventually repeat as j increases. The smallest j
for which this happens is j = ¢(n) where ¢ is Euler’s totient function, the
number of integers ¢ from 1 to n — 1 inclusive with ged(i,n) = 1, where ged
denotes the greatest common divisor of its two arguments. We would not use
a Korobov rule with d > ¢(n), because then we would find that z;; = z;; for
alli=1,...,n and j = ¢(n). If n = p* is a large prime power then it can be
shown that ¢(n) = p*~!(p — 1), which is nearly as large as n.

Table 16.1 shows some examples of Korobov rules from L’Ecuyer and Lemieux
(2000). They searched for combinations of a and n that produced high quality
lattices. We will consider some quality criteria for lattices in §16.4. The quality

n a
1021 76
2039 1487
4093 1516
8191 5130

16381 4026
32749 14251
65521 8950

131071 28823

Table 16.1: This table shows the parameters of some Korobov rules listed in
Table 1 of L’Ecuyer and Lemieux (2000). For k£ = 10,...,17, the largest prime
n < 2% is shown along with one of their recommended values a for zy.
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Mean wing weight
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Figure 16.2: The horizontal axis is the sample size n from 1000 to just over
16,000. The vertical axis is the average of the first n wing weight values. Solid
points show Korobov values. Ten dotted lines show cumulative Monte Carlo
estimates.

of a Korobov rule depends on the dimension d. The rules in Table 16.1 were
constructed using criteria that considered d € {8,12,24,32}. With the material
presented above it is already possible to implement lattice rules such as those
in Table 16.1 to see empirically how they behave.

16.2 Example: wing weight revisited

In §15.6 we compared Halton points to plain Monte Carlo on a wing weight
function in 10 dimensions. Here we make the same comparison using Korobov
points.

Figure 16.2 shows the results. We don’t connect the points between the
Korobov estimates because the sequences used there are not extensions of each
other. It seems pretty clear from the figure that the Korobov estimates are
better than the Monte Carlo ones. The value for n = 8191 is pretty close
to that for n = 16,381 and both look to be near the central value that the
Monte Carlo points produce. We cannot get a good estimate of the accuracy
of a lattice rule from the sample values. Chapter 17 presents randomized QMC
which makes it possible to estimate how much better, if any, the lattice rules
are than plain MC.
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n Korobov Halton

1021  268.0803 267.4654
2039 267.9789 267.5688
4093  268.0776  267.8209
8191 268.0763 267.9668
16381 268.0753 268.0193

Table 16.2: Sample size and estimates for the mean wing weight, using both
Korobov and Halton points at the given values of n. The Halton estimates are
from §15.6.

We can see numerical estimates of p in Table 16.2. The estimates are con-
verging quickly as n increases. There could be some systematic error over the
given range of values but the comparison in Figure 16.2 shows that any such
bias is not large compared to Monte Carlo sampling errors. Table 16.2 also in-
cludes some estimates based on the Halton sequence for these same sample sizes.
From the table, the Korobov points appear to converge faster than the Halton
ones, for this function. As we noted in Chapter 15, the Halton points tend to
be below 0.5 on average and this function seems to be increasing in most of its
input variables. The Korobov rules have mean 1/2 —1/(2n) in each coordinate.
Perhaps this is better than the mean of the Halton points. See Exercise 16.1.

16.3 Lattices and lattice rules

Before presenting the criteria that separate good from bad lattice rules, it is
useful to consider lattices in more generality.

Definition 16.1. A lattice is a nonempty set L C R? for d > 1, with these
properties:

1) x,y € L implies that x + y € L and x — y € L, and,

2) there is an € > 0 such ||z — y|| > ¢ for all z,y € L with x # y.

The set of integer vectors Z? is a lattice. The set {0} is a lattice by a
convention, that we might prefer to call a technicality. It never has distinct
points « and y with ||z — y|| < € because it has no pairs of distinct points at all.
Every other lattice has countably infinitely many points. The set of rational
vectors Q% is not a lattice because it fails the second clause.

Our lattice rules will always have a finite number of points. We arrange this
by intersecting a lattice with the unit cube, as illustrated in Figure 16.3 and
defined below.

Definition 16.2. A lattice rule in dimension d > 1 is a finite set of points
formed as L N [0,1)% where L is a lattice such that Z¢ C L.

Lattice rules are sometimes called integration lattices but that term is
potentially confusing, because these lattice rules are not lattices. They are just
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An integration lattice
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Figure 16.3: The plotted points are a subset of an infinite lattice in the plane.
The 13 solid points are a lattice rule, that is, the points of the lattice which
belong to [0,1)2.

the parts of a lattice that lie inside the unit cube [0,1)¢. They always have a
finite number of points. If they had infinitely many points in [0, 1)¢, then some
pair of them would be closer than e for any € > 0 that we choose.

Definition 16.2 has an extra clause that L must include the integer lattice
Z%. That clause has several functions. First, it rules out some very unsuitable
lattices. For example, with d = 3 there are lattices that lie completely within
a plane, or even a line, such as {(i,i,i) | i € Z}. Forcing L to contain Z?
makes L fully d-dimensional. The second advantage of having L contain Z¢ is
that if we then shift the points of the lattice L by A € R?, the shifted lattice
L+ A ={x+ A |xc L} will place the same number of points in [0,1)? as
L does. The lattice L = {(i/10,5/v/5) | i,j € Z} does not yield a lattice rule
when intersected with [0,1)?, and shifting it can change the number of points
that intersect [0,1)2. Finally, for A € Z¢ we find that L + A is L shifted on
top of itself: L + A = L. Equivalently, L looks the same in every integer cell
[@,a +1) for a € Z.

We can recover the lattice L of a given lattice rule by shifting the points
of that rule through all possible integer offsets. In Figure 16.3, that operation
would produce the open circle points from the solid ones. In the case of a rank-1
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lattice defined by n and z = (1, 29,...,24), any point in L can be written as a
linear combination, with integer coefficients, of the rows of

1/n z/n z3/n - zg/n

1 0 0 0

o 1 0 0 e RUFDX (16.3)
0 0 0 1

We would not expect to need d + 1 rows to span a d-dimensional space. It
is easy to see that the second row of the matrix in (16.3) is an integer linear
combination of the other rows with coefficient n on the first row and —z; on
the j + 1’st row for j = 2,...,d. We can drop it and generate the lattice using
integer linear combinations of the remaining rows. The first row is also a linear
combination of the other rows, but it is not an integer linear combination of
those other rows, so we cannot drop it and still generate the lattice. After
dropping the second row, the lattice L may be written

d
L= {Zajgj | aEZd} (16.4)

Jj=1

where the vectors g; are z and ey through e; where e; has a 1 in the j’'th
position and is zero elsewhere. Because of (16.4), we say that the vectors g;
generate L.

The matrix

1/n zo/n zs/m -+ zg/n

0 1 0 0
A=A(L) = 0 0 1 0

0 0 0 1

whose rows are the generating vectors g; is called a generator matrix of L. For
a nontrivial lattice in dimension d > 2 there is more than one possibility for its
generator matrix. The number of points in a lattice rule with generator matrix
Ais | det(A)|~1. This is easy to verify for the matrix above. Geometrically it is
reasonable: if we take a large bounded cubical region R in R? and map it via
AT to R = {ATx € R? | * € R} then the mapping has Jacobian AT and so
vol(R) = vol(R)| det(AT)| = vol(R)|det(A)|. As a result, the image R should
have about 1/|det(A)| times as many integer lattice points in it as R has.

16.4 Quality criteria for lattices

For d = 1, the rank-1 lattice rule reduces to an equal weight rule with evaluation
points i/n for i = 0,...,n — 1. This is a left endpoint rule for integration over
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[0,1). For d > 1 all the univariate projections of x; are left endpoint rules.
Left endpoint rules typically have error O(1/n) while midpoint rules can attain
error O(1/n?). See Chapter 7. Things change for smooth periodic functions f
with period 1. Then a left endpoint rule is equivalent to a trapezoid rule with
evaluation points i/n for i = 0,...,n and relative weights 1/2,1,1,...,1,1/2.
Trapezoid rules are very accurate for smooth functions. If f” is continuous on
[0,1], then the trapezoid rule has error O(n~2) just like the midpoint rule.

A strategy for designing lattice rules is as follows. Because lattice rules are
extremely well suited to periodic functions, we will first suppose that f is a
periodic function on R?, with period 1 as defined below. Then we develop an
upper bound for the error |,y — p| when we use a lattice rule to integrate a
periodic function. Next we select rank-1 lattices for which the error bound is
small. Of course a problem remains: we cannot count on the real world problem
we face to involve a periodic function f. Therefore we look for ways to make our
function periodic. That is, we replace f by a periodic function f constructed so
that [ f(x)de = p = [ f(z)de. Finally, we estimate p by (1/n) > 1, f(x;).

Definition 16.3. The function f : R? — R is periodic (with period 1) if
f(x + 2) = f(x) for any € R? and z € Z9.

If f is periodic and @; are from a rank one lattice (16.1), then

n—1 . n—1 .
= (L) =150

We don’t have to reduce the argument of f modulo 1 because f is periodic.
We study lattice methods by expanding f into a d-dimensional Fourier se-

ries. Fourier series are commonly defined for functions on (—m, 7] or [0,2m)<.

For QMC, it is more convenient to work with functions on [0,1)? by scaling .

For each vector of integers h € Z? we define the function v (x) = e2mV=lhe
cos(2rh'xz) + /—1sin(2rhTz). These functions are periodic. They are or-
thonormal in that

_ 1, h="h,
/ b () () da = { ‘
(0,1)d 0, else.

Here ¢}, (x) is the complex conjugate of 1p(x), and ¥, (x) = Y_p(z).
The Fourier coefficients of f are defined to be

f(h) = /[O b f(@)p_p(x)de, heZ? (16.5)

and the Fourier series for f is

f@) =Y f(h)yn(x). (16.6)

©) Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



Quality criteria for lattices 79

We say that f represents f. Our study of lattice rules would be simpler if
f(x) = f(x) always held, but reality is more complicated, as we discuss next.

If we were to change f at a finite number of points ), € [0,1)?, producing say
a function g, then none of the f (h) would change and hence f would not change
either, yet f could not then equal both f and g. We will say that functions
f and g on [0,1)? are equal with probability one (abbreviated w.pr. 1) if
P(f(z) # g(x)) = 0 for z ~ U[0,1)¢. If we did change f to g at a finite number
of points then we would have f = g with probability one.

As remarked above, if f and g are integrable functions that are equal with
probability one, then they have the same Fourier coefficients. Conversely, if f
and ¢ are integrable functions that have the same Fourier coeflicients, then they
are equal with probability one (Grafakos, 2004, Proposition 3.1.13). Next we
have a condition for such equality.

Theorem 16.1. Let f be an integrable function on [0,1)%. If

> 1f(h)] < oo, (16.7)
hezd

then f(x) = f(x) from (16.6) with probability one.
Proof. This is Proposition 3.1.14 of Grafakos (2004). O

Condition (16.7) is that the Fourier coefficients of f are absolutely summable.
We will then say that f has an absolutely convergent Fourier series. By
Theorem 16.1, when f has an absolutely convergent Fourier series, it equals that
Fourier series with probability one. In that case, integrating f will give us the
integral of f.

The sufficient conditions to get absolute convergence can be strict. One
sufficient condition described in the end notes involves even more smoothness
than having continuous partial derivatives of all orders up to d/2. Below we will
use some derivatives of order d or higher.

Some weaker smoothness conditions with a weaker connection between f
and f are useful. For integers N > 0, define the truncated Fourier series

@ = Y f@in)

heZd, ||l <N

where ||h|cc = maxig;<a|h;j|. The next theorem describes a mean square
convergence property of square integrable f. Theorem 17.2 for randomized
lattice rules in Chapter 17 only requires mean square integrability of f, not
absolute converence of f.

Theorem 16.2. Let f be a square integrable function on [0,1)%. Then

Jim fy(@) = f(x), wpr. 1, and (16.8)
lim (fn(x) — f(z)*de = 0. (16.9)

N—oc0 [0,1)d
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Proof. This is Proposition 3.1.16, part 2, of Grafakos (2004). O

The ‘with probability one’ clause in (16.8) covers the possibility that for
some points x, the values fN (z) may fail to converge as N — co. The set of x
where that happens has probability zero. When the sequence does converge, it
converges to f(x) (Grafakos, 2004, Proposition 3.1.15). We won’t always add
the “with probability one” clause, nor keep saying that f must be integrable.

Next, we develop lattice rules assuming that ) -, . | f(h)| < o0 so that inte-
grating f is the same as integrating f. Substituting the Fourier representation
of such an f into the rank-1 lattice rule, and reversing the order of summation,
we find that

fnar = Y f(h Z Un (). (16.10)

heZd

Proposition 16.1. Let x1,...,x, € [0,1)¢ be a rank-1 lattice rule defined by
equation (16.1) using z € Z. Then

1 & 1, h"z=0mod n
hl x;) =
n ; V(@) {0, else.
Proof. Expanding the left hand side and using periodicity of ¥y,
iz ih'z 1=
_ i) = 2 i 7
ES inte = LT (2) = L o1 ) < LB

where w = exp(2my/—1hTz/n). If hTz = 0 mod n, then h'z/n € Z so that
w = 1, and the first case is proved. Now suppose that hTz # 0 mod n. Then
w # 1 and so

1 n—1 n
T —
R = =0,
i=0
because then w™ = exp(2my/—1hT2) = 1, proving the second case. O

From Proposition 16.1, we find that

fuar = »_ f(h Ziﬁh(ﬂ%) =Y f)

hezd zfl heLt

where
Lt =1L (2)={h €z’ | h"2z =0 mod n}. (16.11)

A similar expansion of y when f is absolutely convergent yields

p="Y_ f(h) Yn(x) do = (0),

hezd [0,1)4
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because 9y, integrates to 1 if h = 0 and integrates to 0 otherwise. As a result,
the error in the lattice rule is

foas —p =Y f(h) (16.12)
heLl}
where
L ={hc L+ |h#0}. (16.13)

The set Lt is a lattice (Exercise 16.2). It is known as the dual lattice of
L. Tts nonzero elements comprise the Fourier coefficients h for which the lattice
rule gets [4p(x)dz completely wrong. In the words of Sloan and Joe (1994,
page 32) “the dual lattice represents a graphic picture of failure”. The generator
matrix for the dual lattice L is (A(L)T)~! where A(L) is the generator matrix
of L. Figure 16.4 depicts three small lattices with their corresponding dual
lattices.

A good lattice for f has a small value for the infinite sum in (16.12) of
Fourier coefficients f(h). A good lattice overall has a small infinite sum for a
large collection of integrands f that we wish to handle.

A vector h that is far from the origin corresponds to a sinusoidal function
¥ (x) that oscillates very quickly. Suppose that f is smooth and slowly changing
compared to ¢p. Then rapid local oscillations in vy, will cause f(x)yn(x) to
integrate to nearly zero over [0, 1]¢ making |f(h)| small. The more derivatives f
has, the faster | f(h)| must decay. The Riemann-Lebesgue theorem has | f(z)| —
0, without requiring f to be smooth.

Theorem 16.3. Let f be integrable on [0,1)%. Then |f(h)| — 0 as ||h| — .
If

Yutetaa f

o 0w )

exists and is integrable for any q; > 0 with 2?21 q; < a, then

[f(R)I(1+[[R[|*) =0
as ||h|| — 0.

Proof. The first part is the Riemann-Lebesgue theorem, Proposition 3.2.1 of
Grafakos (2004). The second part is from Theorem 3.2.9 of Grafakos (2004). O

We see from Theorem 16.3 that the large errors will come from h close to
zero and so we should prefer a lattice L where the vectors in Ly are far from
the origin. For d = 1, the measure of large or small h is simply |h;|. For d > 2,
there is no unique way to order the nonzero vectors h. Lyness (1989) lists the
three most commonly studied measures

1<5<d

d d
P(h) = Hmax(l, |hjl), S(h) = Z |hj] and M(h)= max |h;|,
Jj=1 j=1
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and their dual lattices

Figure 16.4: The top row shows lattice rules in the unit square with n = 144,
z1 = 1 and 2z equal to 89, 5, and 68 from left to right. The bottom row shows

the corresponding dual lattices with reference lines at multiples of 5. A good
lattice rule, like the one on the left, has few non-zero points near the origin in

its dual lattice.
which use |h;| within a product, sum and maximum, respectively. The measure
P is most commonly used. Lyness (1989) remarks that S may be a good choice
for extremely smooth (analytic) periodic functions and that M has little to

recommend it. The criterion P(h) can be written

d
P(h) =[] Ry, for h=max(1,h|).
j=1

Usage of P(h) may be justified by Zaremba’s theorem.
Theorem 16.4 (Zaremba’s Theorem). Let f be a periodic function on R? and

let a > 1 be an integer. Suppose that
8q1+"'+Qdf

q1 qd
Oz --- 0z
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exists and has bounded variation over [0,1]% in the sense of Hardy and Krause
for any integers q; = 0 with Ej:1 g; < a—1. Then for some ¢ > 0

|f(h)| < cP(h)~". (16.14)

Niederreiter (1992b) states this theorem and also notes that we can replace

bounded variation whenever Z;l:l g¢; < a — 1 by continuous differentiability
whenever Z?:1 g <a

Definition 16.4. For ¢ > 0 and a > 1, let £,(c) be the set of periodic functions

f on R with period 1, according to Definition 16.3, for which (16.14) holds for
all h € 7.

Any f € £,(c) has an absolutely convergent Fourier series, and

li—pl <c Y P(h)™. (16.15)

heL}

A lattice that is good for ¢ = 1 will be good for any ¢ > 0 because u, i and
f (h) all scale by a multiple of 1/c when f is replaced by f/c, so we focus now
on finding a good lattice for f € £,(1).

For the function

62#Jj1hTm
=S 16.16
fam(®) =" Tha ) (16.16)

hezZa

equality holds in (16.15) for ¢ = 1. Thus f, . is a worst case integrand from
&4 (1) and the worst error is then

Pu(zin)= 3. ﬁﬁ; %Z an({g}) L (16.17)

heLt j=1

The second expression for P, (z;n) is convenient because the definition of f,
in (16.16) sums over h € Z? instead of h € L;-. Now for a given n, we look for
h € Z¢ to minimize

n—1 27r\/7h zi/n
14+ Pa(zin) = — e
2&,}% b ha)
1 627r\/—71h2ji/n
- ZH( I s
= o I

If @ > 2 is an even integer, then the infinite sum in (16.18) can be written in
terms of certain Bernoulli polynomials b,, of degree a. See Sloan and Joe (1994,
Appendix C). The case o = 2 is most frequently used. There

nld

1+ Py(z;n) ZH{HZ” —zi; +1/6)}

1,0]1
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*ZH{HQ 2((’ZJ) —%-Fé)}, (16.19)

=0 j=1
where as before {y} = y—|y]|. Good values for z are then found by computerized
search. See §16.7.
16.5 Convergence rates

As a > 1 increases, lattice rules can achieve much better convergence rates for
f € &€4(1). Here we summarize some of those results. Following Niederreiter
(1993), we consider z belonging to

Gan) ={z€Z%| —n/2 <z <n/2,1<j<d}.

Theorem 16.5. For every d > 2 and n > 2 and o > 1, there exists z € G4(n)

with
log(n)* @D/ p \(a-1)-1) (loglog )"
. < T
P,(z;n) < ¢(d, o) ne (¢ n)) (1+O< logn ))
where

cld, o) = 2a(d—1)+1a<%)a—l

with b(2) =3 and b(d) =d — 1 for d > 3, and ¢(n) is Euler’s totient function.
Proof. This is Theorem 1 of Niederreiter (1993). O

A lattice rule with —n/2 < z; < 0 gives the same points as one using z; +n
instead, because (i — 1)z; = (i — 1)(2; + n) mod n. As a result, Theorem 16.5
also holds when G, (n) is replaced by {z € Z? | 0 < z; < n}.

Theorem 16.5 shows that we can get error O(n~**¢) for any € > 0 from a
lattice rule if f € £,(c) for some ¢ < co. The factor n/¢p(n) =n/(n —1) if n
is prime and 2% /¢(2%) = 2, so powers of 2 are also reasonable choices, though
they do introduce a factor 2(®=D(@=1) into the error bound that is not present
for prime numbers. The constant ¢(d, «) decreases rapidly with d. Niederreiter
(1993, Theorem 2) also shows that the usual practice of taking z; = 1 does not
greatly change the bound.

Niederreiter (1992b) uses an alternative to P,(z;n), that we can write as

d
Ra(z;n) = > H h;e (16.20)
heLln(—n/2,n/2]4 j=1

While P, is only defined for o > 1, he makes use of R;(z;n) and notes that
R.(z;n) < Ri(z;n)%, for a« > 1. For a > 1 and z € Gy(n),

Ro(z;m) € Po(z;n) < Ro(z;n) + O(n™%)
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holds. The upper bound is from Niederreiter (1993, Lemma 2). In a non-
asymptotic result (Niederreiter, 1992b, page 115), the average of R;(z;n) over
z € Gg(n) is below (2log(n) + 7/5)% for all d > 2 and all n > 2. Larcher (1987)
proves that R;(z;n) > cq(logn)?/n always holds for some ¢y > 0 when n > 2
and d > 2. It then follows that P;(z;n) cannot be o((logn)?/n).

For Korobov rules, the search space is smaller. For 0 < a < n, let z2(a) =
(1,a,a® mod n,...,a" ! mod n) over a < n. If n is prime and d > 2, then the
average value of Ry(z;n), for

n—1
% > Ri(z(a)in) < %(2 log(n) + 1)4,
a=0

by Niederreiter (1992b, Theorem 5.18). Of course, one would never use a = 0.
It is worth remembering that a better rate in n does not mean a better
method for practical sample sizes. First, the implied constant can increase
rapidly with smoothness a. Also, when the result is asymptotic, the accuracy
it presents might not be a good description of attained accuracy for feasible
sample sizes n.
We can bound the discrepancy of a rank-1 lattice rule.

Theorem 16.6. For z € Z% for d > 2, and integer n > 2, let ¢; = {(i—1)z/n}
fori=1,...,n. Then

d 1
D, (x1,...,x,) < - + iRl(z;n),

where Ry is from (16.20) with o = 1.

Proof. This is from Theorem 5.6 of Niederreiter (1992b). O

16.6 Periodizing transformations

Lattice rules are designed for smooth periodic integrands on R?. Given a smooth
integrand f on [0,1)¢, the natural way to extend it to R is given in Defini-
tion 16.5 below, but the result isn’t necessarily smooth. Here we consider ways
to define an integrand f satisfying

flx)de = d
/[O’l)dﬂm) z /[) f(z) da

and for which the natural periodic extension of fis smooth.

Definition 16.5. Given f :[0,1)¢ — R the periodic extension of f to R? is
f({x}) applied componentwise.

We begin with d = 1. Consider the function (z — 1/4) on [0,1). This func-
tion is very smooth on that interval but its periodic extension has discontinuities
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at every x € Z. The first panel of Figure 16.5 shows (x — 1/4)% overlaid on a
portion of its periodic extension.

For a function f on [0,1) to have a continuous periodic extension requires
that lim,_,1— f(z) = f(0) in addition to continuity for 0 < z < 1. It is conve-
nient to define f(1—) = lim,_,1_ f(x), f'(1=) = lim,_,1_ f'(z) and f((1-) =
lim, 1 f)(z) for integers r > 1. With this understanding, for f to extend
to a function with r continuous derivatives the required boundary condition is
f9(0) = fU)(1) for 0 < j < r. More generally, when f is defined on [0,1)% we
treat any boundary point by taking limits as necessary.

We consider several ways to replace f by a suitable f for d = 1. They are
distinguished by how well they preserve smoothness of f and by how effective
they are in higher dimensions.

The function f(z) = fe(x) = (f(z) + f(1 — 2))/2 extends to a one-periodic
function on R. This function was used in §8.2 on antithetic sampling. By
symmetry fr(0) = fr(1). The derivative of fg is fi(x) = (f'(z) — f'(1 —x))/2.
Now f£(0) = —f£(1) and so for ff(x) to extend continuously, we must have
f£(0) = 0, that is, we need f'(0) = f'(1).

Antithetic periodization is awkward to extend to higher dimensions. The
function (f(x)+ f(&))/2 with & = 1 —a taken componentwise is not necessarily
periodic (Exercise 16.3). The reflection method produces a d-dimensional
periodization of f by averaging 2? reflections of @. Letting go(x) = x and
g1(z) =1 —z, we take

]?reﬂ(w) = 2% Z Z f(gjl ($1),gj2($2)7 s ’gjd(xd))

J1=0  ja=0

= 2% Z f(@y:_y)

uC{L,....d}

where &,:x_, is the point z with z; =1 —x; for j € v and z; = z; for j & u.
By symmetry, [ freﬂ(w) da = [ f(z) dz. The obvious disadvantage of reflection
is that to compute freﬂ at one point requires 2% evaluations of f.

The reflection method does not yield a very smooth function. We saw this
already for d = 1 where fi.n = fg. The second panel of Figure 16.5 shows the
reflection periodization of (x — 1/4)3.

A second way to periodize a function uses the baker transformation which
is defined in terms of the tent function

2z, 0<

x<1/2
21 —12), 1/2<

16.21
<, (1621

8 /N

t(z) =min(2z,1 —22)=1-2|z —1/2| = {

The version using absolute value can be useful when writing software. The
absolute value function does the testing of x < 1/2 for us, and we don’t then
need to put a conditional branch in our code. The tent function is also called
the hat function.
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Definition 16.6. The d-dimensional baker transformation is a function B :
[0,1] — [0,1]? with B(z) = & where &; = t(z;) from (16.21), for j = 1,...,d.
For f:[0,1]% — R, the baker periodization of f is

Foaker(x) = f(B()). (16.22)

The name “baker” comes from the resemblance of this function to the folding
or kneading of bread dough, especially for d = 2. The function fpaker(x) has
a continuous periodic extension. As x goes from 0 to 1, the value of t(x) goes
from 0 to 1 and then back to 0. Thus ﬁ,aker(O) = ﬁ,aker(l) = f(0).

The baker periodization satisfies | Foaker() dz = [ f(z) de (Exercise 16.4).
We can compute ﬁoaker(m) with only one evaluation of f instead of the 2% re-
quired for f;eﬁ.

The third panel of Figure 16.5 shows the periodic extension of the baker
periodization of (x —1/4)3. Tt clearly has cusps (first derivative discontinuities)
at 0 and 1. By the chain rule, ﬁ;aker(O) = 2f'(0) and ﬁ;aker(l) = —2/7(0) so that
we get these cusps whenever f/(0) # 0. There is an additional cusp at x = 1/2.
This arises because ﬁ;aker(l/Q—) = f'(1) while ﬁaker(1/2+) = —f'(1). For
d > 1 there can be cusps in ﬁaker at points  where x; =0 or 1/2 or 1 for one
or more j € {1,...,d}.

A third periodization method is to subtract certain polynomials from f in
order to get the desired number of smooth derivatives at integer values of the
periodization. For continuity of f (i.e., the zeroth derivative) when d = 1 we
may use the linear periodization

Frinear () = f(2) = (f(1) = £(0))(x — 1/2).

Clearly fol frinear(z) dz = fol f(xz)dz because z — 1/2 integrates to 0. Also

fiinear (0) = flinear (1) = (f(0) + £(1))/2. The fourth panel of Figure 16.5 shows
the periodic extension of the linear periodization of (x — 1/4)3.

The linear periodization can be extended to smooth functions on [0, 1). Sloan
and Joe (1994) describe

r

Foem(z) = fx) = > _(F97(1) = fU79(0))b; (@)

j=1

where b; are the Bernoulli polynomials, which they define in their Appendix C.
Unfortunately, higher dimensional generalizations of the Bernoulli periodization
method are awkward already for d = 2 and their complexity grows exponentially
in d. We do not consider them further.

Of the methods considered above, the baker transformation method is clearly
the best for large d. It does not give rise to smooth integrands. It is possible to
obtain smooth periodic integrands using a change of variable formula.

Let ¢(z) be a differentiable increasing function from [0, 1] onto [0,1]. Then

/ f(2)de = / F(6(@)d (z) da. (16.23)
0 0
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Periodizations of (x—1/4)*

f(x) = (x—1/4)° Reflection periodization
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Figure 16.5: The first panel shows f(z) = (z — 1/4)% on [0,1) with a portion
of its periodic extension. The next three panels show periodizations of f(x)
described in the text.

The function f(z) = f(¢(x))¢'(x) has f(0) = f(1) if ¢'(0) = ¢'(1) = 0. The
function ¢ is a cumulative distribution function and ¢’ is the corresponding
probability density function.

The function ¢ must satisfy ¢(0) = 0, ¢(1) =1, ¢’(0) = 0 and ¢'(1) = 0.
These four constraints can be satisfied by a cubic polynomial ¢3(z) = a + bx +
cx? 4 dx3. Solving

0 10 0 0\ [a
1] 111 1]
of = o 1 0 of]e
0 01 2 3 \d

we find that ¢3(z) = 322 — 223, which upon inspection is increasing on [0, 1]. We
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recognize the derivative ¢5(x) = 62(1—x) as the density function of a Beta(2, 2)
random variable. The resulting periodization method is

fBeta(Q,Q) (z) = f(p3(z))Ps(x).

The periodization fBCta(g’Q) does not have a continuous derivative at x = 1.

Adding the further constraints ¢”( ) = ¢”(1) = 0 makes f/(0) = f'(1) =
The quintic polynomial ¢5(x ) 23(10 — 152 + 622) satisfies these constraints.
It has derivative ¢f(x) = 302%(1 — x)?2, the Beta(3,3) density. The periodizing
transformation

.fNBeta(3,3) (z) = f(¢5($))¢g(33)

is the first one we have considered whose periodic extension has a continuous
derivative whenever f does. It is illustrated for f(z) = (x —1/4)3 in the second
panel of Figure 16.6.

The Beta(k, k) density [x(1—z)]*~1(2k)!/(k!)? has k—1 vanishing derivatives
at 0 and at 1. We may obtain a periodization with £ — 1 derivatives vanishing
at integer values x by taking ¢ = ¢or_1 equal to the cumulative distribution
function of the Beta(k, k) distribution. Larger k are smoother but we will soon
see a drawback for large k.

Periodization by such transformations as this can be extended to d dimen-
sions without undue computational cost. In d dimensions we may use a mono-
tone change of variable periodization

d
flx) = f(o(x)) H ¢ (z;), (16.24)

where ¢(z) is applied componentwise. If ¢/(0) = ¢/(1) = 0 then f(z) equals 0
on the boundary of [0,1)% and has a continuous periodic extension. Choosing ¢
with more vanishing derivatives makes f({x}) smoother.

Sloan and Joe (1994) advocate the transformation

sin(27z)

¢sidi(z) = — o

with ¢§;q;(z) = 1 — cos(2mz) due to Sidi (1993). This choice of ¢ helps us find
a periodization of lattice rules that integrates constant functions without error.
To see why that is an issue, suppose that f(x) = ¢, a constant. Then f(x)
from (16.24) equals ¢ x H;l:l ¢'(x;) is not constant. When our rule integrates
constants correctly, and fi(x)+ fo(x) = 1, then we will surely have fi; + fio = 1
where fi; is the lattice rule estimate of u; = [ f;(x)dex. When f(z) = 1, then

ffor Sidi’s transformation becomes

ﬁ 1 — cos(2mz;)) ﬁ(l—( V=T —|—e_‘ﬁ‘"’3ﬂ>>

© Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



90 Lattice rules

which expands into a sum of 3¢ sinusoids ¥p(z), all with max;cjcalhj| <
1. Unless the dual lattice of (16.1) has a nonzero h with all components in
{-=1,0,1} the lattice rule will correctly integrate f(x) = 1.

For large d, the product H?:1 ¢'(x;) can cause difficulties. It typically in-

troduces a significant spike into f(x) near x. = (1/2,...,1/2). For example

f(mn) = f(wc)¢,(1/2)d' With ¢;3eta(2,2)(1/2) = 1-57 ¢§3eta(3,3)(1/2) = 1'8755
¢§3eta(4 4)(1/2) = 2.1875, and ¢§;4;(1/2) = 2, the spike can grow quickly with d.

When d is large, then f(x) will have a prominent spike near the center of
the cube, unless f(¢(x)) somehow vanishes there. When n is small, the entire
sample may miss the spike. A moderately large sample may hit the spike once
or a few times, with the result that the estimate i is dominated by those few
function evaluations. A very large sample is required so that the spike region is
properly covered.

We cannot solve the spike problem by choosing a function with ¢/(1/2) < 1.
The function ¢’ has to have an average value of 1 in order that ¢(0) = 0 and
¢(1) = 1. But ¢’ must be close to zero near 0 and 1 to bring about periodicity
of f Therefore ¢’ must be larger than 1 somewhere and the usual choices for
¢’ have a maximum at 1/2.

In §9.1, importance sampling was proposed as a means of handling inte-
grands with spikes in them. Suppose that we apply importance sampling to the
integrand in (16.24), sampling from the density H;l:l @'(x;). The result is to

replace f(x) by

= 1 . 471 /«Tj

H;‘l:1 ¢'(z5) H?:1 ¢’ (x5)

This importance sampling undoes the periodization transformation. Put an-
other way: the periodization that caused our problem is itself a kind of impor-
tance sampling.

The problem with spikes is not limited to transformations applied componen-
twise to x. Suppose that ¢(z) transforms [0, 1]¢ to [0,1]¢ and that we replace
[ f(z)dx by [ f(¢(x))det(J(x))de where J is the Jacobian of ¢. We can
make f(z) = f(¢(x))det(J(z)) periodic by making det(J(z)) equal zero on
the boundary of [0,1)?. Tt is clear that det(J(x)) must average to 1 over [0,1)%.
To see this consider the function f with f(x) = 1. Now if |det(J(x))| < € for
some 0 < € < 1/2 whenever x ¢ [¢,1 — €] then | det(J(x))| has to be very large
somewhere inside the tiny region (e,1 — €)%

The method of choice for periodization of high dimensional functions re-
mains the baker transformation. For smaller d, a smooth monotone change of
variable transformation, such as Sidi’s, may be better. A strong advantage of
the baker transformation was discovered by Hickernell (2002). He shows that
the baker transformation can produce errors of O(n=2¢) if f can be continu-
ously differentiated up to twice with respect to each component z;. This holds
even though f(B(-)) fails to be smooth at points & with any x; = 1/2. Lack of
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Smooth transformation periodizations of (x—1/4)*

f(x) = (x—1/4)° Beta(3,3) periodization
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Figure 16.6: The first panel shows f(z) = (x — 1/4)% on [0,1) with a portion
of its periodic extension. The next three panels show smooth transformation
periodizations of f(z) based on two Beta CDFs and a transformation of Sidi.

smoothness along axis parallel directions is a ‘QMC-friendly’ lack of smoothness
as discussed by Wang and Sloan (2011).

Table 16.3 adds a column for a Korobov rule with the baker function to
the estimates of the wing weight integral from Table 16.2. We see a much
more stable estimate for Korobov points using the baker transformation as n
increases. By that standard, the baker transformation appears to have improved
the accuracy of the Korobov lattice as predicted by Hickernell (2002).
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n Korobov K.+baker Halton

1021 268.0803  268.0743  267.4654
2039 267.9789  268.0739  267.5688
4093  268.0776  268.0750  267.8209
8191 268.0763  268.0753  267.9668
16381 268.0753  268.0752  268.0193

Table 16.3: Sample sizes n and integral estimates for the mean wing weight.
The methods are Korobov points, Korobov points with a baker transformation,
and Halton points.

16.7 Lattice parameter search

Searching for good lattice parameters is a job for specialists. Fortunately, they
publish tables with values that they find work well. See for example, Hua
and Wang (1981), Sloan and Joe (1994), and L’Ecuyer and Lemieux (2000).
As computers get more powerful, sample sizes grow, and static lists of tables
become obsolete. As a result, we can expect to need new searches for as long
as computers keep improving.

Before doing the search, one shows theoretically that there are good lattices
to be found. Somewhat disturbingly, this step proceeds by showing that the
average quality for a randomly chosen lattice is acceptable. For rank-1 rules,
the average might be taken over all vectors (z1, 29, ..., z4) subject only to each
zj being an integer between 1 and n — 1 inclusive with ged(z;,n) = 1. Sloan
and Joe (1994, Chapter 4.4) note that it is enough to search with z; < [n/2].
Then we can conclude that there must be at least one such good parameter
vector z. The reason that this argument is disturbing is that it shows existence
of good parameters but does not point out any single specific good parameter
vector. If we really did pick the vector at random, then we might get one
that is much worse than average and then use it on every quadrature problem.
Once the search has begun on the computer, we do get numerical values of the
figure of merit in use and we can control the probability of a bad result. If
we choose z uniformly at random from the specified set, then there is at most
0.5 probability that our criterion is worse than twice the average. If we choose
10 times at random, then there is less than 2719 < 0.001 probability that the
best of those 10 is worse than twice the average. There is also at most 1070
probability that the best one exceeds 10 times the average.

Some work of Goda and L’Ecuyer (2022) shows that for some search problems
the great majority of choices are better than the average one. Then using a
random selection and taking the median of the estimates the produce works
well. See §16.9.

Some of the searches are done with criteria other than P,. Sometimes it
is possible to compute the ratio of the attained criterion to a bound on the
best possible value for that criterion. L’Ecuyer and Munger (2016) include
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such a relative quality option for a spectral criterion that describes the spacings
between lattice planes.

What makes the search much more feasible is that a greedy component-by-
component (CBC) strategy is now known to find a good lattice. CBC search was
proposed by Korobov (1959). It was long forgotten and then reinvented by Sloan
and Reztsov (2002). We could reasonably be concerned that a greedy search,
choosing one z; at a time, would be suboptimal. Kuo (2003) shows that CBC
search produces lattices that attain the same convergence rate as optimizing all

of z9,...,2q jointly. Given n, we pick (z1,...,2;) to get a good k-dimensional
rule, working up from k£ = 1 to d. When searching for z; we retain the values
Z1,...,2k_1 from the earlier searches. The starting point is easy. Because any

z1 relatively prime to n will give the same 1-dimensional lattice we may take
z1 = 1. Nuyens and Cools (2006) brought a significant speedup to CBC searches
by employing fast Fourier transformations.

16.8 Embedded, extensible and shifted lattices

The lattice rules presented so far are not extensible. If n proves to be too small,
then we have to start over with a larger number n’ > n of points and may
even have to repeat a parameter search for lattices of size n’. While rank-1
lattice rules are an improvement over the Kronecker rules of §15.14, they have
given up the extensibility of Kronecker rules in return for having especially good
performance at certain special values of n such as prime numbers or powers of
2. Here we consider ways to produce rank-1 lattice rules with more than one
especially good sample size.

Embedded lattice rules of rank 1 in [0, 1] are constructed to be extensible
through a finite sequence of sample sizes n for a finite list of dimensions d. Most
commonly

n=>0", m<m<my and1<d< dpax.

Here b > 2 is an integer, and b = 2 is the usual choice. We will use the term
‘embedded’ to mean that the number of levels of n or d is finite, but greater
than 1. By contrast, ‘extensible’ means that there are an infinite number of
levels. The component-by-component constructions in §16.7 produce rules with
a fixed n that are extensible in d. They have been generalized to produce rules
that are embedded with respect to n, but are extensible in d. Some lattice rules
are extensible in both n and d.

It is common for embedded and extensible lattice rules to be constructed
using a shift modulo one. For A € [0,1)%, the shifted lattice rule has

a:i:{%—kA}, i=1,...,n

for a vector z € Z%. We will consider random A in §17.3. The integration error
of a lattice from (16.12) becomes

S flh)ermVIATR, (16.26)
heL}:
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See Exercise 16.8.

Cools et al. (2006) have a strategy for embedded lattice rules of size n = 2™
for m; < m < mg. Let wee(n,d, z) be the worst case error when using the
vector z € Z% in a rank-1 lattice rule with n points in dimension d. This
quantity could be the P»(z;n) from §16.4 but those authors include more general
criteria including some designed for the weighted spaces discussed in §16.9. The
search is for a good vector z € Z¢ among those with all ged(z;,b) = 1. For
m=my,...,my, let 2z0™ minimize wce(b™,d, z). Then let

I(2) = wee(b™, d, z)
R ol wee(b™, d, z(m))’

Given z1, 22, ...,24—1, they choose z4 to minimize the worst case relative error
weerel(z) above. They report that those worst case relative errors are typically
smaller than 2. They actually tune their performance measures to account for
a random A, so the story is a bit more complicated than the above account.

The whole search can be done in time O(nd(log(n))?) time, for prime b where
n = b™2. For fixed d, the cost to compute f(x1), -, f(xpm) will ordinarily be
O(b™) for a value of m between m; and mg, and then for very large sample
sizes the search cost will not be negligible.

An extensible shifted lattice rule with shift A € [0,1)¢ is an infinite
sequence x; = {¢p(i — 1)z + A} for ¢ > 1, where ¢(-) is the radical inverse
function that we used to generate the van der Corput sequence in §15.5. That
is, we use the points

{¢p(i)z + A}, i>=0.

As before, z € Z%. We choose z in order to get a good lattice rule on n = b™
points. Now consider indices i = £b™,£b™ + 1,£0™ 4+ 2,...,(£ 4+ 1)b™ — 1 for an
integer ¢ > 0. Over this range ¢,(7) takes the values

(ﬁb(ﬁ)b_m_l + (bb(O), ¢b(€)b_m_1 + ¢b(1), RN (bb(f)b_m_l + (™ —1).

These are a reordering of
Gp(Ob™ /™, 0< G < O™

As a result, the £’th block of consecutive point is a shifted lattice rule with shift
A+ ¢p(0)b~™~1. We get an infinite sequence of shifted lattice rules, each of
length ™. They do not repeat. If we choose A = 0, then the first block is a
usual rank-1 lattice rule, while all subsequent blocks are shifted lattice rules.
Extensible lattice rules were proposed by Maize (1981) and rediscovered
by Hickernell and Hong (1997) and further studied by Hickernell et al. (2000).
Hickernell and Niederreiter (2003) prove, using an averaging argument, that
good extensible rank-1 lattices exist. Table 16.4 gives some example rules.
They are for points {¢2(i)z + A} for a Korobov vector z = (1,a,...,a*"1) in
dimension s < d. They are designed for ¢ = 0,...,2™ for mg < m < my and
thereafter for ¢ = 0,...,¢2™* for £ > 1. The criterion ‘weighted P’ refers to
a criterion designed for functions in a weighted space model that downweights
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Criterion mog mp d a

Weighted P, 0 17 32 17797
Weighted P, 13 20 32 407641
Spectral 0 17 25 1267
Spectral 15 24 32 4450341

Table 16.4: Selected extensible Korobov rules from Table 4.1 of Hickernell et al.
(2000). They use z = (1,a,...,a*"!) to integrate over [0,1)% for s < d. The
intended sample sizes are n = b for mg < m < my.

the importance of higher order interactions in f. The article describes them as
using o = 1 but ordinarily o > 1 is required for lattices, and they do use the
Bernoulli polynomial of degree two. The ones labeled ‘Spectral’ use a criterion
similar to the ones used to design random number generators. The selected
rules in Table 16.4 cover two ranges of sample sizes.

16.9 Weighted spaces

Lattices can be custom designed to integrate functions in the weighted spaces of
§7.7. The weights are incorporated into a figure of merit and then it is possible
to do a custom search for a lattice rule just before evaluating an integrand,
though that does raise the cost.

To describe these methods, for v C {1,2,...,d}, let x, be the components
of  for j € u. L’Ecuyer and Munger (2016) consider criteria of the form

Z Yu,g X Du(wl,lu ceey $n,u)q
o#uC{1,2,....d}

where ¢ > 1 and vy, 4 are real numbers and D, is a badness measure for points
in [0, 1]/, Tt could be the worst case error from §16.4, via D2 = Py(z;n). They
include several other performance measures. They write their weights v¢ but
then remark that their methods allow negative weights, so writing v, , makes
it clear that the weights need not be the ¢’th power of a real number. Their
optimization takes account of a fixed set of sample sizes, but not an infinite set.
That is, their rules are embedded but not extensible in n.

Section 7 of Kuo and Nuyens (2016) describes software for constructing lat-
tices in weighted spaces. They also consider polynomial lattice rules mentioned
in the end notes of Chapter 15.

The search for a lattice rule has been simplified by Goda and L’Ecuyer
(2022). Their approach is to repeat a random search among lattice rules K
times getting flas x for k =1,..., K for each of the resulting lattices. Taking K
to be an odd number, they use

fiat,med = mediany k< i (fat k)
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as their estimate of p. The power of this method derives from the distribution
of integration errors under random sampling. Not only is the average good, but
also most of the random choices are very good and the average is good despite
the presence of a small proportion of bad outliers with very large |fas — p|
values. That same phenomenon had been noted by Pan and Owen (2022c) for
an RQMC method.

Goda and L’Ecuyer (2022) find that the median adapts to smoothness in f
and provides accuracy almost as good as one could get customizing a lattice rule
to a given weighted function space. The user need not know which weighted
space to consider. Their results are for integrating periodic functions by rank-
1 lattice rules and also non-periodic functions using polynomial lattice rules
(which are digital nets).

Chapter end notes

Lattice rules were proposed by Korobov (1959), with early contributions by Hua
and Wang (1960) and Hlawka (1962). They were earlier called the number
theoretic method because of the use of number theory in the searches for
good parameter values. More information on lattice rules may be found in the
monographs by Sloan and Joe (1994), Hua and Wang (1981) and Niederreiter
(1992b) as well as the article by Lyness (1989). Fang and Wang (1994) give
applications to statistics. Most of the literature on lattice rules emphasizes
periodic integrands. Dick et al. (2014) are an exception. In place of functions
V() = exp(2my/—1h"x), they use [cu V2 cos(mkjx;) for u C {1,2,...,d}
and integers k; > 1.

The literature on lattice rules refers to both Korobov spaces and Sobolev
spaces. Korobov spaces have periodic integrands and integrands in Sobolev
spaces are not necessarily periodic.

Fibonacci lattices attain optimal discrepancy and Ls-discrepancy among lat-
tice rules in [0,1)2. Breneis and Hinrichs (2020) describe several optimality re-
sults for Fibonacci lattices. For d > 3, there is no best family of lattice rules
comparable to Fibonacci lattices for d = 2.

Weighted spaces are described in Chapter 7. They were introduced by Hick-
ernell (1996b) to improve the quality of lattice rules in their lower dimensional
projections. Sloan and WoZniakowski (1998) develop tractability results for
them. Wang and Sloan (2006) describe a sense in which lattice rule construc-
tions that are not designed for weighted spaces are more sensitive to equidis-
tribution of higher dimensional projections than they are to lower dimensional
projections.

Higher rank lattice rules
An estimate from a rank-2 lattice rule takes the form

=Y 3 ({“n‘l b+ 2 1@}) (16.27)

i1=112=1
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where n = ning and z1, 29 € Z4 are carefully chosen vectors of integers. More
generally, for 1 < r < d, a rank-r rule takes the form

“:iizfqzzjn;lz}) (16.28)

ii=1  i,=0 j=1

where n = H;Zl n; and z1,...,2, € Z%.

The rank-1 lattice rules are formed as n consecutive integer multiples of a sin-
gle vector z. Geometrically they are formed by taking equispaced points along a
line through the origin and then putting them into [0, 1)¢ by a wraparound oper-
ation corresponding to taking the points modulo 1. Rank-2 lattices are obtained
by taking a rectangular grid of points in a plane through the origin and reducing
them modulo 1 to lie within [0, 1)¢. Rank-r rules exist for any integer r between
1 and d inclusive. Some of them are presented in Sloan and Joe (1994). Higher
rank rules also have dual lattices and they satisfy Proposition 16.1, though the
proof is more subtle in the general case.

Rules of rank 2 and higher can be shown to achieve the higher order accuracy
that rank-1 rules obtain for smooth periodic functions. Joe and Disney (1993)
describe how the average rank r + 1-rule is better than the average rank-r rule
for 1 < r < d. There is numerical evidence that well chosen rank-2 rules can
be somewhat better than rank-1 rules (see Sloan and Joe (1994)), but in the
examples they do not appear to be very much better. So far, higher rank rules
have not displaced rank-1 rules in practice. One disadvantage of higher order
rules is that they require a search for good choices of (z;,n;) for j =1,...,7.
If » > 1, then the search is more challenging.

Fourier convergence

Many convergence results for multidimensional Fourier series are in Grafakos
(2004, Chapter 3) and yet more are in Golubov (1984) who cites 474 references
on the topic. A sufficient condition for f to have an absolutely summable
Fourier expansion is that f({x}) have a > d/2 derivatives. Conversely, there
exist functions with exactly d/2 derivatives and divergent Fourier coefficient
sums. The condition generalizes to allow for non-integer «. Differentiability
of non-integer order o > 0 then means that every partial derivative of f of
order |« is Holder continuous of order § = o — |a|. The function g is Hélder
continuous of order 3 if |g(x) — g(x + &)| = O(||6]|?) as 6§ — 0.

Lattices versus nets

Prior to the 1990s, lattice rules could be designed to exploit increased smooth-
ness of the integrand, while digital nets could not. Digital nets were known to
be part of extensible in n sequences while lattices were not extensible. Finally,
lattices required challenging parameter searches while digital nets were almost
automatic: Faure sequences require no search, and while Sobol’ sequences re-
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quire a choice of direction numbers, there are just a small number of commonly
used choices.

Now the features of each family of methods have found parallels in the other.
The polynomial lattice rules of Niederreiter (1992a) provide a mechanism to
search among digital net constructions. Hickernell et al. (2000) brought exten-
sibility to lattice rules. The advent of higher order nets, also called interlaced
nets by Dick (2008) yielded digital net constructions that could exploit increased
smoothness. The expansion into Walsh functions for digital nets in §15.13 is a
natural parallel to the Fourier expansions used for lattices.

It is difficult to choose between lattices or digital nets, at least based on
accuracy. The difference between QMC and MC is much more important than
the choice of which sort of MC to use. Even for one specific domain, the valu-
ation of Asian options in finance, Lemieux and L’Ecuyer (1998) found lattices
working best in some examples and nets working best in others. In Chapter 17
we consider randomizations of lattice rules and nets. There we will see a few
differences.

Exercises

16.1. Prove that the mean of 1, ...,x, € [0,1)? from a rank-1 lattice rule has
all d components equal to 1/2—1/(2n). For the sample sizes n in Table 16.3, find
the mean of xy,...,x, € [0,1]'° when x; are taken from the Halton sequence.
Subtract each component of the mean from 1/2 and multiply the absolute value
of the difference by n. Compare the result to corresponding results for lattice
points.

16.2. Prove that the set Lt is a lattice.

16.3. Let f be defined on [0,1)? for d > 1. Show that the function (f(x) +
f(1 —x))/2 with 1 — & taken componentwise is not necessarily periodic.

16.4. Prove that the baker periodization satisfies [ foarer (@) dz = [ f(x) de.

16.5. Maybe the baker transformation would improve integration for the Halton
sequence for the wing weight function whose results are in Table 16.3. Compute
estimates of the integral of the wing weight function using the Halton sequence
with and without the baker transformation. Does the baker transformation
appear to make the computations more stable? For the Halton sequence in
dimension 10 we do not expect any sample sizes n to be especially good, so take
n to be multiples of 100 from 100 to 20,000.

16.6. Sidi’s change of variable periodization results in a lattice rule that cor-
rectly integrates constant functions.

a) Show with a small example that the Beta(2,2) periodization does not
always correctly integrate constant functions.
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b) Determine whether lattice rules incorporating the baker transformation
always correctly integrate constant functions. Do the same for the reflec-
tion periodization.

c) Now consider the linear functions x;—1/2 for j = 1,...,d. These of course
integrate to 0. Which, if any, of the change of variable transformations we
considered will lead to correct integration of these linear functions?

16.7. Prove that equality holds in (16.15) for f given by (16.16).

16.8. Prove equation (16.26). This expression involves complex numbers even
though the integration error must be real for f(x) € R. Show that the expression
is indeed real, in some other way than simply observing that ji — u must be real
when [, u € R.
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17

Randomized quasi-Monte Carlo

From Chapters 15 and 16 we see that quasi-Monte Carlo (QMC) methods can
vastly outperform Monte Carlo (MC). Under the right regularity on f, QMC
can attain an error of O(n~17¢) or even O(n=%¢) for an integer o > 1 and all
¢ > 0, compared to a root mean squared error (RMSE) of O(n~1/2) for MC.

A major difficulty with QMC is that we cannot estimate the size of the
error from the QMC sample values f(x1),..., f(x,). The theory provides es-
timates for |t — p|, but they depend on virtually unknowable quantities, may
apply to worst case functions quite different from f, and the estimates are often
asymptotic in n.

The situation for plain MC, while not perfect, is much more satisfactory. The
RMSE is exactly o/+/n for the n we used, where o2 is the variance of the f we
studied. While o is unknown, MC provides a useful unbiased estimate s2 of it,
and the central limit theorem gives us asymptotic confidence statements. Those
account for the estimation error in both ji and s. When we want 99% coverage,
we get 99% + O(1/n) coverage. Our uncertainty quantification is in this sense
even more precise than our Monte Carlo estimate with its o/v/n RMSE.

In this chapter we consider randomized QMC (RQMC) methods to get the
accuracy of QMC with the error estimation advantage of MC. In an RQMC
method, the points x,...,x, are individually U[0, 1], but collectively of low
discrepancy. It will follow that £ is then an unbiased estimate of p with at
least QMC accuracy. Then independent replications of the QMC rule provide
a MC sampling basis for error estimation. Strategies and properties of such
RQMC-based uncertainty quantifications are the subject of ongoing research.

We will see some circumstances where RQMC ends up being even more accu-
rate than plain QMC. Randomization also helps to protect against some worst
case outcomes, or at least to make their probabilities negligibly small. Random-
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ization even helps to make the sample points avoid singularities, whether their
locations are known or unknown and RQMC can still be better than MC even
if the integrand does not have bounded variation.

As we noted in Chapter 15, the points ; in RQMC are variously defined as
elements of [0,1]4, (0,1)¢ or [0,1)¢, even though U[0, 1]¢, U(0,1)¢ and U[0,1)¢
are all the same distribution. The cube [0,1)? is convenient when f is periodic
or when x; have to be placed into congruent strata, while it is better to define f
on [0,1]? when we need to consider its total variation or Riemann integrability,
and (0,1)¢ is convenient for some unbounded integrands.

17.1 RQMC definitions and basic properties

Random variables x; € [0,1]¢ for i > 1 comprise a randomized quasi-Monte
Carlo rule if there exist B < oo and N > 0 with

P(D;(ml, ce@p) < B(logn)d/n) =1, forallm> N, and, (17.1)
x; ~U[0,1]¢, foralli>1. (17.2)

This definition applies to an infinite sequence. We can also define a triangular
array version of RQMC. As in §15.3, we let x,,,; € [0, 14 for i = 1,...,n; and
Jj =2 1withnji, >n; and n; — oo as j — oo. These points provide a triangular
array RQMC if each x,,;; ~ U[0,1]¢ and

P( D}, (@1, nn,) < B(logn;)?/n;) =1

for some B < oo and all j > 1. It is common for n; to be a sequence of primes
or powers of 2. An infinite RQMC rule is also a triangular array RQMC rule

Constructions of RQMC points begin with QMC points a, ..., a, € [0, 1]%.
Then we apply randomizations, generating x; ~ U[0,1]? from a;, while pre-
serving in x; some of the QMC structure from a;. Before describing specific
constructions of RQMC points, we look at their general properties, as well as
how to use randomization to estimate error.

Given n points x1,...,x, € [0,1]% of an RQMC rule, the estimate of y =
f[o,l]d f(x) dx is the usual average

'[:L:

S|

i f(zi).
The RQMC estimate is unbiased, because
E(7) = iimﬂwax and
B(f(2i)) = /H f(@)de =
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If f has bounded variation in the sense of Hardy and Krause, then

Var(i) = E((4 — 1)) <E((Dy (@1, .., z0) Vak(f))?)
log(n)??
< BQVHK(f)Q g’,(IQ)

for large enough n, and then RQMC is asymptotically better than Monte Carlo.

RQMC provides an unbiased estimate of p for which the QMC error bounds
apply. RQMC estimates have an RMSE that is O(n=1*"¢) for any € > 0 when
Vik (f) < oo. The process that turns ay, ..., a, into random points @y, ..., T,
can be repeated independently R > 2 times, giving fi1,...,/ir. Then we may
form the pooled estimate,

1 R
,apool - R ; ﬂT

and its associated variance estimate

R
Vat({ipon) = =5 2 r — oot (17.3)

r=1

Because fi1,...,fir are independent and identically distributed, we find that
E(fipoot) = p and E(Var(fipool)) = Var(fipoot)-

A replicated RQMC estimate requires nR function evaluations. When f is
of bounded variation, the error in fipoor is O(n’1+ER’1/2). Given an upper
bound on nR, the most accurate estimate of p is obtained by taking n large
and R small. The estimate of Var(fipoo1) is based on a sample of R independent
replicates. The relative error \//a\r(ﬂpool) /Var(fipool) — 1 decreases at the rate
O(R~'/?), for any fixed n, when E(fi*) < co. Therefore, using a small value of
R will result in a poor variance estimate.

Confidence intervals are better than variance estimates for quantifying the
uncertainty in fipoo1. If R is large, then an asymptotic 99% confidence inter-
val for p is fipool £ 2.58\//'5"(/%001). For smaller R it is better to use fipool
t?ﬁ?‘?)\//&}(ﬂpool) where t‘(’k) is the a-quantile of the ¢ distribution on k& degrees
of freedom. The attained coverage of an asymptotic 99% confidence interval is
typically 0.99 + O(1/R), compared to the O(1/v/R) error in the variance esti-
mate. The accuracy of these approximate confidence intervals depends strongly
on the third and fourth central moments of fi,. When we suspect that [, has
a very skewed distribution, which could arise for integrands that describe rare
events, then more replicates are needed. It is also possible to replace the stan-
dard CLT-based confidence intervals by those based on the bootstrap ¢ method
described in the chapter end notes. The coverage error in bootstrap ¢ intervals is
typically smaller than other nonparametric confidence interval methods. Some
RQMC methods can bring errors with such heavy tails that a median-of-means
estimation strategy becomes very effective. This has the disadvantage of mak-
ing CLT-based and bootstrap confidence intervals more difficult to use. See Pan
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and Owen (2022b,c) for how this can happen with the random linear scramble
we show in §17.6.

The choice of n and R thus depends on the relative importance of the accu-
racy of fipo01 and the accuracy of our confidence interval. Even when accuracy
of fipool takes precedence, it is reasonable to do some replicates. It would be an
odd use case indeed, if we needed utmost accuracy in u, but were completely
uninterested in verifying what accuracy we had achieved.

When we want to estimate fipo01 Well and can accept a rough estimate of its
error, then we could take R = 5 or 10. Like any rule of thumb this guideline
could give poor results in extreme cases. For example, when fipoo1 has a very
long-tailed distribution, we might get poor coverage. We would expect a long-
tailed distribution in settings where f involves rare events. Results in Pan
and Owen (2022¢) indicate that some scrambling strategies might provide very
heavy tailed distribution of firqmc. There is more discussion of uncertainty
quantification for RQMC in §17.4, which has a worked example.

Sometimes we may want a very good estimate of Var(fipoo1) in its own right.
For example, when we need to decide which of two RQMC methods to adopt for
future problems, it would be worthwhile to carefully investigate their variances
on a collection of similar test problems. Then we might want R as large as 300
or even 1000 during the tests, though smaller R would be used later on with
the selected method.

Sometimes a central limit theorem holds for each fi, as n — oco. Then we
may find that the individual i, values are approximately normally distributed.
In that case, a smaller value of R is likely to be large enough to give a good
confidence interval.

17.2 Effective dimension for RQMC

The ANOVA decomposition (Appendix §A) of a square integrable function f
on (0,1)% is

f@)= > ful®) (17.4)

uCl:d

where f,(x) only depends on @ through «,, the components z; for j € u. This
fu also satisfies fol fu(z)dz; = 0 whenever j € u. Here fz(x) is a constant
function always equal to u. For & ~ U(0,1)4, Var(f(x)) = >, 02 where
02 = Var(fu(x)). Under RQMC we can decompose the variance of fi into
components too.

Theorem 17.1. Let f be square integrable with ANOVA decomposition (17.4).
If x1,...,x, are an RQMC point set, then

varCL il f(:ci)> - ugdvarc i: fu(:ci)>. (17.5)
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Proof. Because

n

Var<;§f(mi)> > % ol Z @) 2 Y ),

uCl:dvCl:d =1

it is enough to show that

Cov <§ fu(®i), é fu(-’ﬂi)> =0

for any two distinct subsets v and v of 1:d. This is automatically true if either
u or v is @ because fz is constant. Without loss of generality, let j € u with
j & v with v # @. Then z; ~ U(0,1)? implies that E(f,(x;)) = E(f,(x;)) = 0.
Let x;,_; be composed of x;;, for all k # j. The covariance above is then

ZZE fu 331 fv 1131 ZZE fu 331 fv($l)|wl *J))

i=11¢=1 i=114¢=1

=3 S B(fu(e) (e |20) =0

i=114=1
because f, integrates to zero over x;. O

We note that this theorem only used moments properties of of RQMC points.
It did not use the low discrepancy property.
By Theorem 17.1, we can write the RQMC variance as

Var( 1Y f(@)) = - Y nu(f)ed (17.6)
i=1

uFED

for gain coefficients T, (f) > 0 that quantify how much better or worse RQMC
is than MC for the given integrand f and the distribution of x,. Later we will
see bounds on gain coefficients that hold for all square integrable f. If all
Iy =1, then RQMC has exactly the same variance as MC. A common feature
in RQMC is that I',, < 1 for subsets u with small cardinality |u|. We generally
also have I';, > 1 for some other variable sets u. Those may be the ones with
large cardinality. When f is dominated by effects f, with small |u|, then RQMC
can bring a great improvement. There are several ways to measure the extent
to which an integrand f is dominated by the effects of only a few subsets u.
In §17.5 we consider some randomizations of digital nets where I';,(f) does not
depend on f.

Definition 17.1. The function f : (0,1)¢ — R has effective dimension s > 1 in
the superposition sense at level 0.99 if s is the smallest integer with

> ol >0.990°.

w:|ul<s
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Another notion of effective dimension has f depending primarily on the first
s input variables. We let [u] = max{1 < j < d|j € u} with [&] =0.

Definition 17.2. The function f : (0,1)¢ — R has effective dimension s > 1 in
the truncation sense at level 0.99 if s is the smallest integer with

The threshold 0.99 in effective dimension is arbitrary. It is motivated by
the idea that if we could remove about 99% of the variance through methods
that are very good for some u, then we might be able to speed up estimation
by a factor of about 100. It can be difficult to estimate the effective dimension
in specific examples. The mean dimensions of f in the superposition and
truncation senses are

vo(f) = % S Julo?, and (17.7)
uCl:d

()= 3 [ulo? (7.)
uC1:d

respectively. These are well defined unless 02 = 0. In that case we could take
vs(f) = v (f) = 0, or we may simply ignore this exception, as we seldom need
to numerically integrate a function with o2 = 0.

The value v, is comparatively easy to estimate by Sobol’ indices. We can
use the identity

d 1
21/ :1 ) — L_j.2; 2 X dz; .
(1) 2;/@ [, 0@~ f@m)amay a7

where x_;:z; is the point we get by replacing z; by z; in . See Appendix §A.
If v, is close to one, then it means that f is well approximated by an additive
function.

17.3 Cranley-Patterson rotation and lattices

A simple random shift modulo 1 is often used to randomize lattice rules. Let
ai,...,a, €[0,1]%. A Cranley-Patterson rotation of these points takes the
form

x; =a; +u mod 1

interpreted componentwise, where u ~ U(0,1)?. The method is named for the
authors of the paper Cranley and Patterson (1976) where the idea was proposed
for lattice rules. Figure 17.1 illustrates a Cranley-Patterson rotation for d = 2.

The Cranley-Patterson rotation of any point a € [0,1]¢ is uniformly dis-
tributed. This is geometrically reasonable. The value a+w mod 1 is the random
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Cranley—Patterson rotation

Before Shift After

Figure 17.1: The left panel has 13 points in the unit square. The center panel
shows them shifted right by 0.3 and up by 0.125 with wraparound. The right
panel shows the resulting points.

point w shifted right with wraparound by the amount a. The result a + u is
in a region F if and only if w is in E shifted left by a, again with wraparound.
Shifting the region left might break it into pieces but does not change the total
volume of the pieces. Therefore we expect P(a+u € FE) = vol(E) = P(u € E).
The proof is as follows.

Proposition 17.1. Let a € [0,1]¢ ford > 1. If x = a +u mod 1 for u ~
U(0,1)¢ then = ~ U(0,1)%.

Proof. We begin with d = 1. If € (0,1) then P({a + U} < x) equals

1 1
/ ]]-{a+u}<aa du = / Lotu<alatu<1 + ]]-a+u—1<;c]]-a+u21 du.
0 0

Now
1 1
/ Lotu<zloju<idu = / ly<z—qdu =max(0,z —a), and
0 0

1
/ I1_u<u<i—a+z du =min(l,1 —a+ ) — (1 — @) = min(a, z).
0

Either z > a or x < a, but max(0,z — a) + min(a, ) = = holds in both cases.
Therefore P({a+ U} < x) = x and the result is established for d = 1. Ford > 1
each component {a; +u;} ~ U(0,1). Then, because u; are independent, so are
{a; + u;}, and therefore {a +u} ~ U(0,1)% O

A Cranley-Patterson rotation of low discrepancy points has low discrepancy.
For example, if x; = a; + w mod 1 then

Dy(x1,...,2,) <2'Dy(ay,...,ay) (17.10)
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holds for any u. See Exercise 17.1. Combining equation (17.10) with Propo-
sition 17.1 shows that a Cranley-Patterson rotation of low discrepancy points
yield a randomized quasi-Monte Carlo rule so that the unbiasedness and vari-
ance estimation properties in §17.1 apply. The factor 2¢ in (17.10) turns into
4% in a variance bound. It is however extremely conservative stemming from a
worst case or even impossible pattern among the rotated points. The sample
variance of fi, will depend on the specific points a; and integrand f not on
worst case a; or f. It is also not clear whether the factor 2¢ is even close to
best possible for any QMC points that one might use.

While Cranley-Patterson rotation of low discrepancy points will retain their
low discrepancy, Cranley-Patterson rotation of badly non-uniform points cannot
meaningfully improve them. For one thing, the original bad points would be
an inverse Cranley-Patterson rotation of our new good points and we argued
above that these rotations could not turn good points into bad ones. If there
is a dense cluster of points somewhere, then after rotation that dense cluster
appears in another place, perhaps split at the boundary of the unit cube. The
same applies to a void. The unpleasant stripes and gaps from the Kronecker
points of §15.14 would simply move to new locations parallel to their old ones
under Cranley-Patterson rotation.

A Cranley-Patterson rotation of a (¢,m, d)-net in base b has low discrepancy,
but the result is not usually another (¢, m,d)-net. Cranley-Patterson rotations
are more commonly applied to lattice rules. The resulting points are then
a randomly shifted lattice rule. The variance of lattice rules under Cranley-
Patterson rotation can be expressed in terms of the dual lattice of the sampling
points and the Fourier coefficients of the integrand as follows.

Theorem 17.2. Let aq,...,a, € [0, 1)? be a lattice rule with dual lattice D €
Z2. Let f be a square integrable function on [0,1)? with Fourier coefficients
f(h) for h € Z%. Let x; = a; + w mod 1 for u ~ U(0,1)% and i = 1,...,n.
Then

n

Var(%Zf(wi)) = Z f(n)? (17.11)

i=1 heD,

where D, = D\ {0}.
Proof. Tuffin (1998) proved it assuming f has an absolutely convergent Fourier
series. L'Ecuyer and Lemieux (2000) proved the version above. O

It is instructive to compare equation (17.11) with the result for crude Monte
Carlo. In that case the variance is

o2 1 P
Var(j =—=— 2,
ar(fip) = — Y. f
hezd\{0}

Letting jficranpat refer to Cranley-Patterson rotation of a lattice rule we obtain

Var(ﬂCranPat)

<n, dso 0 < Var(ficranpat) < 02. 17.12
Var (i) n, and so ar(ficranpat) < 0 ( )
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n Halton Halton-b Korobov Korobov-b MC

1021 0.34 0.18 0.16 0.0014 1.70
2039  0.27 0.086 0.058 0.0029 1.20
4093  0.15 0.035 0.084 0.00076 0.87
8191  0.066 0.052 0.021 0.00015 0.61
16381  0.054 0.028 0.011 0.000038  0.43

Table 17.1: Half-widths of approximate 99% confidence intervals for the mean
wing weight, to two significant figures. Baker transformations are indicated
by ‘b’. MC half-width quantities are described in the text.

The upper bound is disconcerting. In such worst cases the Cranley-Patterson
method with n points is as effective as crude Monte Carlo with just 1 point.

At first sight, equation (17.12) may seem to contradict nVar(ficranpat) — 0.
The resolution is as follows: if we fix a function f of bounded variation and take a
low discrepancy sequence of lattices with n — oo then indeed nVar(ficranpat) —
0. If instead, we fix an integration lattice on n points and then look for a
worst case function f = f, for that given lattice, then we can find one with
Var(ficranpat) = 02 = n x Var(firrp), but this function would not achieve the
worst case for all of the other sample sizes n’ > n.

The worst case is a consequence of shifted lattices being a cluster sample
as described in §10.7. The nasty integrands are constant within clusters and
vary between clusters. In one dimension, this case arises if a; = (i — 1)/n and
f happens to be a periodic function with period 1/n.

These worst case functions are extremely unlikely to arise in real applica-
tions. It is hard to know where the line is between realistic and unrealistic
values for Var(ficranpat)/Var(finmp) for lattice points.

17.4 Example: wing weight function

We can use Cranley-Patterson rotations to estimate the accuracy of QMC on the
wing weight function of §16.2. Table 17.1 shows the confidence interval half-
widths based on R = 5 Cranley-Patterson rotations for Halton and Korobov
points, with and without the baker transformation. In each case an approximate
99% confidence interval was constructed as fipool :tt?ﬁ%\/ar(ﬂpool)l/ 2. The half-

widths reported are t&?%@(ﬂpool)l/ 2,

Table 17.2 gives the estimated values formed by averaging all R replicates.
For this problem RQMC has estimated the mean to greater accuracy than might
be required. The Korobov method with a baker transformation has done partic-
ularly well. Using some replicates of that sequence we can estimate the Monte
Carlo variance. For this function o = 48.08 and so the RMSE for MC would
be roughly 48.08/y/n. A rough counterpart to the half-widths reported in Ta-
ble 17.1 would be 2.58 x 48.08/\/% where the factor of 5 is there to give MC
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n Halton  Halton-b Korobov Korobov-b

1021 268.0775 268.0556 268.0946  268.0744
2039 268.1679 268.1686 268.0584  268.0755
4093 268.1102 268.0153 268.1123  268.0757
8191 268.0588 268.0723 268.0757  268.0752
16381 268.0752 268.0780 268.0763  268.0752

Table 17.2: Estimated mean wing weight based on 5 Cranley-Patterson rota-
tions.

the same number of sample evaluations that the RQMC methods had.

It is remarkable how well the baker transformation applied to the Korobov
points has done. There is some theoretical reason to expect this in §16.6. Also,
the mean dimension of this function is small. Equation (17.9) describes an
integral to compute the mean dimension of the wing weight function using 11
dimensional input. Using some 11-dimensional RQMC points we find that the
mean dimension in the superposition sense for the wing weight function is about
1.012. This means that at least 98.8% of the variance of f comes from an additive
approximation (Exercise 17.4). We might not have guessed from the formula
in §16.2 that this function is so nearly additive. Taylor’s theorem implies that
it would be nearly linear and hence additive over a small region where the
gradient was not zero, but it is not obvious that the region of interest is that
small. Indeed, it might not be, because the best additive approximation to the
function might not be linear. The input region for this function does not seem
to be small in practical terms: it contains values ranging from about 150 to
just over 450 which is a very large range for something as critical as the weight
of an airplane wing. For a smooth integrand that is about 99% additive, we
would ordinarily find Latin hypercube sampling to have about 1/100 times the
variance of plain MC and yield half-widths about 1/10 times as large. The
RQMC methods are doing even better than that, so they must be accurately
estimating the integrals of f,, for some u with |u| > 2.

From the replicates, we have a much better idea of the sampling error than
we got from just computing ji for varying n. We might still wonder whether the
widths for the confidence intervals were accurately estimated. If we would esti-
mate the accuracy of those widths, then we would face a higher order question
about the accuracy of the estimates of accuracy. Mosteller and Tukey (1968) re-
fer to a staircase of inference with primary, secondary, tertiary and even higher
order quantities each one a more challenging estimate of the accuracy of the
preceding one. In statistics, it is common to just stop with the secondary quan-
tity, here a confidence interval. The QMC estimates of Chapters 15 and 16 stop
with the primary quantity, /.

In this instance, getting 5 replicates was not so expensive. We can do 200
times the work and see what happens for R = 1000. For Korobov and Halton
points, with and without the baker transformation, and for all 5 sample sizes,
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Korobov-b, n = 16381 Korobov-b, n = 2039
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Figure 17.2: Histograms of R = 1000 replicated estimates of mean wing weight
for four RQMC estimates.

we get 20 histograms. Figure 17.2 shows four of them. One is for Korobov
points with the baker transformation at the largest sample size, n = 16381.
This was the most accurate method. Another is for Korobov and baker, with
n = 2039, the second smallest sample size. This was, subjectively, the most
visibly non-Gaussian histogram. It has two clear modes. The second most
visibly non-Gaussian histogram was for Halton with baker and n = 16381. The
histogram for shifted Halton points at that sample size looks nearly Gaussian.

The central limit theorem applies quite well to averages from any of those
distributions, even the bimodal one, as R — oo, though we could reasonably
doubt whether R = 5 is asymptotic. Using our 1000 replicates we can see
how accurate the confidence intervals were. We will treat the average of all
1000 estimates from the Korobov points with the baker transformation and
n = 16381 as if it were the true integral p. Then we can inspect the distribution
of

t=tpel T F (17.13)
Var(ﬂpool)
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Attained coverage R=5 R=10 R=30

Korobov-b 16831 98.29 98.84 99.01
Korobov-b 2039 96.50 98.41 98.97
Halton-b 16831 97.63 98.48 98.68
Halton 16831 98.24 98.83 99.08

Table 17.3: Attained coverage percents of approximate 99% confidence intervals
based on 100,000 samples of size R from the histograms in Figure 17.2.

|£|0-9 R=5 R=10 R=30 R=o

Korobov-b 16831  4.72 3.26 2.75 2.58
Korobov-b 2039 7.55 3.63 2.76 2.58
Halton-b 16831 5.31 3.53 2.86 2.58
Halton 16831 4.83 3.28 2.7 2.58

Gaussian 4.03 3.17 2.75 2.58

Table 17.4: Ninety-ninth percentile of |¢| for ¢ given by (17.13) based on 100,000
samples of size R from the histograms in Figure 17.2. The last column is from
the central limit theorem. The bottom row is from the ¢(g_;) distribution for
sampling Gaussian values.

by repeatedly computing with a simple random sample of R of those 1000 esti-
mates.

Table 17.3 shows the coverage levels attained by our approximate 99% con-
fidence intervals among 100,000 repeated samplings from the histograms in Fig-
ure 17.2. The worst one is for R = 5 and the bimodal histogram discussed
above. A user in that situation would only have about 96.50% coverage not
99%. Coverage would be much better for a user who had R = 10 and it would
be quite excellent for a user with R = 30.

Table 17.4 gives another way to judge the accuracy of the confidence in-
tervals. It shows the estimated 99’th percentiles of the distribution of |¢|. For
R = 30, the t-tables give 2.75 as the 99’th percentile and the more appropriate
values are very close to 2.75. The worst case in that table is for the bimodal
histogram with R = 5. The ¢-tables give 4.03 and one would have needed nearly
double that to get 99% coverage.

The practical problem we face in choosing R is that we don’t know ahead of
time what the histogram of f,- will look like. The choice R = 30 is a commonly
quoted rule of thumb in statistics. There is however the usual rule of thumb
arms race: for any fi, with finite variance there is an R < oo where the CLT
gives good coverage, while for any R < oo, there is a finite variance distribution
for fi, where the CLT will give poor coverage. There is still a role for judgment
in choosing R.

© Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



Scrambled nets 113

17.5 Scrambled nets

A Cranley-Patterson rotation of a digital net does not preserve the stratifi-
cation properties that define a digital net. Those properties can however be
preserved through certain strategic randomizations of the digits of the points.
The scrambling method in this section is the first one that was developed. A
direct implementation requires storage proportional to nd. Computer memory
is much less expensive now than it was when that scramble was proposed, so
this issue is less pressing. After presenting results for this scrambling we will
look in §17.6 at alternative scrambles.

Suppose that aq,...,a, are a (t,m,d)-net in base b. Imagine that those
points are firmly embedded specks in a d dimensional solid cube [0,1)4. If we
could split that cube [0,1)? into b congruent slabs [¢/b, (¢ + 1)/b) x [0,1)4~!
for £ = 0,1,...,b — 1 and shuffle those slabs in random order, then the final
positions of a1, ..., a, would still yield a (¢, m, d)-net.

The geometric reasoning is as follows. Suppose first that an elementary
interval F in base b is contained within one of the b slabs. Then it has a coun-
terpart of equal volume in each of the other b — 1 slabs. The shuffling operation
moves points a; into E that were formerly in either E (with probability 1/b) or
one of its counterparts. If vol(E) > b'~™ then the net property ensures that
FE ends up with the correct number of shuffled points a;. If instead, E is not
contained within a slab then it extends across all b slabs. Shuffling the slabs
moves some points a; around within £ but does not change their number and
so equidistribution is preserved in this case too.

A nested uniform scramble proceeds by slicing each of the b slabs into
b thinner ones and scrambling the thinner slabs within their respective original
slabs. Then slabs within those slabs are scrambled and the process continues re-
cursively. Conceptually this shuffling goes on forever, but in practice the process
can stop when the slabs are too thin to affect the floating point representation of
z;;. Finally, the other d —1 dimensions are sliced and scrambled independently,
in the same way as the first.

The scrambling operation can be represented in terms of base b digits. For
simplicity we consider d = 1 and so instead of scrambling each a;; into z;; we
drop the subscript j and scramble a point a; into a point x;. Since we will
apply the same operation to all of aq, ..., a, we drop the subscript 7 as well and
scramble one single point

oo oo
a= Z apb F"1e0,1) into x= Zxkb_k_l,
k=0 k=0

with the understanding that (temporarily) a; and zj, refer to the k’th digits of
a and z, and not the k’th points of a sequence. The digits x, € {0,1,...,b—1}
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Digital shuffle
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Figure 17.3: This figure illustrates the first step of a base 4 scramble of 16 points
in the unit square. The square is split into vertical slabs 0, 1, 2 and 3. The slabs
are rearranged in order 2, 0, 3 and 1. The top panels show how the point that
ends up in [0,1/4) x [1/2,3/4) started in [1/2,3/4) x [1/2,3/4). The bottom
panels show a point being reordered within [0,1) x [1/4,5/16).

are obtained by scrambling as follows:
2o = 7. (ao)
T1 = Teaqy (01)
T2 = Teag, a1 (02)

(17.14)

Tk = Meag, a1, - 7ak—1(a’k)
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where the various subscripted 7(+)’s are independent uniform random permuta-
tions of {0,1,...,b—1}. The permutation applied to digit a; depends on digits
0 through k£ — 1 of a.

To scramble n points, the same set of permutations is applied to all of
ai,...,a, creating x,...,x,. To scramble d dimensional points a; € [0, 1)d,
the j’th components are scrambled using independently generated permutations
Tjer Tjeag> Mjeag,ars and SO on.

Potentially b* permutations are needed for digit & > 0 in each of d compo-
nents of the net. But a (¢,m,d)-net in base b has only b™ points. Thus only
pmax(k:m) permutations are needed for the digits of each component j = 1,.. ., d.
For b = 2, we then need nd permutations and each permutation is either (0, 1)
or (1,0), so only nd bits are needed.

Proposition 17.2. Let aq,...,a, be a (t,m,d)-net in base b, and suppose that
xy,...,T, are a nested uniform scramble of ay,...,a,. Then x1,...,x, are a
(t,m,d)-net in base b, with probability 1. Let a; fori > 1 be a (t,d)-sequence in
base b, and suppose that x; are a nested uniform scramble of a;. Then x; are a
(t,d)-sequence in base b, with probability 1.

Proof. This is proved in Owen (1995). O

The clause ‘with probability 1’ merits some explanation. Suppose that a; =
0 and az = 1/2. Then a; and as taken together comprise a (0, 1,1)-net in base
2. The digits of a; are 0.0000--- and those of ay are 0.1000- - -, both in base
2. Suppose that every digit in the infinite tail of Os for ay was permuted to the
value 1. This unfortunate event has probability zero and leads to

T :0.531’()].1].1"' and
To = 0.562701111 e

with 239 = 1 — 219 € {0,1} because a1,0 and as are 0 and 1 in some order.
If 210 = 0 then x; = 1/2 and @9 = 1. Otherwise z; = 1 and zo = 1/2. Either
way, we get 1 point in [1/2,1), one point in {1}, and no points in [0,1/2).

More generally, if for some ¢ > 1 and j € {1,...,d} we should ever get
an infinite sequence of consecutive b — 1’s as permuted values of a;;, = 0 for
k > k, then the resulting points could fail to properly populate some elementary
interval in base b. The probability of this ever happening in a finite (or even
countably infinite) number of trials is 0 and that is why the probability that x;
are a digital net (or sequence) is 1. Putting a point at 1/2 that should have
been inside [0,1/2) is not a large error, at least for continuous integrands. We
would have missed the desired interval by a distance of 0! In floating point
computations to bounded precision small misses of about the floating point
resolution could occur.

An RQMC method also requires x; ~ U[0, 1]¢. Since this is a property of
the individual points, it suffices to verify that any single point a € [0,1)? when
scrambled yields a point « ~ UJ[0, 1]¢.
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Proposition 17.3. For a € [0,1)? let x be a nested uniform scramble of a.
Then = ~ U[0, 1]¢.

Proof. This is proved in Owen (1995). O

The idea of the proof is as follows. Scrambling the first k digits of a; places
z; into one of b* intervals [(b=* (¢ + 1)b=F), for £ = 0,1,...,bF — 1, each with
probability b=*. Letting k& — oo this means that z; ~ U[0,1]. The d compo-
nents of & are independent, so  ~ U[0, 1]¢.

Scrambled nets have some significant advantages over randomly shifted lat-
tice rules. First, scrambled nets have a better worst case performance relative
to plain Monte Carlo than shifted lattices do. Let fisnet be the average of f(x;)
over the points of a scrambled net. We give below some finite upper bounds
for Var(fisnet)/(0?/n) whereas Var(ficranpat)/(02/n) could, from (17.12) be as
large as n. Second, scrambled nets have an error cancellation property that,
for smooth enough f, makes them attain a better rate of convergence than
unscrambled nets obtain. The next three theorems describe these properties.

Theorem 17.3. Let x1,...,x, be a nested uniform scramble of a (0, m,d)-net
in base b > max(d,2). Let f be a function on [0,1]¢ such that f(x) has variance
0? < 0o when x ~ U[0,1]¢. Then

1 <& b\ min(m,d—1) 52 b \b-1g2 g2
var (5 2o f@0) < (575) T T
Proof. See Owen (1997a). O

Corollary 17.1. Forn > 2, letxy,...,x, € [0,1]¢ be a Latin hypercube sample.
Let f be a function on [0,1]¢ such that f(x) has variance o < 0o when T ~
U0, 1]¢. Then

2

Var(L 3 ) < T
1=1

Proof. For i = 1,...,n, let a; = (({ —1)/n,...,(i — 1)/n) which is a (0,1, d)-
net in base n. Scrambling a; generates a Latin hypercube sample. The result
follows from Theorem 17.3. O

A common way to get a (0,m,d)-net in base b is to take the first b™ points
from one of Faure’s (0,d)-sequences. This requires a prime base b > d, or a
prime power b = p” > d if we use the generalization of Faure’s construction
in Niederreiter (1987). The result is a variance that is never more than e =
2.7183 times the Monte Carlo variance o2/n, because (b/(b — 1))*~! increases
from 2 to e as b goes from 2 to co. Like shifted lattice sampling, this worst
case requires a quite unusual function f. Unlike shifted lattices, the worst
performance relative to plain Monte Carlo is a variance inflation factor of at
most e instead of n.

Bounds are also available for digital nets, like Sobol’s, with ¢ > 0.
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Theorem 17.4. Let zy,...,x, € [0,1)? be a nested uniform scramble of a
(t,m,d)-net in base b. Let f be a function on [0,1]% such that f(x) has variance
0?2 < 0o when = ~ U[0,1]%. Then

2

(s e <v ()2

Proof. See Owen (1997a). O

Sharper bounds are available for (¢, m, d)-nets obtained by digital construc-
tions such as those of Sobol’, Faure and Niederreiter. For digital nets in base
b = 2 it is known that I' = max, I, < 297*~! and is indeed equal to a power
of 2 and for some nets in base 2 the exponent is strictly smaller than d +¢ — 1
(Pan and Owen, 2022a). While this worst case bound of 29?1 is usually much
larger than exp(1) that holds for Faure sequences, the Sobol’ sequences are more
widely used and in empirical comparisons, usually give better accuracy. We can
see in Figures 15.13 and 15.14 that scrambled Sobol’ sequences will do poorly if
the integrand corresponds to a rare event that is concentrated within one of the
rectangular regions that is always either left empty or over-sampled. The worst
case integrands that cause trouble for Sobol’ sequences are not commonly seen.

Suppose that f(x) is a sum of some other functions, each of which is con-
stant inside an elementary interval in base b of volume ™. Then i = p with
probability 1 under scrambled net sampling. More realistically, we can approx-
imate f by such a sum of functions. If f is smooth enough, then as m increases
the best such approximation rapidly converges to f.

For our purposes here, the function f on [0,1]¢ is a smooth function if

0 0 0

8l‘j1 8.%‘]‘2 8xjd

f(z)

is continuous on [0,1]¢ for any distinct ji,...,54 € {1,...,d}. This condition
also ensures that the order of partial differentiation does not matter.

Theorem 17.5. Let f(x) be a smooth function defined on [0,1]¢ and suppose
that ay,...,ay, is a (A t,m,d)-net in base b > 2 (so n = \b™). If x; are a
nested uniform scramble of a;, then as n — oo with 1 < A < b,

Var(i gf(xi)) - o(bg(;)dl)

Proof. This is from Owen (1997b), originally with a Lipschitz condition on d-
fold partial derivative of f taken once with respect to each component. Owen
(2008) weakens the assumptions to the ones given here and corrects a Lemma
from the earlier paper. O

The root mean square error in Theorem 17.5 is O(n~3/2+€) which compares
favorably to the rate O(n=1%¢) for unscrambled nets. The reduction of about
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O(n’l/ 2) may be interpreted as arising from random error cancellations. Ran-
dom errors tend to cancel, while deterministic ones need not.

To compare nested uniform scrambling and Cranley-Patterson rotations,
consider the points a; = (i —1)/n for i = 1,...,n. These are simultaneously a
lattice rule with z = (1) as well as a (0, 1, 1)-net in base n. Applying a Cranley-
Patterson rotation shifts them all the same distance u (with wraparound). As a
result, Cranley-Patterson rotations give points with the same joint distribution
asz; = (i—1+y)/n for y ~ U[0,1). Applying a nested uniform scramble in base
n is quite different. The first permutation shuffles the intervals [j/n, (j +1)/n)
changing nothing. The subsequent permutations take the point at j/n and dis-
tribute it uniformly in [j/n, (j4+1)/n) with different intervals being independent.
Nested uniform sampling thus delivers a stratified sample x; = (i — 1 + w;)/n
for independent u; ~ UJ0,1). Stratified sampling achieves a variance of order
O(n=3) for smooth f, due to error cancellation between strata.

Scrambled nets with ¢ = 0 obey a central limit theorem as n — oo. It is not
known when or whether such a limit holds for a strict (¢,m,d)-net with ¢ > 0.

Theorem 17.6. Let f be a function on [0,1]¢ with [ f(z)dx = p,

f(@)| < Bllz - ||”

o4 o4
‘31‘1 8xdf(w) B 8x1-~-8xd

for some B > 0 and 0 < 8 < 1, and f(adf(a;)/n;lzl Ox;)>dx > 0. Let
fp= (1/n) X" f(x;) where @1,...,x, is a scrambled (0,m,d)-net in base b.

Then for each z € R,
]P’(M_’u < z> — O(2)
Var(i)

as m — 0o.
Proof. Loh (2003). O

Theorem 17.6 assumes some smoothness for f, quite unlike the usual cen-
tral limit theorem. It is clear that some smoothness condition on f is neces-
sary in a scrambled net central limit theorem. For example, consider f(z) =
ZZ’;I o1, -+ and points x of a scrambled van der Corput sequence in base b.
The value of i depends entirely on how close to zero the smallest of z1,...,z,
happens to be. As a result, /i is not normally distributed since the most probable
value for fi will have probability (b — 1)/b.

Scrambling also improves higher order nets. These are constructed by the
interleaving method of §7.3.

Theorem 17.7. Let f be a function on [0,1]% whose partial derivatives of order
up to k > 1 in each component have finite mean square. Let z1,...,2z, be
formed as a nested uniform scramble of a digital (t,m, kd)-net in base b and let
Ty,..., Ly, be a k’th order digital net formed by interleaving the components of
Z1,...,2n. Letting p = (1/n) >, f(2;), we have

Var(fi) = O(n~21log(n)Fs+*) = O(n=2k=1+¢),
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for any € > 0.
Proof. See Dick (2011). O

The RMSE for scrambled higher order nets is O(n~*=1/2+€) which compares
favorably to the deterministic error O(n =) for higher order nets. If the smooth-
ness of the function is described by through derivatives of order up to k' and
the net is of order k then the RMSE is O(n~min(k-k)=1/24€) (Dick, 2011).

When the variance of RQMC approaches zero, then using Chebychev’s in-
equality, we very easily get a weak law of large numbers

lim P(|f, —p| >€) =0

n—oo
for any ¢ > 0 as n — oo through the appropriate sequence of sample sizes,
such as all powers of 2 or all integers dependig on the theorem. In plain MC
sampling, there is also a strong law of large numbers where

IP’( lim ji, = u) ~1, (17.15)
n— oo

so long as p exists. Scrambled net sampling also has a strong law of large
numbers.

Theorem 17.8. Let x1,X2,... be a (t,d)-sequence in base b where gain coef-
ficients of the first b™ points are no larger than I' < co and randomized by a
nested uniform scramble. Suppose that for some p > 1 that f € LP[0,1]¢ with
f[Ovll"' f(z)dx = p. Then (17.15) holds.

Proof. Owen and Rudolf (2021) proves it for nested uniform scrambling and the
linear matrix scramble with digital shift has the same variance. O

This strong law requires E(|f(x)|’) < oo for p = 1 + ¢ with € > 0. This is
slightly stronger than the first moment condition E(|f(x)|) < oo required for
plain MC. A problem in Bayesian optimization (Balandat et al., 2020) required
a strong law for integral estimates in order to establish strong convergence of
parameter estimates in a sequential optimization.

17.6 More scrambles

The scrambling method used in §17.5 requires an amount of storage proportional
to nd. Computers have much more memory now than when that scramble was
proposed, and simpler methods were devised to cope. The most important one
is a partial derandomization of that scramble, due to Matousek, which attains
the same variance, with less storage. It also generates points more quickly.

Digital shift scrambling is the first alternative we consider. It is very easy to
apply, requires the same storage as Cranley-Patterson rotations, and preserves
the digital net structure. It does not satisfy the same variance bounds or have
the same convergence rates that nested uniform scrambling does.
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The digital shift is a digital analogue of the random shift modulo 1 used
with lattice samples. First, we describe a digital addition operation @; acting
on points x,y € [0,1) for integer base b > 2. Let x = Y ;2 zxb %1 and
Y= peoykb "1 for zy,y, € {0,1,...,b—1}. Then

o0
THpyYy =2= 2kb7 "1 where
kZ:O (17.16)

2k = Tk + yr mod b.

When b is understood, we may write x & y. We will use @ to digitally add a
random point to our QMC points as described below.

Before using @, we need to add a condition that makes it well defined. In
base 10, the number 1/2 can be written two ways, as 0.5 or as 0.4999 - - with
an infinite tail of 9s. Similarly, in base b any number £/b¥ for k > 1 and
1 < ¢ < b* has two representations, one ending in an infinite tail of Os and
the other ending in b — 1s. When applying @, to points x,y € [0,1) we always
choose the representation ending in Os over the one ending in b — 1s.

The number 1 is awkward to handle digitally. Representing it as 0.dypd ds - - -
requires precisely the infinite tail of b— 1s that we have excluded. This is why we
work with z,y € [0,1). It is however still possible to get 1 as a sum. For example,
ifz =0.1111--- and y = 0.3333 - - - both in base 5 then x @5y = 0.4444 - -- = 1.
We choose to handle this problem by treating a sum equal to 1 as if it were
0. This is the same choice we make for shifted lattices when we add numbers
modulo 1.

A digital shift randomization of a1,...,a, has

x;=a;Ppu where u~ U[0, l)d.

In practice we generate only the first & digits of u; for j = 1,...,d with each such
digit uj, ~ U{0,1,...,b—1}. Then we add them modulo b to the corresponding
digits of a;;.

Like the nested uniform scrambling of §17.5, digital shifts yield z; ~ U[0,1)%.
Digital shifts also preserve the digital net properties of a; in base b (with prob-
ability one). As a result, digital shifts of (¢,m,d)-nets and (¢, d)-sequences in
base b provide an RQMC method.

A small random digital shift is illustrated in Table 17.5. It starts with a;
in a (0,3,1)-net in base 2 defined by a; = (¢ — 1)/8. The random shift U is
only taken to 6 base 2 places for simplicity of exposition. The first 3 bits of
a; go through all 8 possible values and after adding U the first 3 bits of the
result also go through all 8 possible values though the order has now changed.
The original points end with a tail of Os after the first 3 bits. As a result, the
generated points all end in the same tail of digits that U has. A random digital
shift, in this small example, gives the same distribution of points that we would
get from a Cranley-Patterson rotation.

Digitally shifted nets do not have the same variance properties as fully scram-
bled nets. Their worst case performance relative to simple Monte Carlo is not
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.

a; a; U a; ©U;

0 0.000 0.110101 0.110101
1/8 0.001 0.110101 0.111101
1/4 0.010 0.110101 0.100101
3/8 0.011 0.110101 0.101101
1/2 0.100 0.110101 0.010101
5/8 0.101 0.110101 0.011101
3/4 0.110 0.110101 0.000101
7/8 0.111 0.110101 0.001101

0O Ui Wi+

Table 17.5: This table illustrates a digital shift of a small net in [0,1). The
original net is aq,...,as, shown in the second column and (in base 2) in the
third column. The random shift is © = 0.110101 (base 2), that is, u = 0.828125.
The resulting points are in the final column.

very good. The root cause is that digital shifts, like Cranley-Patterson rotations,
do not randomize the points enough. Operationally, if we knew ayq,...,a, and
one randomized point x; then we could reconstruct xs, ..., x, for a digital shift,
but not (outside of trivial cases) for a nested uniform scramble.

Theorem 17.9. Let aq,...,a, € [0,1)% be a (t,m,d)-net in base b > 2. For
i=1,...,n let x; = a; Bp u where u ~ U0, 1)d. Then there exist functions
f(zx) defined on [0,1)¢ such that

Var<71l;f(ai —l—u)) = g2

where o2 is the variance of f(u).

Proof. This follows from Proposition 6.3 of Lemieux (2009). O

Theorem 17.9 is the digital scrambling counterpart to Theorem 17.2 for
shifted lattices. As with shifted lattices and fully scrambled nets, the worst
case functions for digital shifts are of a type quite unlikely to arise in real
applications. Once again, while the very worst functions are implausible for
applications, little is known about where to draw the line between realistic and
implausibly pessimistic cases.

Digital shifts do not introduce enough randomness to get the error cancel-
lation properties of scrambled nets. They do not attain a root mean squared
error of O(n=3/2%¢) the way that scrambled nets do for smooth integrands.

The key to reducing the memory requirements of nested uniform scram-
bling, while randomizing the points enough, is to replace the uniform random
scrambles by something simpler.

If p is a prime number, then a random linear permutation of {0,1,...,p—1}
takes the form m(a) = g+ ha mod p where g ~ U{0,1,...,p— 1} independently
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Randomized Faure points

Digital shift Random linear Nested uniform

Figure 17.4: The left panel has a digital shift of the first 530 points of the first
two components of Faure’s (53, 0)-sequence in base 53. The center panel shows
a random linear scramble. The right panel shows a nested uniform scramble.

of h ~U{L,2,...,p—1}. We only need to store g and h to represent this per-
mutation. Like uniform random permutations, random linear permutations can
be applied in a nested manner, yielding the random linear scrambles described
next.

Once again we describe the scrambling of a single point a € [0, 1) yielding = €
[0,1]. The same scramble gets applied to a sequence a1, ..., a, and independent
scrambles are used for components aij,...,a,; for j = 1,...,s. A random
linear scramble of a = >_,° ja;p~*~! in a prime base p has digits

k

T = ZM@((L@ + Ck mod p
=0

for k > 0, where

My ~U{1,...;0—1}, k=0
MkZNU{O,l,...,b—l}, k>¢>0, and (17.17)
Cr ~U{0,1,...,b—1}, k=0
are all independent. The resulting point is z = > =, b *~1. We can also
write xr = hrar + gr mod p where hy = My, and g = Zogkk Mypap +
C% mod p, the summation being 0 for k£ = 0.

It is easy to see that & ~ U|0, 1), because the terms Cjy add a digital shift.
The points retain their properties as a net because the permutations simply
move elementary intervals around without altering the number of sample points
in them. As a result, random linear scrambling of digital nets yields an RQMC
method.
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Theorem 17.10. Let 1, ...,x, be a random linear scramble of a (0, m, d)-net
in a prime base p. Let 1, ..., &, be a nested uniform scramble of the same net
in base p. Then E((D} o(x1,...,2n)%) = E((D} 5(Z1,...,%n)?).

Proof. Matousek (1998) shows that the random linear scramble satisfies con-
ditions enumerated in Hickernell (1996a) for expected square discrepancy to
match that of nested uniform scrambles. O

From Theorem 17.10 we see that random linear scrambles and nested uniform
scrambles lead to the same expected square L2-star discrepancies. The proofs
work by showing that the joint distribution of any pair z;;, and x ;s of the
RQMC digits is the same under both kinds of scrambling. It then follows that
both scrambles result in the same variance for integral estimates fi. Instead of
storing about nd permutations that nested uniform scrambling requires, we need
instead about dK (K + 1)/2 base p digits (counting both M’s and C’s) where
K is the number of base p digits we use to represent each number z;; € [0,1).

The first 530 points of the Faure sequence in base 53 project into a small
band containing 10 parallel lines of points with wraparound, when we select
the first two components. A Cranley-Patterson rotation would simply move
the band around. A digital shift of these points, as illustrated in the leftmost
panel of Figure 17.4 looks similar to a Cranley-Patterson rotation. Both of these
randomizations deliver points that are individually U[0, 1]¢ but they do nothing
to improve the joint behavior of the points. A random linear scramble shakes up
the points much more as shown by the middle panel. A nested uniform scramble
randomizes the points and ends up with a less structured appearance than the
other randomizations.

There is a peculiar blank stripe in the digital shift data which makes it look
like two disjoint bands have wrapped around. The first 532 points of the Faure
sequence have a similar blank region wrapping around the boundary of the unit
square. That blank region maps onto the stripe in the first panel, under the
digital shift.

Some digital scrambles (e.g., nested uniform and random linear scrambles)
are excellent for breaking up clumps of points concentrated in lines or planes.
Such clumps are the common flaw for Halton and Faure sequences. Digit scram-
bling is not very effective at countering the rectangular clumps and voids that
appear in bad projections of the Sobol” sequence. When there is an elementary
interval with too many or too few points, then digit scrambling can move that
problematic interval to another place but it cannot repair the clumps and voids.

Digital shifts failed to even separate the stripes that we see in small sub-
sequences of the Faure sequence. Some other scrambles, simpler than random
linear ones, do separate the stripes.

A positional scramble of a € [0,1) in base b > 2 takes the value z =
> neo mk(ar)b™*~1 where 7y are permutations of {0,1,...,b— 1}. The permu-
tations 7 in a positional scramble could all be independent. Or, we could make
use of a positional scramble in which just one random permutation is used:
mr = mo for k > 0. In either kind of positional scramble, the permutations
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could be linear, when b is a prime number p, or they could be uniform. We
have already seen one kind of positional scramble. A digital shift is a positional
scramble with 7 (a) = g + a mod b where g ~ {0,...,b— 1} are independent.

Uniform random positional scrambles break up the stripes in leading sub-
sequences of the Faure sequence. See Exercises 17.2 and 17.3. These are very
easy to program and take little space, making them a better choice than digital
shifts for scrambling the Faure and Halton sequences. They do not however
attain the same variance that nested uniform and random linear scrambles do.

The points of a (t,m,d)-net in base b, for the usual constructions, have
components that are integer multiples of b~"". That is, their base b expansions
have up to m nonzero digits followed by an infinite tail of zeros. When this
happens, we do not have to explicitly scramble the infinite tail of zeros. The
infinite tail of zeros will scramble into a term that adds U[0,b~™)¢ distributed
vectors to the generated points. For nested uniform scrambling and random
linear scrambling, we can simply scramble the first m digits of a; into x; and
then deliver &; = &; + b~™u; where u; ~ UJ[0,1)¢ are independent. For digital
scrambles and positional scrambles, we scramble the first m digits of a; into
Z; and then deliver ©; = Z; + b~™u for one single point u ~ UJ[0,1)%. This
provides a randomized (t,m,d)-net. It is not generally the same net we would
have gotten from applying a scramble to a (¢, d)-sequence and then retaining
only the first b points.

The only scramble for which a central limit theorem is known is the nested
uniform scramble. To satisfy the central limit theorem a scramble must have
an asymptotically negligible skewness: that is E((4 — p)?)/E((f1 — p)?)?/? — 0.
This condition can be met by arranging for the joint distribution of any three
digits x;jk, x5 and x i used in the construction of xq,...,x, to be the
same as their joint distribution in nested uniform scrambling. Higher moment
conditions are also necessary and they may be satisfied by methods that have the
same higher order joint distributions (of digits) as nested uniform scrambling.
It seems likely that the other scrambles considered here do not satisfy a central
limit theorem.

17.7 Reducing effective dimension

In MC sampling, we can use variance reduction methods to improve efficiency.
For QMC, it is natural to think of methods to reduce the total variation of f,
by which we mean, replacing f by another function f with the same integral
i, but lower variation. There are some successes where Vuk(f) = oo and
Vak ( f ) < oo due to increased smoothness. See the discussion of pre-integration
in §17.11. When Vik(f) < oo it can be pretty difficult to reduce it further.
The total variation in the sense of Hardy and Krause is an awkward quantity
to work with. Furthermore, it appears only in a very conservative upper bound
on the QMC error, does not distinguish RQMC from QMC, and in empirical
investigations it does not correspond closely to attained QMC accuracy (Schlier,
2004).
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Two other strategies are more effective than intervening to reduce total
variation. One is to combine RQMC with classical variance reduction methods,
as described in §17.11. The other is to attempt to reduce effective dimension as
we describe here.

Sometimes we can change the integrand in a way that is favorable to RQMC
sampling. What we do is find another integrand f that we know has [ f (z)dx =
[ f(z) de, where we think that f has lower effective dimension as described by
Definition A.3 or A.4. For instance, if we can find a way to make f nearly a
function of its first few input variables, then we may well have greatly improved
RQMC accuracy. It is hard to be sure ahead of time that accuracy will increase.
However, it is often easy to implement RQMC both ways with replicates and
then see whether accuracy improved. Coding f could take some care, but then
measuring whether it is better might only take minutes. We can use intuition
and domain knowledge to devise alternative functions f , and then measure
empirically whether the anticipated improvement materialized.

Many of the best examples of reducing effective dimension come from prob-
lems where f is a function of Brownian motion at d points, or more generally,
a function of a high dimensional Gaussian random vector. Let y ~ N (i, X) for
a non-singular covariance matrix ¥ € R?*¢, and suppose that we want to find

Tg—1
n=E(g(y)) = (2n) 2712 /Rdg(y)e*@*ﬂ) 57 w-n)/2 gy,

A Monte Carlo approach takes @; o U(0,1)¢, then z; = ®~!(x;) (componen-
twise), then y; = p + Cz; where CCT = ¥, and it averages g(y;). The Monte
Carlo estimate of u = E(f(x)) is

f= 2SS, for (@) = [@:C) = glu+ OO @), (T18)

with x; £ U(0,1)¢. For QMC, we replace x; £ U(0,1)¢ by low discrepancy
points @1, ..., x,. We may get good results, but there is the risk of a bad result,
even failure to converge, when ¢ is an unbounded function on R?, because
then Vi (f) = oco. When f has finite variance, then both MC and RQMC
will converge. Scrambled nets will have an RMSE of o(n~'/2). In that case,
unboundedness of f is no longer a problem and neither are other ways (e.g.,
discontinuities) that Vik (f) = oo could arise.
If we replace C' by C = CQ for an orthogonal matrix @, then

y=p+0Qz ~N(u,CQQTCT) = N (1, CCT) = N (1, %).

We will get the same Monte Carlo mean and variance using f(z; C) or f(a;C),
because y; have the same distribution either way. There may be speed differ-
ences between these choices arising from different costs of computing C'z and
Cz, but there is no difference in mean squared error for fixed n.

With (R)QMC, f(z; C) and f(z; C) can be very different functions of & even
when CCT = CCT = ¥. In Chapter 6 we considered generating a Brownian
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motion path in three ways: sampling the increments in time order, sampling
them in arbitrary order using the Brownian bridge construction, and using prin-
cipal components. The form of the matrix C for each of those choices can be
found in that chapter.

Figure 17.5 illustrates these three constructions for Brownian motion at
points /512 for t = 1,2,...,512. Each construction takes a point x € [0, 1]°12
to generate the sample path. The top panel shows a curve generated by the first
8 principal components. The next 512 — 8 = 504 components of x are used to
complete the Brownian path. Three independent completions are shown. The
first 8 components provide a ‘skeleton’ that is refined by the next 504 compo-
nents. In terms of the gross outline of that sample path, those first 8 variables
appear to be much more important than the others. The second panel shows
the same quantities, replacing the principal components skeleton by a piecewise
linear skeleton formed by Brownian bridge sampling. Again, there are three in-
dependent completions. The bottom panel shows a standard construction where
the first 8 inputs generate the curve up to time 8/512 = 1/64, along with three
completions. The first 8 inputs do not greatly influence the path.

When the function ¢(-) depends on the coarse outline of the Brownian path,
the principal components and Brownian bridge constructions can be expected
to concentrate importance into the first few components of @ reducing effective
dimension in the truncation sense. Conversely, if we knew that g(-) depended
only on details of how the skeleton is completed to form the path, and had
nothing to do with the skeleton itself, then we would not expect these construc-
tions to reduce effective dimension. In an extreme setting where f depended
almost completely on initial conditions 1, ..., x;s for s < d then the standard
construction might come out best.

There is more to gain by reducing effective dimension in the superposition
sense than the truncation sense, because RQMC points normally have good
equidistribution in all projections onto one or two or a handful of coordinates,
and the truncation concept does not take account of that property. It is hard to
devise a way to reduce superposition dimension because that requires consider-
ing how the components of x interact to produce f. Strategies to concentrate
importance into the first few components of & are more plentiful, probably be-
cause it is easier to think of how to make a few variables very important.

For any sampling strategy we come up with, there will be unfavorable inte-
grands. If f depends on x only through its final component, then the truncation
dimension will be the largest possible value d. If f depends on « only through the
d-fold interaction f{1,27,__,d} then the superposition will be the largest possible
value d. These outcomes seem unduly pessimistic, and they could be detected
by numerical inspection if using f fails to improve over using f.

A multivariate Gaussian random vector can be sampled in any order that we
like, but the cost of the algebra and bookkeeping may depend on the order we
choose. The principal components construction is available for any covariance
matrix, even singular ones, though it does require a one time computation of up
to O(d?) cost if the matrix ¥ has no special structure to exploit. For Brownian
motion it is inexpensive to sample time points in any order as described in §6.4.
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Figure 17.5: The top panel shows Brownian motion generated by principal
components at 512 points. The thicker curve shows the skeleton from the first 8
principal components. There are three realizations completing the process using
the remaining 512 — 8 = 504 principal components. The second panel shows a
piecewise linear skeleton of Brownian motion generated by 8 increments. There
are three realizations completing the process. The bottom panel shows three
sample paths sharing the same first 8 increments, with a different vertical scale.
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The constructions for Gaussian vectors can be generalized to multivariate
t random vectors (see §5.2), either to sample via the t-copula of §5.6, or be-
cause the problem is defined in terms of multivariate t vectors. Sampling from
a t distribution requires an additional component of & to generate the x? ran-
dom variable used in the denominator. Further strategies for reducing effective
dimension are described in the chapter end notes.

The principal components construction does not take account of the inte-
grand f. Also, many problems are defined with respect to the identity covari-
ance. When ¥ = I, then any orthogonal matrix Q satisfies QTQ = ¥ leaving
us without a uniquely defined principal components matrix. One way to choose
a sampling strategy for & ~ N(0, I) is to first estimate C = E(Vf(z)Vf(z)T).
One then takes an eigendecomposition C' = QAQT and uses Gaussian random
variables z = Q®~!(z) in an RQMC algorithm for z ~ A(0,I). This ‘active
subspaces’ approach is useful when there is no incumbent method like principal
components for the integrand at hand. See the Chapter end notes for more
details and references on active subspaces.

17.8 Example: valuing an Asian option

Here we consider a well known test problem: valuing an option that depends
on geometric Brownian motion. In this option, S(t) is the value of some traded
asset at time t. If the average of S over d time periods exceeds a strike price
K, then the holder of the option is paid the difference. This provides a hedge
against unaffordable upward price rises in the asset. The problem is to find a
fair price to pay for that potential benefit. The price depends on an interest rate
r, a measure o2 of the asset’s price volatility, the time T at which the option is
to be paid, and also the strike price K. We want to find the expected present
value of the option, given by y = f[o,l]d f(x) de, where

d
fla)=e'T max(% > S(t,x) - K, 0), for (17.19)
=1

S(tj, @) = S(O)exp|(r = 02 /2)t; + o/T/dY & (ar)]
=1

with t; = jT/d for j = 1,...,d. Averaging over d time points is reasonable
when the buyer needs to make regular purchase of the asset. A classic example
is an airline hedging against price rises in jet fuel. This is called an Asian option
because it was invented in Tokyo. We use the values T' = 16, S(0) = K = 100,
r = 0.05 and o = 0.3 that were used in Hickernell et al. (2005).

The integrand (17.19) has infinite variation in the sense of Hardy and Krause.
There are two causes. First, f is unbounded. Second, there is a kink at
the set of & values for which (1/d) Z;l:l S(tj,xz) = K. However, because
f[O,I]d f(x)*dx < oo we know that scrambled nets will provide an unbiased

estimate with variance o(1/n). This integrand is not smooth enough to satisfy
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the sufficient condition for variance O(n=37¢) nor is it smooth enough to satisfy
the sufficient condition for Loh’s central limit theorem.

Roughly half of the time, this option ends up at value f(x) = 0 and the rest
of the time it is positive. Lowering the strike price K to well below S(0) reduces
the chance of a zero payout and raising K increases the chance of a zero payout.
For very large K, a nonzero payout becomes such a rare event that importance
sampling would be helpful.

The process S(t, x) is a geometric Brownian motion. It depends on a plain
Brownian motion sampled at times ¢;, that is B(t;,x) = \/T/d > 7_; @~ (z¢).
We could as well replace that standard construction of Brownian motion at
t; = jT/d by Brownian motion sampled by the principal components construc-
tion at those time points. Figure 17.6 shows some results using Sobol’ points
with a nested uniform scramble in [0, 1]'6 to evaluate this option. It is based on
30 replicates of up n = 2'2 points. We do 30 replicates here to get at least some
indication of how the variances differ between standard and principal compo-
nents constructions. For each estimate, the n points used are the first n out of
2!2 that were generated. By n = 212, the standard construction has a standard
deviation about ten times as large as the principal components construction
has. That corresponds to a variance ratio of about 100 in favor of principal
compnents. The plain Monte Carlo variance of this integrand is the same under
either method of sampling Brownian motion. It was estimated from n = 22° IID
geometric Brownian motion paths. The dotted line in the right panel of Fig-
ure 17.6 gives the estimated standard deviation for the average n plain Monte
Carlo samples.

In Figure 17.7, we repeat the problem, but this time taking d = 250 time
steps. We then need a scrambled Sobol’ sequence in [0,1]?°°. The direction
numbers of Joe and Kuo (2008) were used to construct Sobol” points that were
given a nested uniform scramble. Once again, RQMC outperforms MC and the
principal components construction works better than the standard one.

Comparing Figures 17.6 and 17.7 shows that an option at 250 time points
is much less valuable than one at 16 time points. An average over 16 times
points has greater variance than one over 250 times points. When by chance the
average is unusually far above K, the holder benefits. There is no compensating
cost to the holder when the average is far below K. Therefore high variance
in (1/d) 2?21 S(Tj/d;x) is beneficial to the option holder. This variance and
hence also the option value decreases as d increases.

17.9 Padding, hybrids and supercube sampling

It becomes harder to apply digital nets as the dimension d increases. Either the
quality parameter ¢ must grow, as in Sobol” and Niederreiter-Xing nets, or the
base b must grow, as in Faure nets. Similarly, as the dimension increases, the
quality of a rank 1 lattice can decrease but not increase.

Here we look at ways to use a high quality RQMC method in s dimensions
on a problem that has d > s dimensions, or even d > s dimensions. We suppose
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Figure 17.6: The left panel shows the first 4 of 30 RQMC estimates of the option
value from (17.19) versus the number n of Sobol’ points used. The standard
construction is shown with open circles connected by dotted lines. The principal
components construction is shown with solid circles and lines. The right panel
plots an estimated standard deviation versus n based on R = 30 replicates. The

dashed reference line is parallel to n='/2 and the solid line is parallel to n=!.

as usual that the function f is defined on [0, 1], that we seek p = [ f(z) dz,
and that o2 = [(f(z) — p)*dz < oco.

The methods can succeed when f(x) depends very strongly on s of the
components of & and only weakly on the other d — s components. Those other
components get sampled by some lower quality method. We assume that f is
defined, using subject matter knowledge, in such a way that the importance of
x; is generally thought to decrease as j increases. In §17.7 we discuss techniques
for increasing the importance of the leading components of .

In this setting we may combine RQMC points &1, ..., T, € [0,1]° for s < d
with some kind of filler method on the other d — s dimensions. For example, we
could take

T i<
py =40 IR (17.20)
Uij, S <J < da

where u;; ~ U(0,1) are independent of each other and of all the z;;.

The method (17.20) is called padding. It produces hybrid points x;.
Each individual point z; ~ U(0,1)? and so i = (1/n) >, f(=;) is unbiased
for p = f[O,l]d f(x)de. We could also form hybrids using ordinary QMC points

©) Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



Padding, hybrids and supercube sampling 131

Option value vs n Standard deviation vs n
10 8
o -qt‘ —
© —— Prin comp A
o. e Standard
o ST
g e o ° ?o N
- ]
B - ?
™M
0 Q _
o ° g .
o L]
2 T -
© | | | | S TT T T T T T T
50 100 200 500 2 5 20 50 200 1000

Figure 17.7: This is like Figure 17.6 except that the option is averaged over
250 points instead of 16. The computations are based on a 250 dimensional
scrambled Sobol’ sequence.

z; instead of RQMC points @; or replace U;; by 1/2. Those combinations are
harder to study than (17.20) because they merge deterministic and random
components, and they do not give an unbiased estimate of . The chapter end
notes have more discussions of hybrid points.

It is natural to try to replace the plain Monte Carlo portion u;; by points
with better equidistribution properties. One simple improvement is to replace
the IID components by a Latin hypercube sample. That is

iij, ] < S
M’ s < j g d’
n
where 7; are uniform random permutations of {1,...,n}, independent of the

u;; and the 7;; and each other. The resulting points «; will now be stratified in
all d univariate projections, under the very reasonable assumption that we have
chosen RQMC points &; with good univariate projections.

The next idea we consider is to replace the MC points by one or more other
sets of RQMC points. If we have an s-dimensional QMC rule and we want
points in dimension d = ks then it is tempting to use k£ independent scrambles of
(t,m, s)-net points a; with the j’th scramble producing components (j —1)s+1
through js of x;. Unfortunately, multiple scrambles of the same underlying
point set have a severe flaw that is illustrated in Figure 17.8.
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Multiply randomized QMC (flawed)
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Figure 17.8: This figure shows pairwise scatterplots of 81 points in x; € [0, 1]*,
with horizontal and vertical reference lines at 1/3 and 2/3. Components 1 and 2
are a scrambled (0,4, 2)-net in base 3. Components 3 and 4 are an independent
scramble of the same net. The joint behavior of (z1,x3) is flawed because they
are scrambles of the same points. The same holds for (z2,z4). Latin supercube
sampling repairs the flaw.

To understand the problem with placing multiple scrambles of the same
QMC points side by side, we can look at components 1 and s + 1 of ;. Let
;1 = O.ailoaiuailg -+ in base b, and similarly

i1 = 0.2510%511 %512 -+, and

Tis+1 = 0.4 541,0%4,641,1Ti,64+1,2 " * -

Then ;19 = 71, (ai10) and z; 5110 = 73, (ai10) where 7, is the permutation
applied to the first digit of the first component of a; in variable group g =
1,...,k. Variable s + 1 is the first member of the second group which explains
the superscript 2 for the permutation yielding x; s41,0. Consider all of the points
x;10 that lie in the interval [£/b, (¢ + 1)/b) for some ¢ € {0,1,...,b— 1}. That
is, their first digit is £. All such points have the same value for a;19, namely
ai10 = (m1,9) 1 (¢). Therefore they all have the same value 72,,((71,,)~*(¢)) for
Z; s4+1,0- It follows that there are b squares, each of area b=2 in [0, 1]2 whose
union contains all of the n points (1, z; s+1). In Figure 17.8 we see that all 81
points (z;1,x;3) lie within 3 squares having total area 1/9.

By considering the second digit of a; we find that all of the points lie within
b? squares with side length b=2 and total area b~ and from the r’th digit they
lie inside the union of b" squares of total area b—2". Even if we could apply the
scramble to an entire infinite (¢, s)-sequence there would still be a set of b” small

©) Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



Padding, hybrids and supercube sampling 133

squares of total area b~ 2" that contained the entire infinite sequence (1, x; 541)
for i > 1. As a result, we should not expect fi to converge to p as n — oo when
we use multiply randomized QMC points as described above.

It is not just scrambling methods that have this flaw. Cranley-Patterson
rotations have a version of it. Suppose that z;; = a;1 + u; mod 1 and that

Zist1 = a1 + uz mod 1 where uy; and wp are independent U(0,1) random
variables. If ug > wi, then #; o411 — x1 € {u2 — u1,u2 — ug — 1} holds for all
i=1,...,n. If instead ug < wuq, then x; 341 — zin € {u2 — u1,ug — ug + 1}
for all ¢ = 1,...,n. Either way, the points (z;1,x; s+1) all lie on one line (with

wraparound) in the unit square.
We can avoid such extremely bad projections by using Latin supercube sam-

pling, described next. For j € 1,...,k let igj)7 ... ,5%” € [0,1]% where s; > 1
and Z§:1 s; = d. A Latin supercube sample has points
~(1 ~(2 ~(k d .
T, = (mgrl)(i),mfm)(i), e :Dgrk)(i)) €0,1)% i=1,...,n,
where 71,. .., are independent uniform random permutations of {1,...,n}.
Ordinarily :Eg]), 739 e [0,1]% comprise an RQMC rule for each j =1,...,k
and the permutations 1, ..., are also independent of any randomizations in

these RQMC rules. Latin hypercube sampling of §10.3 is a special case where
all of the s; = 1 and the points 5@, . ,5,(1]) comprise a midpoint rule (for
centered LHS) or a stratified sample of [0, 1] (for unbiased LHS).

Figure 17.9 shows Latin supercube sampling applied to the points displayed
in Figure 17.8. The projections of variable subsets {1, 2} and {3,4} are the same
as in Figure 17.8. They are the same points in different order. The projections
for subsets {1,3} and {2,4} are substantially improved. They are not of low
discrepancy: they are instead a Latin hypercube sample.

The projections for subsets {2,3} and {1,4} appear worse for LSS than for
multiple RQMC. With multiple RQMC, x3 is closely related to x; and so the
(22, x3) projection inherits the high quality of the (z1,22) projection. While
multiple RQMC has some projections that are better than LSS in this case, the
flawed projections for multiple RQMC are serious enough to prevent it giving
the correct answer as n — oco.

If we use & RQMC methods to get 51(,” then each %Sé)(i) ~ UJ[0,1]% and

because they are independent, x; ~ U0, 1]%. As a result, LSS yields an unbiased
estimate 4 = (1/n) Y i, f(;) of p. If we use QMC points instead of RQMC
points then LSS is biased, though the bias may be very small.

The points igj ) e [0,1]% are from an RQMC rule and so we should expect
them to be at least as good, and asymptotically much better, than simple Monte

Carlo points in s; dimensions. To quantify their quality, introduce

15,200 .
- ;f(z.wz ) /[0,1]37‘ f(z:x)de

where z:z is the point in [0, 1]¢ formed by using « € [0,1]% for the s; compo-
nents corresponding to group j and z € [0,1]97% for the other k — 1 groups.

el(f) = sup
z€[0,1]%7 %

b
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Latin supercube sample

X5 VS. X1 X3 VS. X1 X4 VS. X1
v . v . e :
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o
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Figure 17.9: This figure shows Latin supercube sampling of the data from Fig-
ure 17.8. The run order of each block of points has been randomized. The
projections (z;,x,) for j € {1,2} and ¢ € {3,4} are now comparable to Latin
hypercube sample projections.

Then &, (f) is the largest error we would make averaging f over the j'th RQMC
points with other components held fixed. Notice that €/ (f) is a random vari-
able. We will suppose that it is bounded, and that it is o(n~'/?), which captures
the superiority of the RQMC rules over simple Monte Carlo.

We can analyze LSS via the ANOVA decomposition of f. The error is

X 1 ¢ X
pon= X I =
[ul|>0 =1 |u|>0
where the sum is over non-empty u C {1,2,...,d}. Now let A; C {1,...,d} be
the set of s; indices corresponding to the input values 51(‘] ),

Theorem 17.11. Let f be a square integrable function on [0,1]¢. Suppose that
the RQMC rules 51(«'7) satisfy €1, (f) = o(n='2) and &l (fuf,) = o(n='2) for
u,v C{1,...,d}. Then

k

A Y P 2 1 1
Var(ji) = - (a - Z Z o +O(\/ﬁ)> +o<n>.
j=1uCA;
Proof. This follows from Theorem 2 of Owen (1998). O

Simple Monte Carlo sampling has an error variance that is 02/n. By us-
ing Latin supercube sampling, with RQMC points, we are able to reduce the

© Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



Randomized Halton sequences 135

asymptotic variance. Specifically, those ANOVA effects 02 for u C A; are
asymptotically removed from the variance. ANOVA effects 02 with uN A; # @
and uNA; # @ for j # j' are handled no better or no worse than under simple
Monte Carlo.

While LSS can reduce the constant in the variance of [, it does not improve
the rate in n. To get a large reduction in the constant, we would need to
arrange for the groups of inputs randomized together to contain the bulk of the
interactions in f.

Latin hypercube sampling corresponds to Latin supercube sampling with
singleton sets A; = {j}, for j = 1,...,d. In LHS the asymptotic variance comes
from all the interactions in f, that is o2 for |u| > 2.

Theorem 17.11 shows how best to take advantage of Latin supercube sam-
pling. Where subject matter knowledge and computational convenience allow,
we should arrange for the variables with the strongest interactions to be grouped
together within the same subset A;. The emphasis should be on grouping to-
gether the variables with strong low order interactions, because the asymptotic
advantage of RQMC for the higher order interactions may require larger n to
take hold.

17.10 Randomized Halton sequences

Halton sequences have mostly been left behind by progress in lattices, digital
nets and polynomial lattice rules. They may still have a role to play. They have
very good discrepancy bounds and they are very easy to program.

There have been several proposals to randomize Halton sequences, mostly by
scrambling their digits. Let the unscrambled Halton points be a; = (a;1,...,ai4) €
[0, 1] with

K,
k-1
a;; = E aijep; - s 0 < aie < pj,
k=0

where p; is the j'th prime. The sum is finite, with Kj; just large enough that
K”+1
p .

J > i. Perhaps the most straightforward way to randomize these points is

to take
Kij
ke —(Ki;—2
Tij = Zﬂ—j(aijk)pj p; Fi Dy, 0 <ag < pj, (17.22)
k=0
where 7; is a uniform random permutation of (0,1,...,p; — 1), u;; ~ U(0,1)

and all the m; and wu;; are independent. That is, the same permutation is
used for all of the digits in the j’th variable. There have been many efforts
to find good deterministic permutations ;. Some of those are given in §15.5.
However, making the permutations random gives unbiased estimates suitable
for replication.

A very innovative randomization due to Wang and Hickernell (2000) uses
the von Neumann-Kakutani transformation in base p;. Figure 17.10 shows this
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von Neumann-Kakutani, p=2 von Neumann-Kakutani, p=3

1.0
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Figure 17.10: These are von Neumann-Kakutani transformations from [0,1] to
[0,1]. The left panel plots ¢o(i + 1) versus ¢2(i) for integers ¢ > 0. The right
panel shows ¢3(i + 1) versus ¢3(7).

transformation in bases p; = 2 and p, = 3. For the radical inverse function
¢p(i) in base b > 2, the value ¢p(i + 1) is a deterministic function of ¢ (7).
Write it ¢, (i + 1) = vnky(¢s(i)). They choose their first point z; ~ U(0,1)<.
Then, for i > 2 they take z;11,; = vnk,, (z;;). Each @; ~ U(0,1)¢. One way
to implement it, is to solve for N; such that ¢, (N;) = xy; for j =1,...,d and
then take x;; = ¢, (N; +i —1). If 21; would really be random then N; might
not be bounded, but rounding z;; to machine precision will give a finite IV;.
This random start Halton can produce unwanted stripes (Chi et al., 2005).

Matousek (1998) considers nested uniform scrambling (component j scram-
bled in base pj;, the j’th prime). He numerically evaluates mean squared dis-
crepancy. Scrambling does not offer a consistent advantage or disadvantage for
the dimensions and samples sizes he investigates.

Okten et al. (2012) make a study of scrambled Halton sequences. They
compare mean square discrepancy (Warnock’s formula) at n = 100 as well as
accuracy for larger n on a standard test integrand f(x) = H?:1(|4xj - 2|+
a;)/(1+a;) for several different vectors @ = (aq, ..., aq) and dimensions d. One
of their conclusions is that the simple scramble in (17.22) is hard to beat. They
find that it gives results that are at least competitive with and perhaps better
than purpose built deterministic scrambles.

17.11 RQMC and variance reduction

Randomized quasi-Monte Carlo sampling is a kind of variance reduction method.
It can be combined with other variance reduction methods, such as control
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variates, antithetic sampling, importance sampling and conditioning. We cannot
expect to remove any given source of variance twice, so the combination of
RQMC with other variance reductions has to be considered carefully.

We begin with control variates. Consider a control variate h(x) € R’ for
which [ h(z) dz = 6 is known. Using RQMC points ;, and a coefficient 3 € R,
we may construct the unbiased estimate

n

fis = = 3" (@) ~ BTh(:) + 670

=1

of p= [ f(z)de.
The optimal coefficient is

BOPt = COVRQMC(7 B)_ICOVRQMc(B7 f) where

h = %Zh(ml) and f = %Zf(wz)y
i=1 i=1

and the covariances are with respect to the randomizations in the RQMC points
x;. The optimal value of § can be arbitrarily different from the one in plain
Monte Carlo and it ordinarily changes with n because RQMC variance and
covariance ratios change with n. The usual regression formula for estimating
[ estimates the optimal value for MC, not for RQMC. We can estimate ngt
for RQMC by using independent replicates of the RQMC points as described in
Hickernell et al. (2005).

A common reason for the difference is as follows. The variance of fi un-
der ordinary Monte Carlo sampling may be dominated by low order ANOVA
components or low order terms in a Fourier, wavelet or Walsh expansion (as in
§16.4 and §15.13). A good control variate is then one that correlates with those
low order components to allow us to remove them as a source of variance. In
RQMC sampling, we often get very accurate results for low order terms and
then have an error variance dominated by somewhat higher order terms, per-
haps the lowest order ones not well handled by the RQMC points. In that case,
a good control variate h is one whose higher order components correlate well
with those of f.

In a numerical example of Hickernell et al. (2005, Table 4), the variance
reduction from using both RQMC and control variates is smaller than the prod-
uct of their individual variance reduction factors. In that 16 dimensional option
valuation problem, an RQMC method reduced variance by a factor of 142. The
best of four control variate strategies, all based on the close connection between
geometric means and arithmetic means for an Asian call option, reduced vari-
ance by a factor of 450. Combining the control variate strategy with RQMC
sampling reduced variance by about 1800-fold, better than either method indi-
vidually, but far short of 142 x 450. A different control variate strategy, which
was not the best for MC, yielded a variance reduction of about 3600-fold when
used with RMQC.
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It is possible to construct examples for which a control variate is very useful
for RQMC. But in real applications it can be very hard to identify a control
variate whose very high order behavior matches that of f. It is extremely rare
to find a control variate that is as good as the geometric average option is for
a problem of valuing an option based on the arithmetic average of asset prices.
Plain Monte Carlo control variates are comparatively easier to find because it
is easier to understand and match the coarse low order behavior of f and h.

The combination of RQMC with antithetic sampling faces similar issues.
Antithetic sampling yields exact answers for the odd part of f while doubling
the variance for the even part of f. Randomized QMC provides very accurate
integration for low dimensional coarse parts of the integrand while yielding more
like the Monte Carlo rate on high dimensional and high frequency parts of the
integrand. As a result, antithetic sampling with RQMC points will be of great
benefit if the high order and high frequency parts of f are dominated by their
odd parts. A combination of antithetic sampling with RQMC is then ideally
suited for f if its high order and high frequency components are approximately
odd functions. There is a clear drawback to antithetic sampling: we have to
double the sample size to do it. For MC, doubling the sample size reduces the
MSE by a factor of 2. In RQMC, that doubling could reduce the MSE by 4-fold
or even close to 8-fold making it harder for antithetics applied to the original n
points to be competitive with plain RQMC on 2n points.

Caflisch et al. (1997, §6.1) study a 360 dimensional integrand motivated by
mortgage valuation. By comparing the variances of Latin hypercube sampling
and plain Monte Carlo they estimate that the integrand has roughly 99.96% of
its variance in its additive component. Comparing Monte Carlo with antithetic
sampling they estimate that roughly 99.98% of the variance comes from its odd
part. The integrand is therefore nearly a sum of odd one dimensional functions.
The higher dimensional components were not overwhelmingly odd functions,
because the combination of antithetic sampling with Latin hypercube sampling
was not much more effective than Latin hypercube sampling on its own.

Somewhat better results are available with local antithetic sampling. If
f is nearly linear within each small rectangular patch, then local antithetic
versions of stratified sampling from §10.2 reduce the variance from O(n~!) to
O(n='72/?) in d dimensional problems. A similar reduction is available for
scrambled net quadrature. Given sufficient smoothness, a locally antithetic
version of randomized nets yields mean square errors of O(n~3-2/d+€) in 4
dimensional problems compared to O(n=3%¢) for scrambled nets. See Owen
(2008). Much better asymptotic orders are obtainable via by scrambling the
higher order nets of §15.12. See Theorem 17.7.

Conditional Monte Carlo (CMC) (see §8.7) is an important variance reduc-
tion method. The corresponding conditional QMC or conditional RQMC is
surprisingly interesting and useful. A straightforward version of CMC is to in-
tegrate out one component of [0,1]¢ in closed form, replacing f : [0,1]¢ — R by
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f:[0,1]%' = R with

~ 1
Flarovau) = [ fl@)des = E(7(a) |2-a) (17.23)

where x_4 = (z1,22,...,24-1). One can also use a quadrature rule for z4
in (17.23) if that rule has an error that is negligible compared to the sampling
error. In plain Monte Carlo, CMC reduces variance because

Var(E(f(z) |2 -q4)) = Var(f(z)) — E(Var(f () |2_q)) < Var(f(z)).

This tactic is sometimes called Rao-Blackwellization in the MCMC literature. It
has been called pre-integration in the QMC literature. We sample components
T1, T, Up to x4_1 and then just as we are about to consider x4 we find it has
been integrated out for us already, hence the term ‘pre-integration’.
Pre-integration for QMC can have the effect of making the integrand smoother
including changing from Vig (f) = 0o to Vix(f) < co. Many financial options
involve integrands with step discontinuities or discontinuities in their deriva-

tive. These are called jumps and kinks, respectively, by Griewank et al. (2018).
Consider }
-1 )
fa) = {1, S @ (z) >0
0, else,

where z; = &~ () has the N(0, 1) distribution, with probability density func-
tion denoted by ¢(-), when z; ~ U(0,1). We already know by symmetry
that g = 1/2, but this simple example lets us see the smoothing effect of pre-
integration with minimal complexity. We also know that this function has infi-
nite variation in the sense of Hardy and Krause for d > 2. Here

f(@_a) = Olf(:n) deg = /_O; 1{2% > O}gp(zd)dzd - /_OO () da

1 @((ifzj) = @(%@1(%)).

j=1

=1

The function f is infinitely differentiable on (0,1)4. It is also continuous on
[0,1)41 or on (0,1]97! after taking natural limits for x; — 0 or 1. It is tricky to
extend it to [0, 1]¢ because f is not well defined at points withz; = 0and z; =1
for j # j', and this complicates discussion of VHK(f). For any 0 < € < 1/2, the
function f has finite variation on [¢, 1 —€]?~! in the sense of Hardy and Krause,
while f has infinite variation on [¢,1 — €]¢, both for any d > 2.

For QMC without randomization, Gilbert et al. (2022) show that it is nec-
essary to have f(x) be strictly monotone in the pre-integrated variable x4. For
many of the integrands in financial valuation, monotonicity of f in x4 simpli-
fies the task of integrating x4 out of f. In RQMC we recover the property
that conditioning does not raise variance. Pre-integration can reduce but not
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increase the RQMC variance for scrambled nets or Cranley-Patterson rotations
of lattices (Liu and Owen, 2023).

Importance sampling (Chapter 9) is by far the most complicated variance
reduction method, and its combination with QMC or RQMC is even more com-
plicated. We saw in Chapter 16 that a periodization technique was a form of
importance sampling. It could be used to make the integrand not only periodic
but also bounded, by arranging for it to converge to zero perhaps with some of
its derivatives as an evaluation point approaches the boundary of [0, 1]¢. Unfor-
tunately that makes the integrand spiky somewhere else. Importance sampling
to reduce the size of such a spike might then give undesired singularities at the
boundary.

Suppose that in plain integration, the problem is to compute p = E(f(z)) for
z ~ p. Given a function P~! with z = P~!(z) ~ p when = ~ UJ0, 1]¢ we write
pu = E(f(P~'(x))). For instance when z ~ N(0,I) we may take P~ = ®~1
applied componentwise. RQMC will succeed to the extent that fo P~! is well
suited to the point sets used.

In importance sampling we rewrite the problem via p = E(f(2)p(z)/q(z))
for z ~ g where ¢(z) > 0 whenever f(z)p(z) # 0. If we obtain z ~ ¢ via
z =Q (z) for z ~ U0, 1]¢ then the integrand we face in RQMC is

QT (@)p(Q (@)
@)= =G @)

That is, we need to study (fp/q) o @' on [0,1]%. If we choose to use self-
normalized importance sampling then we must also compute an approximation
to the integral of (p/q) o @' and in that case it is necessary to have q(x) > 0
whenever p(x) > 0 as described in Chapter 9.

For plain MC, the task is usually to choose ¢ so that f has a lower variance
than f, often by reducing the impact of rare events or singularities. When f > 0
we seek ¢ that is nearly proportional to fp, not lighter tailed than p, and within
our capabilities to sample from. For RQMC, the task is more complicated. In
addition to choosing ¢, the result we get can depend on which function Q! we
use to transform @ into z. For instance, when z ~ N(0,3), choosing @~ can
also include choosing a matrix square root of X.

When we have an effective importance sampling strategy for MC, we can
simply use RQMC on that same f . Using scrambled nets we would still have
Var(fi) = o(1/n) and Var(ji) < I'o?/n. The more interesting problem is how
to choose ¢ and Q! to optimize the performance of RQMC, by for example,
arranging for f to be dominated by its low order variance components. This is
an area that still needs more work. For instance, He et al. (2022) remark that
they leave the general problem of designing an importance sampler for RQMC
to further research. The chapter end notes include some references on theory
and past successes for combining importance sampling with QMC and RQMC.
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17.12 Singular integrands

Many problems involve finding the expectation of an unbounded, that is sin-
gular, integrand. For example, Gaussian random variables are unbounded and
integrands on [0, 1]¢ constructed by transforming to a multivariate Gaussian
vector may well be unbounded too. That is common in financial valuation
problems (Glasserman, 2004). Kollig and Keller (2006) describe some singular
integrands in computer graphics. The function f may diverge to oo in places
and yet p = [ f(x)p(x)de is well defined so long as [ |f(z)|p(x)de < oco.
These problems then have integrable singularities. If also [ f(z)?p(z) dz < oo,
then Monte Carlo sampling of x; ~ p will lead to an estimate of p with root
mean squared error O(1/4/n).

Plain QMC is not designed for such problems. If f defined on [0,1]¢ is
unbounded then it has infinite variation in the sense of Hardy and Krause.
Averages of f over a low discrepancy point set could fail to converge to pu =
f[o,l]d f(x)dex. Randomized QMC can work well on singular integrands. If
f[o,1]d f(x)?dx < oo then sampling along digital sequences, such as Sobol’s or
Faure’s, with a nested uniform scramble attains Var(ft) = o(1/n). This rate
holds whether or not we know where the singularity or singularities are.

Very often the singularities arise on the boundary of [0,1]? and then we can
study the problem in more detail. We look first at how QMC can work with such
singularities. Despite the potential noncovergence of QMC, Ilya Sobol’ noticed
by the early 1970s that his colleagues were using QMC on singular integrands
without any apparent problems, and found an explanation: sometimes QMC
points manage to avoid the area of the singularity.

Suppose that there is a region K C [0,1]%, such that |f| is bounded on K
and all of the QMC points x; are inside K. Next, let f be a function on [0,1]¢
with Virk (f) < oo that satisfies f(x) = f() whenever € K. Then

i —pl = %Zf(wy) + (f(zi) = f(=:)) /[O y f@) + (f(z) — f(z) dz
ni:l [0,1]4
1n . ) )
Sy Ti) — x)dx ) — flz) de
T [ fwaals [ 1fe) - @)

c

< Di(@1, .. @) Vi () + / (@) — f(z)| da.

Now, given a sequence of regions K,, containing 1, ..., x, and a corresponding
sequence of extensions f,, QMC will converge to the right answer if

lim D:‘L(wl,...,wn)VHK(fn)+/KC |fn(x) — f(x)] dz = 0.

n—oo

Sometimes the integral has a singularity at the origin or along the ‘lower
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boundary’ of [0,1]?. Points ; can avoid the singularity by being confined to

min

orig
Koii(e) = {= € [0,1] | min x> e},

Kg:;gd( ) = {w E O 1 H ij = 6 ) or (1724)
1<]§d
orig _ d >
Koi(e) = {e € 0.1 | max z; > e},

where 0 < e < 1. For d = 1, these all reduce to [e, 1].

For d > 1, we may have to rearrange our integrand to ensure that the corner
containing the singularity is placed at the origin. If the singularity can be at
any of the corners or along any of the boundaries then we may instead use

d . .
K (e) = {w € (0,1 | min min(e;, 1 - 2;) > e},

min

SYAS
prod(e) = {z € [0,1] H min(z;,1 —x;) > €}, or (17.25)
1<j<d
Ki(e) = {z € [0,1] | max min(z;,1—z;) > €},
1<j<d

where 0 < € < 1/2. For d = 1, these all reduce to [¢,1 — €].

Sobol’ (1973a) found a way to extend f defined on certain regions K C [0, 1]%
to f on [0,1]¢ keeping Vik (f) under some control. The set K C [0,1]% is Sobol’
extensible if there is some anchor point ¢ € [0, 1]¢ such that the hyper-rectangle

d
R(z) = 1_[[rnin(gcj7cj)7ma})((scj7 c;)]

j=1

satisfies R(x) C K for all ¢ € K. The region R(x) is a rectangular bounding
box or rectangular hull of the points  and c. Figure 17.11 shows two Sobol’-
extensible regions and one other that is not extensible. The regions in (17.24)
and (17.25) are Sobol’” extensible.

If the partial derivatives of f taken once with respect to each component of
x is continuous on K, then Sobol’s extension can be made. We illustrate it for
d = 2. For the more general treatment see Basu and Owen (2015b). For € K
we can write

() :f(c)—i-/wl 9(@) dx1+/j2 9/() dxgﬁ:/R PI@)

c1 8.131 5 81‘2 (z) 8$18$2

The sign in the final integral is positive if x; > ¢; for an even number of j, that
is for zero or two such j, and is negative otherwise. The two univariate integrals
must be interpreted with a similar care on their signs. For instance, if ¢; > 1,
then the first one is — f;ll Of(x)/0z1 dz1. For d = 2, the Sobol’ extension of f
tox ¢ K is

f@ = s+ [ 1 e 2 Cemlg,

c1 (9221
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Extensible Extensible Not extensible

Figure 17.11: The first panel shows a Sobol’-extensible region above a hyperbola.
The second panel shows a Sobol’-extensible circle. Their anchors ¢ are marked
with a solid point and two bounding boxes are drawn. The third panel shows a
non-extensible region that omits a strip along a diagonal.

+ /“ 1{(z1, ) € K}%;ZZ)) dzg + /R(m) 1{z e K}az 52 dz.

c2

For € K, the fundamental theorem of calculus gives f(z) = f(x). Points
x ¢ K don’t add any variation to f beyond what it must have to match f on
K. For instance, the Vitali variation of f is S 102 f ()] H?:l Oz ;| de.

Sobol’ (1973a) showed that some of his sequences avoid a hyperbolic region,

Kgf;gd around the origin. An unfortunate typo in that paper makes it look he

is considering K°8

min- For d = 1, he finds that the van der Corput sequence
(not including = = 0) integrates =4 with error O(n“~1log(n)) for A < 1. For
larger d, products of negative powers of x; are integrated correctly by Sobol’
sequences as n — 00.

Halton points are quite good at avoiding the origin, assuming that they don’t
start with ¢, (0). For x;; to come close to the origin, i must be a multiple of
a power of p;, the j’th prime. For x; to come close to 0, ¢ must be a multiple
of powers of all the primes py,...,pq. That does not commonly happen. There
are details in Theorem 3.1 of Owen (2006a).

Uniform random points are good at avoiding small regions containing inte-
grable singularities. If they were not, then the law of large numbers could fail.
The next Lemma shows that for RQMC points there can be only finitely many

n for which one or more of the x; was within Kgggd(Cn ") when r > 1.

Lemma 17.1. Fori=1,...,n, let x; ~ U[0,1]¢. Then for C >0 and r > 1,

=" infind .
(12111£1n H Tij < infinitely often) =0.
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Proof. This is part of Lemma 4.1 of Owen (2006a). O

Lemma 17.1 follows from the Borel-Cantelli theorem and it does not require
that ; be independent of each other. The same holds for all 2¢ corners of [0, 1]¢
and so RQMC points also remain within K;‘r’ég(Cn_T) all but finitely often. We
can get rates for some RQMC points, using just that avoidance behavior, their
discrepancy, and assumptions about the integrand.

Definition 17.3. The function f on [0, 1]¢ has corner singularities no worse
Aj

than H?Zl z; it
ol f(x) d A
— 2 < B[ min(z;,1 — 2;)~ A~ 1ieuw (17.26)
Hjeu 8.’13]‘ ]1_[1 J J

holds for all uw € {1,2,...,d}, some A; € (0,1) and some B < cc.

We need A; < 1 because otherwise f might not be integrable. We assume
that A; > 0 because otherwise f might not be singular.

Theorem 17.12. Letxy, ..., z, ~ U[0,1]¢ with E(D%(x1, ..., x,)) = O(n~179)
for all e > 0. If f satisfies (17.26), then

(|~ p) = O(n= 5w 4r)
Proof. This is Theorem 5.7 of Owen (2006a). O

When one or more of the A; > 1/2 then f does not necessarily have finite
variance. The Monte Carlo rate in that case is not usually known, (though
perhaps we could find it, see Exercise 17.6). Theorem 17.12 gives a known
rate. It is better than the MC rate when max; A; < 1/2. Some slowly growing
singularities derived by inverting the Gaussian CDF can satisfy (17.26) for any
A; > 0. Then the RQMC expected error can be O(n~'*¢) for any € > 0.

Isolated point singularities, even at unknown locations, can be handled by
RQMC if they are not too severe. Owen (2006b) considers singularities at
unknown points z € [0,1]? that are ‘no worse’ than ||x — z||, 4 for 1 < p < cc.
For such integrands, RQMC estimates f[o,ud f(x) dx with

E(|ji — pl) = O(n(~1+04-4)/4)

The proof uses Sobol’ extensions from sets K, = {z € [0,1]¢ | [|[z—z]|, = €}NO,,
for all 2¢ orthants O, = {x € [0,1]¢ | z; > 2; <= j € u} defined by
uwC{l,2,...,d}.

Very little is known about (R)QMC for singularities along arbitrary man-
ifolds. For instance, for a singularity along {(t,1 —¢) | 0 <t < 1} C [0,1]2,
Figure 17.11 shows a region that we might wish to extend f from. That region is
not Sobol’-extensible so some other construction of f would be necessary. Basu
and Owen (2018) consider some approaches to this problem.

Hartinger et al. (2005) study corner avoidance properties of QMC points.
Hartinger and Kainhofer (2006) consider QMC integration of f(x)p(x) for in-
tegrands f with singularities and non-uniform probability density functions p.
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17.13 (R)QMC for MCMC

Here we consider what happens if we try to use QMC methods in Markov chain
Monte Carlo (MCMC). Then we extend it to RQMC.

QMC and MCMC are in some ways opposites. QMC is done with n points
in d dimensions, with n > d, possibly d = 1, and studied as n — oo. The inputs
can be arranged in an n x d matrix with a row per sample and a column per
variable. In Bayesian applications, MCMC is done with some large number n
of generated points and R replicated chains, perhaps with R = 1. For R = 1,
MCMC is estimating an integral by just one average over n data points. If
we picture the inputs to MCMC as one row per sample and one column per
variable used they form an R X ms matrix where s is the average number of
uniform random variables needed to advance the Markov chain one step. Then
because R < ns, the input shape for MCMC looks like the transpose of what
we use for QMC.

The justifications for QMC and MCMC are also different. QMC uses dis-
crepancy of a collection of points. MCMC uses ergodicity of a sequence.

The first thing to realize is that the combination, done badly, would fail
dramatically. Caflisch and Moskowitz (1995) described replacing the stream of
random numbers in MCMC by a van der Corput sequence. For random walk
Metropolis, a simple proposal like x; — ; + ®~*(uz;_1) could be followed by
an acceptance-rejection decision based on whether us; is below the Hastings
ratio. Because large us;—1 are followed by small us; and vice versa in the van
der Corput sequence, we could find that positive proposed changes are usually
accepted while negative ones are usually rejected, producing a random walk that
drifts off to infinity instead of being stationary.

If we are to replace uj, us, ... from a random number generator (RNG) by a
QMC sequence, then it is clear that having D} (uy,...,u,) — 0 is not enough,
because that holds for van der Corput. To fix that flaw with the van der Corput
sequence we would also want D} (v1,ve,...,v,) — 0 for v; = (u;, u;4+1). More
generally, we want

D} (vy,v9,...,v,) = 0, for wv; = (us,Uit1,...,Uirk—1) € [0, 1]]“ (17.27)

to hold for all £ > 1. An infinite sequence uq,ug,... that satisfies (17.27) is
completely uniformly distributed, or CUD. Definition (17.27) uses over-
lapping k-tuples. Chentsov (1967) shows that we can also define CUD via
non-overlapping k-tuples, with v; = (Up(i—1)41,- -+, Uki)-

One of the definitions of a random sequence in Knuth (1998) is that it be
CUD. Some of the criteria for random number generators in Chapter 3 involve
the full period of the RNG having uniformly distributed k-tuples, though that
is only possible for k small compared to the period of the generator. The idea
behind putting QMC into MCMC is to use the entire period of an RNG. Of
course, one would then need to choose a small RNG.

For finite n, CUD sequences are constructed using similar algorithms to those
used for RNGs. Tribble (2007) uses some Korobov points, which are small
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congruential RNGs, as well some small linear feedback shift register (LFSR)
generators. Chen et al. (2012) present some LFSRs on 2™ points for each
integer m from 10 to 30.

For RQMC, we would use a random sequence u; instead of a deterministic
one. An infinite random sequence u; is weakly CUD or WCUD if

P(D} (v1,v2,...,v,) = 0) =1, for v; = (us, Wig1,...,Uirp—1) (17.28)

holds for all k¥ > 1. Tribble and Owen (2008) give some constructions of WCUD
sequences. A Cranley-Patterson rotation of a CUD sequence is WCUD.

Theoretical understanding of MCMC driven by (W)CUD points is more
complicated than when the driving sequence of u; has IID elements. The k-
tuples v; have some negative dependencies which means that the output of the
simulation is not Markov, just as RQMC for finite d produces outputs that are
not independent. We saw the use of non-Markov simulations for MCMC in
adaptive MCMC (Chapter 11).

What is known about (R)QMC inside MCMC is that it is consistent, that is,
various laws of large numbers have been proved for it. Chentsov (1967) proved
one for sampling a Markov chain on a discrete space by inversion. Owen and
Tribble (2005) handled discrete Markov chains by Metropolis-Hastings. Chen
et al. (2011) considered MCMC for continuous random variables by Metropolis-
Hastings and by Gibbs. Empirically, placing QMC points within MCMC is
often seen to give a better convergence rate, especially for Gibbs sampling which
avoids the step discontinuities produced by the acceptance-rejection step in the
Metropolis-Hastings algorithm.

Chen (2011) proves that a better rate is possible, but under much stronger
assumptions than those rates have been observed empirically. Chen et al. (2016)
introduce a herded Gibbs sampler for problems on Markov random fields. It is
deterministic and they show O(1/n) convergence. Schwedes and Calderhead
(2018) obtain variance nearly O(1/n?) using QMC within parallelized MCMC.

17.14 Array-RQMC

Array-RQMC uses RQMC methods to sample a large number n of Markov
chains through T' time steps each. For full details, see L’Ecuyer et al. (2018).
At time t > 1, chain 7 visits

i =V(xi—1, i), uiy € (0, 1)d7

for an update function ¥(-,-). There is a common starting value ;o = xo for
all of the chains, and the quantity of interest is

T
= E(th(xi7t)), for u;, 2 U(0,1)%. (17.29)

t=1

For instance, & might describe the state of a inventory system or a queue
of customers at time ¢ and ¢;(-) could be a corresponding cost function, per-
haps discounting future costs using an interest rate. Policy changes would then
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amount to changing ¥, and we might want to know what the expected cost of a
proposed policy is. ? report using array-RQMC on a chemical kinetics problem
with the 7-leaping algorithm describe in Chapter 6. In that case only the last
state needs to be summarized and so ¢; =0 for all t < T

While (17.29) is defined in terms of plain MC sampling, we can instead apply
the variance reduction or RQMC methods to improve the quality of an estimate.
The most straightforward way to apply RQMC is to use n points v; € (0,1)74.
The first d components of v; are u;; the next d components are u; » and more
generally v; = (u;1,Ui2,...,u; 7). That is, we take

p=E(f(v), v~U(©O1)"

for v = (w1, us, ..., ur) with f incorporating both the costs ¢; and the updates
V. The problem with this plain approach is that it may require a very high
dimensional RQMC point set.

We could instead use Latin supercube sampling (LSS) of §17.9, with 7" in-
dependent reorderings of some d-dimensional RQMC points. Each time step
would be updated by a d-dimensional RQMC point set. We could also use d
independent reorderings of a T-dimensional RQMC point set. Then each com-
ponent of the state vectors @ gets its own RQMC point set do to all T' time
steps. Unfortunately, LSS only gives the plain MC rate, O(n~/2). If there are
important interactions between variables receiving different random reorderings,
then LSS only averages those interactions at the MC rate.

What is missing from LSS is a way to have the updates at step ¢ be almost
independent of the prior state x;;—; € R°. Under a Markov model, that prior
state captures everything relevant about the prior update variables u; . for
t" < t, and so updating the chains nearly independently of their prior states
should be effective.

Array-RQMC has a simple way to fill this weakness in LSS when s = 1,
that is, when @; ;1 is scalar. It uses low discrepancy points w;; = (a; ¢, w;¢) €
(0,1)4*1 for i = 1,...,n. The first component a;; is used to decide which
simulated Markov chain gets updated by which of the u;;. The k’th largest
rit—1 gets updated by w;),, where a;(), is the k'th largest of the a; .

The points w; ; are RQMC points with a different, independent randomiza-
tion at each time point ¢. This runs counter to the admonition in §17.9 that such
points do not uniformly sample. The situation is not precisely the same. The
points u; ; and wu; s for ¢’ # ¢ do not necessarily update the same Markov chain,
because of the way the ordering develops. It may be enough for the values x; ;1
at time t to have low discrepancy with respect to the true distribution at that
time. Then the specific random inputs that produced them can be forgotten.

When s > 1, then it is more challenging to decide which of the Markov chains
should be updated with a given input u;; at time t —1. One approach is to take
w;; € (0,1)**¢ and make the match based on some sort of similarity between
points x at time ¢t — 1 and the coordinates of w; ;. Because s-dimensional space
does not have a natural ordering for s > 1, there are many ways to do this. See
L’Ecuyer et al. (2018).
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Gerber and Chopin (2015) develop a sequential quasi-Monte Carlo sampler
that can be viewed as a form of array-RQMC. They smoothly transform x; ;1 €
R* to (0,1)® via a logistic function. Then they run a Hilbert space-filling curve
through [0, 1]°. That is a continuous curve mapping [0, 1] onto [0, 1]°. Each point
x;+—1 lies on that curve and so they can be sorted in order of their pre-image
in [0, 1] under the Hilbert curve. The updates come from the last d components
of points w;; € (0,1)1+4, after sorting them to have their first component in
the same order as the Hilbert sort of a; +—1.

The empirical results for array-RQMC so far outstrip what has been proved
theoretically. Gerber and Chopin (2015) showed that their method has variance
o(n~1), using scrambled nets for their RQMC points. L’Ecuyer et al. (2008)
show that for scalar s it is possible to achieve variance of O(n~3/2) by a version
of array-RQMC, but theoretical explanations of array-RQMC performance still
fall short of its empirical performance for d > 2.

Array-RQMC builds on the quasi-random walk methods of Lécot and Ogawa
(2002), which are a form of array-QMC. They use unrandomized QMC and
a reordering strategy to solve problems in chemistry where particles undergo
diffusion and convection. They find empirical error rates that are better than
for plain Monte Carlo. Examples 1, 2 and 3 in dimensions 1, 2 and 3 respectively
attain error rates n =073, n=964 and n=957. Changes in problems, methods and
sample sizes could make these rates better or worse.

Chapter end notes

Confidence intervals

Using R independent replicates we can get an unbiased estimate of the variance
of the pooled RQMC estimate fipoo1 = (1/R) Zle fir. See equation (17.3).
That estimate will converge to the true variance in the limit as R — oo. This
variance estimate is most useful when Var(ji,) < co. We usually assume that is
true for RQMC and it is generally true for RQMC whenever it is true for plain
MC.

We ordinarily prefer a confidence interval to a variance estimate. We would
like an interval based on very mild assumptions. For instance we would not
want to assume that the replicates (i, come from any parametric family of
distributions. Unfortunately, there is a sense in which it is impossible to get a
completely nonparametric confidence interval for the mean of a random variable
(Bahadur and Savage, 1956).

We can however get an asymptotic confidence interval based on the central
limit theorem (CLT), in the limit as R — oo as described in §17.1. If we make R
replicates of a rule using n evaluation points then the computational cost grows
proportionally to nR. The variance of the pooled RQMC estimate is R~ times
Var(fi,) and the latter is usually o(n~!). Then to get better accuracy of u for
fixed nR, we would want large n and small R. We face a tradeoff because better
coverage accuracy for a confidence interval generally requires larger R.
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For nested uniform scrambling of (0, m, d)-nets, Theorem 17.6 of §17.5 from
Loh (2003) provides a CLT as n — oo for smooth enough integrands. In that
setting, if we keep R > 1 fixed, and let n — oo then confidence intervals based on
a Gaussian distribution for fi, are asymptotically valid. Loh’s result works for
scrambled Faure sequences but not for Sobol’ sequences for ¢ > 0 which happens
for any d > 3. It is not known when or whether a CLT applies to scrambled nets
when ¢t > 0. L’Ecuyer et al. (2010) make a study of the distribution of RQMC
estimates for randomly shifted lattice rules. They include an analysis of one
and two dimensional problems and some examples in higher dimensions. They
especially note that no CLT applies to the individual estimates. As a result, a
CLT for n — oo and fixed R does not apply to the most commonly used RQMC
methods.

Nakayama and Tuffin (2021) study confidence intervals based on the CLT
when an RQMC rule on n¢ points is replicated R = n'~¢ times. They acknowl-
edge that these should be integer values but that doesn’t matter much in their
asymptotic limits. It is complicated to have two limits, n — oo and R — oo.
While the mean of the replicates fi,- is independent of n and the variance of
[ is assumed to be below some given function of n, a CLT also requires some
regularity for higher moments of fi,,. In RQMC sampling those higher moments
can depend on n in ways that have not received much study. They work under
several assumptions, such as bounded f, or f of bounded variation in the sense
of Hardy and Krause (which is stronger) or f(x) having [ |f(z)**“dz < oo
for some ¢ > 0. They are able to get CLTs and asymptotically valid confidence
intervals, though R must grow with n.

Bootstrap ¢

Some very precise results about confidence intervals for the mean were obtained
by Hall (1988) drawing on results from Hall (1986). The bootstrap ¢ method
of Efron (1982) emerges as the best choice. When the higher moments of /i,
behave well, as described below, then a modest number R of replicates can give
an accurate confidence interval.

The accuracy of confidence intervals depends on higher moments. For in-
stance, if an estimate of Var(ji,) is used in constructing that confidence interval,
then we would want a finite fourth moment for [, to ensure that the sample
variance has an RMSE of O(R™'/2). The analysis in Hall (1988) gives expres-
sions for the coverage error in confidence intervals based on R observations as
R — oo. Those involve the skewness and kurtosis, respectively

]E((ﬂr B /‘)3) E((ﬂr - M)4)

=—— "> and k=

- 3.
Var(i,)3/2 Var(i, )2

These are both zero when [, has a Gaussian distribution and so they can be
interpreted as measures of deviation from Gaussianity. Hall (1986) assumes a
finite eighth moment. He also assumes Cramér’s condition, which here means
that the distribution of fi, is not supported on integer values or some other
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lattice in R. Under those conditions

P(mpool > %spool) —0.99 + 0(%) (17.30)

where 57, = Zle(ﬂr — fipoo1)?/(R — 1). Replacing 2.58 by the 0.995 quantile
of the t distribution on R — 1 degrees of freedom helps for small R but does not
change the convergence rate.

There is reason to believe that the skewness and kurtosis under matrix scram-
bles of (t,m,d)-nets could diverge as n — co. See Pan and Owen (2022b,c).
There is more hope for shifted lattice rules. L’Ecuyer et al. (2010) show that for
d = 1 the lattice rule ends up with a uniformly distributed error on non-periodic
integrands and some of their figures (e.g., Figures 12 and 13) show only mod-
est departures from Gaussianity for some 5 dimensional examples. For nested
uniform scrambling, little is known about higher order moments except for the
t = 0 case studies by Loh (2003).

The interval fipoo1£2.588poo/ VR from (17.30) is derived for fi, with a Gaus-
sian distribution, and using the ¢ distribution quantile removes the O(1/R) cov-
erage error entirely. Bootstrap confidence intervals are designed without assum-
ing a specific distribution. In the percentile bootstrap, we sample i*t, 4*2, ..., g*F
with replacement from (i1, fio, ..., ftr) and compute

1 R
/:L;ool = E Z ﬂ:
r=1

1

We do this independently B > 1 times, getting fi5t 1, ihag), - - - isoe- We then
~#(1) ~%(2) ~*(B)

sort the values into fi o0 < fijoo) < -+ < flyo01 - The central 99% of these is an
approximate 99% percentile confidence interval for p. That is, we use

~%(0.005B) ~*(0.995B)
[Mpool » F’pool ]

We might have to round 0.005B down to an integer or 0.995B up to an integer,
or because B is under our control, we can choose for B a multiple of 200, such
as 10° or 10%. A large value like this is reasonable when we want the 0.5 and
99.5 percentiles. The coverage accuracy of the bootstrap confidence interval is
usually studied in the B — oo limit, especially when it is inexpensive to take
large B. The coverage error is however still O(1/R), or O(1/R + 1/v/B) for
finite B.

The bootstrap ¢ method of Efron (1982) generates i}, i3, ..., % as before
by resampling the original data. It then computes

Frpool — Fipool 1 &
1= R o 5 = o D poa)”
IV Pt
In the bootstrap ¢ method we compute t*!,¢*2,...,t*F from the resampled
data, again for B = 10° or more, sort them as t*() ¢*®) _  ¢*(B) and record
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*(0:005B8) and ¢*(0-9958)  Ag B — oo the distribution of the ¢* becomes the
exact distribution of the ¢ statistic in a world where our QMC estimates had
the U{f1, ..., fig} distribution. For the bootstrap ¢ we reason that ¢* under
resampling has almost the same distribution that ¢ has under the unknown
distribution of fi,. Setting

0.01 = ]P)(t*(o.oosB) <t< t*(0‘9953)) _ P(t*(o.oow) < fpool — 1 < t*(0'9953))

and solving we get

£#(0.995B) ¢ (0.005B)
[ ool — — — < < [i ool — —  —
Hpool \/E 'S Hpool \/E

as the bootstrap ¢ 99% approximate confidence interval for p.

Hall (1988) shows that the coverage error in central confidence intervals is
(A+B~y2+Ck)/R+0(1/R?), where v and & are the skewess and kurtosis defined
previously. The values of v and k are hard to know for [, from RQMC. For
MC with n IID observations, v(&) = v(f(x))/v/n and k(i) = &(f(x))/n, but
those results do no apply to n RQMC sample points.

Alone among the nonparametric methods that Hall considers, the bootstrap
t has A = 0. The others have A < 0 which makes then tend to cover u less
often than they should. Hall (1986, 1988) also describes a sense in which the
bootstrap ¢ chooses the right length for its confidence intervals.

Extreme cases for coverage error have v2 zero or large and » below, equal to,
or larger than the 0 we would have from a Gaussian distribution. That makes
for 6 possibilities, but it is impossible to have an extremely large 2 with a small
k, so there are really 5 possibilities.

Owen (1992) simulates 95% confidence intervals for seven distributions (given
in Exercise 17.9) including examples of all five (v2, %) types and nine different
confidence interval methods. The bootstrap t had the most reliable coverage of
all methods tested. The coverage was reasonably good for sample sizes n > 4
except for log normally distributed data where none of the methods did well.
The intervals were very long unless n > 6 and they had quite variable length
unless n > 7. Additionally, Hall’s asymptotic formula for coverage error was
accurate already for n = 18 (except for lognormal data). Confidence intervals
can also be judged by the coverage level attained at their given length. By that
criterion, empirical likelhood intervals were best.

Bootstrap t confidence intervals can be very long because sometimes s* is
tiny. For small R, methods that do not generate some long confidence intervals
typically fail to achieve the desired coverage. When as usual, all R values of fi,
are distinct, and none is exactly equal to fipool, then there is an R!™F chance
of getting s** = 0 and #** = +00. We must choose R so that R'~% < 0.01 in
order to get finite values for t*(9-0058) and t*(0-995)  which leads to R > 6 or
perhaps R > 7.

A slightly sharper version of the bootstrap uses B = 99,999 or some other
multiple of 200, less one. The B bootstrap values of t* partition the real line

(17.31)
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into B intervals, two of which have infinite length. Some may have length 0
due to ties among the ¢** values b = 1,..., B. We can then define ¢*(0-0055)
and t*(°995B) a5 the end points from the union of the central 0.99B of these
intervals. See Davison and Hinkley (1997). For large enough B it won’t make
a practical difference.

For small R we can enumerate all of the different bootstrap samples ¢* in a

combinatorial problem. There are (ZRRA) of them with unequal weights.

The bootstrap process ordinarily uses B independent samples. We can con-
sider replacing those by B RQMC samples. The empirical distribution on n
data points (or on R data points in the present context) is not a smooth distri-
bution and that diminishes the potential gains from using QMC or RQMC. The
Bayesian bootstrap of Rubin (1981) (see also the weighted likelihood bootstrap
of Newton and Raftery (1994)) works by giving each observation an independent
weight from the exponential distribution of mean 1. That is a smoother sam-
pling distribution and more suited to RQMC. The process of forming confidence
intervals is also not very smooth as it counts points inside or outside of a set, so
even with a Bayesian bootstrap, confidence interval formation does not gain a
lot from RQMC. The bootstrap is also used to estimate a bias or a variance of
a statistic. Those are smoother settings where RQMC can help more. See Liu
(2005) and Owen (2009).

Scrambles

Nested uniform scrambling of digital nets and sequences was introduced in Owen
(1995). The digital scramble was mentioned by L’Ecuyer and Lemieux (2002)
who attribute it to R. Couture. A taxonomy of scrambles appears in Owen
(2003b).

The generalized Faure and generalized Niederreiter sequences of Tezuka
(1995) are non-random scrambles of those sequences designed to improve their
performance. They take the form of a random linear scramble of Matousek
(1998), but use a deterministic choice for My and they take Cj = 0. As a
result, random linear scrambling is simultaneously a randomization of gener-
alized Faure/Niederreiter sequences and a derandomization of nested uniform
scrambling.

The I-binomial scramble of Tezuka and Faure (2003) is a further derandom-
ization of random linear scrambling that uses O(k) numbers to scramble & digits
instead of O(k?). Owen (2003b) presents an affine striped matrix scrambling
that induces a local antithetic sampling pattern in the generated points. That
leads to an improved convergence rate for one dimensional problems and for the
one dimensional main effects in higher dimensions. But it does not improve the
convergence rate for d > 2 overall.

L’Ecuyer and Lemieux (2005) report on a strategy by Morohosi to cache
random seeds to reduce the space requirement of nested uniform sampling, by
instead regenerating permutations as needed.
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Importance sampling

Importance sampling (IS) can be combined with QMC or RQMC once we have
replaced the original integrand f by an integrand f with respect to UJ0,1]%.
Two of the main motivations for IS are integrands with singularities and in-
tegrands supported only in a set of small volume, describing rare events. If
any singularities or non axis-parallel discontinuities remain in f , then RQMC
is to be preferred because then Vi ( f) = oo and QMC could possibly fail to
converge.

The earliest study of QMC and IS is the dissertation Chelson (1976). He
takes the nominal distribution p to be UJ0, 1]¢ and samples from a density q.
Then he studies the resulting integrand f(x) = (f/q)oQ~!(z). He used succes-
sive inversion of conditional CDFs (see Chapter 5) to define the transformation
Q™. He gave an (incorrect) upper bound for |fi— | as the product of Vi (f/q)
times D} (x1,...,x,). Aistleitner and Dick (2015) correct this result replacing
the ordinary star discrepancy D} by one appropriate to the sampling distribu-
tion ¢, noting that a theorem in Gotz (2002) could be used to get this result.
They then provide a more general upper bound that does not even require that
the sampling distribution have a probability density.

Here are some notable uses of IS with QMC and RQMC customized to
their problem domains. Kollig and Keller (2002) combine RQMC with multi-
ple importance sampling to implement bidirectional path tracing for a problem
of graphical rendering. Jank (2005) uses RQMC with IS and a Laplace ap-
proximation in the expectation-maximization (EM) algorithm, replacing Monte
Carlo EM by RQMC-EM. L’Ecuyer et al. (2007) use IS and RQMC on some
rare event problems where the probability that a Markov chain reaches a set
B before reaching or returning to a set A. They also consider array-RQMC.
The log likelihood function in generalized linear mixed models (Jiang, 2017)
can involve some high dimensional integrals. The integrands typically involve
Gaussian random variables and are unbounded. Kuo et al. (2008) use impor-
tance sampling from logistic distributions in conjunction with RQMC based on
random shifts of deterministic QMC points. He et al. (2022) consider integrands
defined in terms of multivariate Gaussian or ¢ random variables, especially those
from finance. They show that using RQMC on an IS problem with a Laplace
approximation can attain RMSE O(n~2+€). The integrand on [0, 1]¢ must obey
the boundary growth condition (17.26) and the eigenvalues of the Gaussian in
the Laplace approximation must be at least 1, ensuring sufficiently heavy tails
for the proposal distribution.

Dimension reduction methods

Moskowitz and Caflisch (1996) presented the Brownian bridge construction for
QMC evaluation of integrals involving a discretely sampled Brownian motion.
To cover the time interval [0, 7], they sample at times T, T/2, T/4, 3T/4 et
cetera, continuing at times formed by multiplying 7" by numbers of the van der
Corput sequence. The Brownian bridge construction also appears in Chapter 2
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of Buslenko et al. (1966) which was written by I. M. Sobol’. That chapter in-
cludes MC and QMC but the Brownian bridge example there uses MC. Morokoff
(1998) develops Brownian bridge sampling for stochastic differential equations
of the form

dS(t) = (a(t) + b(t)S) dt + o(t) dB(t)

where B(t) is Brownian motion.

Acworth et al. (1997) proposed the principal components construction for
problems of valuing financial options under a geometric Brownian motion model.
There are also spatial versions of the principal components decomposition for
regions in two or three or more dimensions. Heat or water might be flow-
ing through a region and meeting a spatially random resistance as it moves.
One can simulate that randomness by Monte Carlo and then measure some
quantity of interest, often determined by solving a partial differential equa-
tion over the region of interest. Repeating the process several times gives an
estimate the expected value of that quantity. A zero mean Gaussian spatial
process on such a region can be written, in a Karhunen-Loeve expansion, as
f(@&) = Y02, vewe(t)ze for functions v(t) random variables z, i N(0,1) and
coefficients 71 = 72 = --- =2 0. QMC or RQMC can be used on the first L
components zy. Graham et al. (2015) consider partial differential equations in
a random lognormal environment using QMC to sample their environment.

There is no reason to expect that either the Brownian bridge or the principal
component construction is necessarily best for a given application. Indeed,
Papageorgiou (2002) shows that for certain digital options the Brownian bridge
can be outperformed by the standard construction. Akesson and Lehoczky
(2000) consider a weighted principal components method for financial problems
where future values of the security of interest should be discounted by an interest
rate. Imai and Tan (2006) present a method that searches numerically for the
best square root C' of the Gaussian covariance matrix .

The matrix C = E(Vf(x)Vf(z)T) is used in the active subspaces construc-
tion of Constantine (2015). He uses the first few eigenvectors of C' to define a
low dimensional subspace and then constructs an approximation to f using just
the projection of @ into that subspace. Xiao and Wang (2019) use this eigende-
composition to generate Gaussian samples in their gradient principal component
analysis (GPCA) method for integration. Liu and Owen (2023) pre-integrated
over the first eigenvector of C' and use the remaining ones as a sampling strat-
egy. Their motivation is that the first eigenvector of C' is approximately the
linear combination of & with the largest Sobol’ index after an approximation
based on the Jansen identity (A.16). Liu (2022) provides some ways to choose
an active subspace when only certain linear combinations of variables (such as
those involving returns but not interest rate fluctuations in a finance context)
can be pre-integrated.

Another difference between RQMC and MC arises in the transformations we
use to create random variables. We can sample Gaussian variables z; ~ N(0,I)
by inverting the Gaussian CDF, or by the Box-Muller transformation. These
choices will produce estimates i with identical mean and identical variance in
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MC but they will be different in general under RQMC. Many authors, e.g.,
Morokoff and Caflisch (1993), advocate for inversion. Okten and Géncii (2011)
take the contrary view, especially for integrands that depend on the norm of
the Gaussian random vector. For even d, the norm of the Gaussian vector will
have been determined by only d/2 of the components in x; compared to all d
of them under inversion.

Simulation optimization

Sampling methods have many uses within optimization. Simulation-optimization
problems (Carson and Maria, 1997; Fu et al., 2005) can be cast as minimizing
over some variables an expectation over others. Stochastic gradient descent
(Bottou, 2012) is now widely used to optimize parameters in machine learning
applications. Bayesian optimization (Shahriari et al., 2015) has many practical
uses. There is a long history of stochastic approximation described in Kushner
and Yin (2003).

RQMC is now being used in some of these settings. Balandat et al. (2020)
use scrambled Sobol’ points in Bayesian optimization. Buchholz et al. (2018)
and Liu and Owen (2021) use them in variational Bayes.

Padding and hybrid methods

Spanier (1995) describes a hybrid method in which deterministic quasi-Monte
Carlo points are padded out with ordinary Monte Carlo. Okten (1996) analyzes
the discrepancy of such hybrid schemes. Owen (1994) considers padding ran-
domized orthogonal array samples with Latin hypercube samples. Hofer and
Kritzer (2011) and Hofer (2018) study hybrid point sets that combine multiple
types of QMC points.

Exercises

17.1. Prove equation (17.10) bounding the discrepancy of Cranley-Patterson
rotation.

17.2. This exercise considers some positional scrambles of the Faure sequence
and therefore requires code for the Faure sequence. Exercise 17.3 is similar but
based on the more easily programmed Halton sequence.

a) Compute the first 2 components of the first 530 points of Faure’s (0, 53)-
sequence in base 53. Plot the second component versus the first for these
points.

b) Apply a positional scramble to both components above, using a uniform
random permutation ; for the £’th base b digit of the j’th component.
The 7, are mutually independent. For this exercise you may truncate the
expansion at 4 digits in base 53. (In applications, more digits should be ac-
counted for.) Plot the scrambled second component versus the scrambled
first.
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c) Repeat the previous part but now use the same uniform random permu-
tation m; for all digits of the j'th component of the points. Take m; and
7o to be independent uniform random permutations of {0, ...,52}.

17.3. Do Exercise 17.2 with the following substitutions: Replace the first two
components of the Faure sequence by the 19’th and 20’th components of the
Halton sequence (prime bases 67 and 71). Replace the base 53 expansions by
ones in bases 67 and 71 as appropriate. Use random permutations of {0,...,66}
and {0,...,70} as appropriate.

17.4. Let the mean dimension of f from its ANOVA decomposition be 1+ ¢ for
€ > 0. Show that

d
Zafj} > (1- 6)0’2.
=1

17.5. For i > 1, let a; = ¢2(i) be the van der Corput sequence in base 2. Let x;
be a nested uniform scramble of a;, in base 2. Let y; be a second, independent,
nested uniform scramble of a;, also in base 2.

a) Does (zss, yss) have the uniform distribution in the unit square?

b) Would (zss, yss) be uniformly distributed if digital shifts were used?

17.6. Theory project. Theorem 17.12 requires low discrepancy points. Find
an asymptotic rate for E(| — p|), if instead the points have exactly the same
discrepancy bounds that plain Monte Carlo points have.

17.7. Chapter 6 contains pseudocode for the Brownian bridge construction of
Brownian motion. Compare the Brownian bridge construction to the princi-
pal components construction for the Asian option problem of §17.8. Try both
dimensions d = 16 and d = 250.

17.8. Perhaps the Box-Muller algorithm would be better for the Asian option
problem than the method of inversion used in §17.8.

17.9. This exercise is a mini-project to calibrate the bootstrap ¢ for 99% inter-
vals. Consider sample sizes n = 6,7,...,30 for random variables z with these
distributions:
i)  ~ Exp(1) (Exponential),
ii) z ~ N(0,1) (Gaussian),
iii) = ~ exp(N(0,1)) (Lognormal),
iv) z ~ 0.25N(3,1) 4+ 0.75N (—1,1) (Mixture of normals),
v) @ ~ t(y) (Student’s ),
vi)  ~a — 22,0 < x <1 (Triangular density function), and
vii) & ~ U(0,1) (Uniform).
In RQMC, each z is a i and n is R. The lognormal distribution is especially
challenging.
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a)

b)

d)

£)

g)

Write or find code to sample n numbers j*(1),7*(2),...,7%(n) uniformly
from integers i = 1,2,...,n, with replacement. (In bootstrapping z} will
be x;-(;y.) For n = 3, there are only 27 possible ordered samples. Sample
many times to verify that all 27 appear approximately the right number
of times.

For our bootstrap purposes getting observations (1,3,2,1), when n = 4,
is the same as getting (1, 1,2,3). That is, the order in which the samples
were taken does not count. Enumerate the distinct samples for n = 4,
compute their true exact probabilities as an integer multiple of 4=* and
compare their frequencies in sampling to their true probabilities.

For n = 6 and x; ~ Exp(1), using B = 100,000 bootstrap samples, what
fraction of the time does the 99% bootstrap confidence interval contain
the true mean? Use a large number N of samples of sizes n = 6 to get
your answer. Turn in your code including the seed you used so it can be
reproduced. If necessary reduce B in order to use a large N.

Repeat the previous computation for the other six distributions above.
Turn in your code.

Repeat the previous computation for n = 7,8,--- ,30. Turn in your code.

Instead of coverage, report width calibration. Specifically for each distri-
bution and sample size n find a factor w such that

4+(0.0055) < o= < #(0.995B)
w N NG w
holds with estimated probability 0.99. Such factors are commonly called
fudge factors.

Find fudge factors for the usual, non bootstrapped, ¢ distribution for the
same sample sizes and distributions.

Some parts can be done by writing code that wraps the prior parts. Instruc-
tors may want to skip some parts or change recommendations for N and B or
change the subset of n values.
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APPENDIX A

The ANOVA decomposition of [0, 1]¢

The analysis of variance (ANOVA) is a statistical model for analyzing exper-
imental data. Given a rectangular table of data it quantifies how important the
rows are relative to the columns and also captures the non-additivity under the
term ‘interaction’. The ANOVA can be applied to any number of independent
variables and the variables do not have to be at discrete levels such as row and
column names. The ANOVA on [0,1]¢ that we emphasize here is sometimes
called the functional ANOVA.

For Monte Carlo and quasi-Monte Carlo methods, the ANOVA provides a
convenient way to quantify the importance of input variables to a function,
through the related notions of effective dimension, Sobol’ indices, and mean
dimension.

A.1 ANOVA for tabular data

The ANOVA originated in agriculture. Suppose that we plant seeds of types
i=1,...,I and apply fertilizers j = 1,...,J, and then measure the resulting
crop yield Yj; for all I x J combinations. We may then want to know which
seed type is best, which fertilizer is best, the relative importance of these two
variables and also the extent to which the best fertilizer varies with the type of
seed and vice versa. As a toy example, suppose we have the following yields

Yy j=1 j=2
1=1 25 9
1=2 20 28
1=3 27 11
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By inspection, we can see that column 1 has a higher average yield than colunn 2
and that row 2 has the highest row average. The average yield in row i is Y;, =
(1/J) ijl YVij. The average yield overall is Y,, = (1/(1J)) 1, ijl Yi;.
Taking this average as a baseline we can attribute an incremental yield of Y;, —

Y,. to seed type i, and an incremental yield of 17.9' —Y,, to fertilizer j where
Y,; = (1/1) Zle Y;;. If yields were additive, then Y;; would be the baseline plus
an increment for row ¢ and an increment for column j. That is, we would find
that Y;; = Y.+ (Y. 717,,)+(}7,j —Y,.). Subtracting this additive approximation
from Yj; yields the interaction term

The baseline Y,, is usually called the ‘grand mean’ while Y;, —Y,, fori =1,...,1
is the main effect of the row variable and 57,j —Y., for j=1,...,J is the main
effect of the column variable.

We can display this decomposition as

25 9 20 20 -3 -3 4 -4 4 -4
20 28| =120 20+ 4 41414 -4+ -8 8
27 11 20 20 -1 -1 4 —4 4 —4
Yij Yoo Y;;o_)_/-o Yoj_Yoa }/ij_}_/io_Yoj"!‘Yoo

Notice that the row effects Y;, — Y., average to zero over i within all columns
j=1,...,J while the colunn effects average to zero over columns for each row.
This is a consequence of the way we centered the data. The final interaction
term averages to zero within each row and also within each column. In this
made up example, the benefit of combining row 2 and column 2 is so strong
that the best yield actually came from the worst column.

Interaction terms are differences of differences. An interaction effect from
two factors can be written in these two ways

(Yij = Vi) — (Y. —Y..) or (Y —Y,) —(Yi.—Y..).

When there are more than 2 factors, then interactions of order k > 2 are k-fold
iterated differences of differences.

The importance of rows, columns and interactions can be measured by their
sums of squares 3, (Y. -Y..)?, > (Y —-Y..)?, and >0 (Yij—Yi.—Y.; +Y..)%
In the above example, these are 52, 96 and 192 respectively.

Much of the complexity of statistical experimental design, outside the scope
of this text, arises because the yields Y;; are themselves averages of noisy data.
They have statistical uncertainty and then so do the estimates of the grand
mean, main effects and interactions. In the toy example above, there were two
factors, seed and fertilizer, while in applications there can be many more than
two factors, so there are higher order interactions than two. Also, one must
plan how to gather the data. See Box et al. (2005) and Wu and Hamada (2011)
for more.
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A.2 The functional ANOVA

The example ANOVA in §A.1 had two factors, one for rows and one for columns,
and our main tool was averaging. We can replace averages over a finite number
of levels by averages over some other distribution. Here we present the functional
ANOVA for real-valued functions f(x) where © = (z1,...,z4) ~ U[0,1]¢. We
let o = E(f(z)) and 02 = Var(f(=)), and assume that o2 < co. It is not critical
that z; ~ UJ[0,1]. The ANOVA can be defined for other distributions of ;.
Independence of all components of x is however critically important and finite
variance is necessary for the most important results.

The functional ANOVA that we develop here writes f(x) as a sum of func-
tions that may each depend on some but not all z; and it apportions the variance
of f(x) over all 2¢ — 1 non-empty subsets of the variables x1, ..., z4.

The variable indices are in the set {1,...,d} that we abbreviate to 1:d.
We use |u| for the cardinality of each u C 1:d. If w = {j1,J2,...,5}y} then
we write @, for (zj,,...,2;,) = (zj)jeu. The complementary set 1:d \ u is
denoted by —u. For singleton sets « = {j} it is notationally convenient in a few
places, especially subscripts, to replace {j} by j. Some further shorthands are
introduced as needed.

Sometimes we have to make up a new point by putting together components
from two other points. If z,z € [0,1]% and u C 1:d, then the hybrid point
Y = Xy:Z_,, is the one with y; = x; for j € u and y; = z; for j € u.

The ANOVA of the unit cube develops in a way that parallels the ANOVA
of tabular data. When we are done, we will be able to write

f@) =" ful@) (A1)

uCl:d

where the function f,(-) depends on its argument « only through «,,. For u = &,
the function fg () does not depend on any components x; of x; it is a constant
function that will be equal to the grand mean. Indexing the terms in (A.1) by
subsets is convenient, because it replaces ungainly expressions like

d
f@)=fo+) > Jir g (g0 5 25,)

r=11<j1<j2<-<jr<d

that become difficult to manipulate.
We begin the functional ANOVA by generalizing the grand mean to

fole) = [ f@)de=p (A2)
[0,1])¢
for all . Next, for j =1,...,d, the main effects are
fo@ = (@) - pde, (A3)
[071]4—1
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which depends on x only through z; as all components of _; have been inte-
grated out.
The general expression for a set u C {1,...,d} is

plw= [ (@)= 3 ) de (A1)

vCu

We don’t want to attribute anything to @, that can be explained by x, for
strict subsets v C u so we subtract the corresponding f,(x). Then we average
the difference over all the other variables not in w. The definition of f1.4(x)
ensures that the functions defined in (A.4) satisfy (A.1).

There are many ways to make a decomposition of the form (A.1). Indeed an
arbitrary choice of f,, for all |u| < d can be accomodated by taking fi.4 to be f
minus all the other terms. The anchored decomposition of §A.7 is an important
alternative to the ANOVA.

The effects f, can also be written

pl = [ s@ e G (A5)

because f, does not depend on any component of _,, when v C u.

A.3 Orthogonality of ANOVA terms

In this section we show that ANOVA terms are mutually orthogonal. We saw
that ordinary ANOVA terms average to zero over any of their indices. Similarly,
we will show that

1
/ fu(®)dz; =0, for jeu.
0

Lemma A.1 proves this result which we then use to show orthogonality of
ANOVA components.

Lemma A.1. Let the function f be defined on [0,1]¢ with [ f(z)?dx < oo.
Foruw C{1,...,d}, let f,, be the ANOVA effect defined by (A.4). If j € u, then

/(; fu(a:_j::cj)dzj =0 (AG)

holds for all x_; € [0,1]771.

Proof. The proof is by induction on |u|. The statement of the lemma implies
that 1 < |u| < d. For |u| =1, let w = {j}. Then by (A.3)

1 1
| @, = [ /[071]{j}<f<x>—u>1£[j deg s,
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I
=
B
|
=
o,
8

Now suppose that fo fo(x)dz; = 0 for j € v whenever 1 < |v| < 7 < d.
Choose u with |u| = r+1, pick j € u, and let —u+j be a shorthand for {j}U—u.
To complete the induction,

/fu d%_/o”dﬂ fl@) =Y ful@)) ey

vCu
/0 J1]d—lul+1 f Z fv(w)) da:,uﬂ
/0 ,1]d=lul+1
> fo@) dm o+ fui (@)

(/@

(/@)
vCu, jgv

(1@

= Jysgrn U0~
(0.4l vCu—{5}

f@ = > @) deu
vCu—{j}
= fu—{jy(®) = fu_gjy(@)
=0. O

Now consider the product f,(x)f,(x). If u # v then there is some j that is
in  but not v, or vice versa. Integrating f, f, over x; then yields zero and the
orthogonality we want. Using this argument involves Fubini’s theorem and to
get a sufficient condition for Fubini’s theorem, we need to establish a technical
point first. If f is square integrable, then so are all the ANOVA effects f,.

Lemma A.2. Let f be a real-valued function on [0,1]¢ with fo 174 f(x)?dx <
oo. Then f[o 1 fu(x)?dx < 0o for allu C {1,...,d}.

Proof. We will proceed by induction on |u|. If |u| = 0, then f,(x) is a constant
function and it is then square integrable. For |u| > 0

W)= [ @ = S S, (A7)

and all of the f, on the right hand side of (A.7) are square integrable, so it
is enough to show that fz(x) = f[o 1 lul f(x)dx_, is square integrable. Now

fa(x) = E(f(x) | ,) for  ~ U[0,1]¢ and so

/fa(w)2dw</f($)2d$<oo. O

The following Lemma is a very general orthogonality result for ANOVA.
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Lemma A.3. Let f and g be real-valued functions on [0, 1]% with f[o,l]d flz)?dx <
oo and f[o,l]d g(z)?dx < oo. Let u,v C{1,...,d}. If u# v, then

/ Ful®) g0 () daz = 0.
[0,1]4

Proof. Since u # v, there either exists j € u with j € v, or j € v with j & w.
Without loss of generality suppose that j € u and j € v. Next by Lemma A.2,
both [ fu(x)?dx and [ g,(x)? dz are finite. Therefore [ |f,(x)g,(x)|dz < oo
by Cauchy-Schwarz. It follows that we may use Fubini’s theorem to integrate
x; out of f,g, first as follows:

1
[ r@an@ie= [ [ @i

1
= /[0 i A fu(-’B) d:Ej gv(:c) d;p_j =0,

using Lemma A.1 on the inner integral. O

Corollary A.1. Let f be a real-valued function on [0,1]¢ with [ f(x)*dz < oo.
If u # v are subsets of {1,...,d}, then

/fu(:c)fv(:c) dx = 0.
Proof. Take f = g in Lemma A.3. O

Now we can explain the name ANOVA by decomposing (analyzing) the
variance of f. The variance of f,(x) for z ~ U[0, 1]¢ is

0, u=go.

Lemma A.4. Let f be a real-valued function on [0,1]¢ with p = [ f(x)dx and
0? = [(f(z) — p)?>dx < co. Then

o? = Z o2, (A.9)
|u|>0
Proof. From the definition of o2,
Jo@-wraz= [ ¥ @@= Y [f@ae
[u|>0|v|>0 lu|>0

using Corollary A.1. The result follows by the definition of o2 at (A.8). O
ANOVA is an acronym for analysis of variance. Equation (A.9) shows
that the variance of f decomposes into a sum of variances of ANOVA ef-

fects. The quantity o2 is a variance component. We may also write 02 =
., 02, summing over all 2¢ subsets, because 0% = 0. Similarly [ f(z)?dz =

u?

Eu ffu(a:)2 de = /'1’2 + Z\u|>0 0-12L'
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A.4 Best approximations via ANOVA

We can use the ANOVA decomposition to define some best approximations to
a function f. We suppose that f has domain [0,1]¢ and that [ fx)*dz < oo
and best means minimizing the squared error. We begin with the best additive
approximation to f.

Definition A.1. The function g : [0,1]¢ — R is additive if g(z) = go +
Z;l:l gj(z;) where g; are real-valued functions on [0, 1] and gy € R is a constant.

It is convenient to rewrite g in its ANOVA decomposition. If g is additive,
then the ANOVA decomposition of g is

9(z) = go(z) + Zg{]}

where gg(x) = go + ZJ 1 fo gj(z)dx and gg;y(x) = g;(x;) fo gj(x)dz.

Definition A.2. Given a function f € L2[0,1]¢, the additive part of f is
fadd( + Z f{]} (AlO)

It is sometimes convenient to simplify f.qq to /H—Z?:l fj(z;) where f;(x;) =
fiy(@j:x_j). Evidently faqq is additive. It may be concisely written as

fadd Z fu

Ju|<1
The next lemma shows an optimality property of faqq.
Lemma A.5. Let f € L?[0,1]? and let foqa(x) be defined at (A.10). If g(x) is

an additive function, then

L/uu»—g@»%m;g/um»—fmawfdm

Proof. In this proof summations over u are over all u C 1:d unless otherwise
indicated. If f g(x)?dx = oo then the conclusion follows easily, so we assume
g € L?[0,1]% as well, so g has an orthogonal ANOVA decomposition and hence
so does f — g.

Orthogonality of ANOVA terms yields

J U@ @iz =3 [ - o)z
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The ANOVA effects of faaq for |u| > 1 are fagau(x) = gu(x) = 0 while for
|u] <1 they are faqd,u(x) = fu(x). Therefore

[t@) ~g@)Pde =Y [ (@) - gu(@)? do
= [ (@) = utaa@) + fraaa(2) ~ g(2)?do
=Y [thara(@) - g@)Pde+ Y [ fu@)da

lu|<1 u|>1

> ) / ful@)? da

Ju|>1
= /(f(:c) — fadd(:c))2 dz. O

We can get the best additive approximation to f by simply removing from
the ANOVA decomposition all terms f,, with |u| > 1. The same argument shows
that the best approximation (in mean square) having interactions of order at

most 2 is
Joo@) = 3 ful@).

ul <2
More generally, the best approximation with interactions up to order k < d is

forder k(m) = Z fu(m)'

lul<k

Now suppose that we want the best approximation to f(«) on [0,1]? that
can be obtained using only x,,. Modifying the argument that we used to identify
the best additive approximation to f we find that

M@Y= [ S =Bl ()

is that best approximation. This function appeared earlier in the proof of the
technical Lemma A.2.

Equation (A.11) expresses each of 2¢ cumulative effects f; as a sum of orig-
inal ANOVA effects f,. There is also an inverse relationship (Exercise A.1)

ful@) =Y (1) fo ). (A.12)

vCu

Equation (A.12) is an example of the Mobius inversion formula.

A.5 Effective dimension

It is often observed empirically that a function f defined on [0, 1]? is very nearly
equal to the sum of its interactions of order up to s < d. When this happens

© Art Owen 2013-2023 do not distribute or post electronically without
author’s permission



Sobol’ indices and mean dimension 167

we consider the function to have an effective dimension much lower than its
nominal dimension d.

The benefit of low effective dimension comes up in quadrature formulas. Let
xi,..., @, €[0,1]%. Then

e N (CIEIED DD S ACHE (A.13)

=1 uwC{l,....d} i=1

=

with a similar formula holding in the case of unequally weighted quadrature

rules. The error is
p—p= Z fl

|ul>0

where i, = (1/n) S, fu(@).

Let us split the error into high dimensional contributions fi, for |u| > k and
low dimensional ones for 1 < |u| < k. If all of the & dimensional projections
of 1,...,x, have good equidistribution properties then unless f, is particu-
larly awkward, we should expect a small error fi,. Similarly, if all the high
dimensional components f, are nearly zero, then we expect a small error fi,, for
them.

If 99% of 02 can be attributed to ANOVA effects u with |u| < s then we can
approach a 100 fold variance reduction if we can find a Monte Carlo method
with E(42) = o(1/n) (for |u| < s) while E(22) = o2/n for |u| > s. Some
randomized quasi-Monte Carlo methods, presented in Chapter 17 behave this
way.

Definition A.3. Let f be a square integrable function on [0, 1]%. The effective
dimension of f in the superposition sense is the smallest integer s such
that 3, < 02 >0.9902.

Another notion of effective dimension is that only a small number s of the
input variables are important. In such cases we might treat those variables
differently, but to do that we need to know which ones they are. Without loss
of generality, we suppose that the first s variables are most important.

Definition A.4. Let f be a square integrable function on [0, 1]¢. The effective
dimension of f in the truncation sense is the smallest integer s such that
Zuc{17...7s} 0—,3 > 0.9902.

The value 0.99 is a consequence of the somewhat arbitrary target of a 100-
fold variance reduction. A different threshold might be more suitable for some
problems.

A.6 Sobol’ indices and mean dimension

Given a black box function of independent variables we might want to measure
and compare the importance of those variables. If O'%j} > a%k}, then other
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things being equal, we would consider x; to be more important than x;. The
other things that might not be equal, include the extent to which those vari-
ables contribute to interactions. Additionally, we might want to quantify the
importance of x, for a set u of more than one of the variables.

Sobol’s indices are

Z o? and 72 Z o2

vCu vivNuU#£D
The reader should verify that 72 = o2 — 72,. The lower index 72 measures
the importance of x, through all main effects and interactions in u. The upper
index 72 includes any interaction to which one or more of the components of x,,
contribute. These indices are usually expressed as normalized forms 72 /02 and
72 /0%, where they then quantify the proportion of variance of f attributable to
subsets of u, and subsets intersecting u, respectively. The closed sensitivity
index is 72 /02 and the total sensitivity index is 72 /o2.

These indices are interpreted as follows. If 72 is large, then x,, is impor-
tant. If 72 is small, then x,, is unimportant, because even with all interactions
included, it does not make much difference. One might then freeze x, at a
default value, call it ¢, and devote more attention to studying f(c,:x_,) as a
function of x_,, € [0,1]?~ 1"/, Freezing x,, this way requires a hidden but often
very reasonable assumption that f is well enough behaved, that unimportance
of &, in our mean square sense is enough for our application. For instance, if
there are points @ for which |f(xz) — f(c,:@—_,)| is not small, then those points
could pose a problem when freezing x,, at c,.

The Sobol’ indices can be estimated by pick-freeze methods described next.

We do not have to estimate any of the ANOVA effects f,. Instead, for 72, we
may use the identity
/ f@)f(zy:z_y)dedz_, = 72 + 12 (A.14)
[0 1]2d ||

n (A.14), we sample & to get f(x), then freeze the selection x, and pick
new values z_,, independently of  and take the expected value of the product
f(x) f(ay:2_,) over the distribution of « and z_,,. To prove (A.14), we use the
ANOVA decomposition f(x) =", 1.5 fo(x). Then

/ f(@)f(xy:z_y)dedz_, = / Z fo(@®) f(y:iz_y) dedz_y
[0,1])2d~ Il [0,1]2d— 1l
= / Z fo(@)f(y:z—y) dedz_,
[0,1]24~ul
because if v has an element j € u, then
1 1
| f@)f @iz do; = f@uz-) [ @) da; =0
0 0
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Next, by orthogonality of ANOVA terms, we find for v C u, that

/ fol@)f(xy:z_y)dedz_,, = / fo(@) fo(Ty:z_y) dedz_y
[0,1]2d—Iu]

[O,I]Qd—|u|

:/ folx)? da,
o.1]1"
_Jod, >0,
B pQ, v=d.
Summing over v C u completes the proof of (A.16).
Taking x; ~ U[0,1]¢ and z; ~ U[0,1]¢ all independently, we may form the

estimate

n

2= 23 f@) (i) — P (A.15)

i=1

where o = (1/n) Y0 (f(x:) + f(®iw:zi—u))/2.

For the upper index, we may use the following identity:

1/ (f(z) - f(:c,u:zu))zd:c dz, =72. (A.16)
[0,1]d+ul

See Exercise A.2. We can estimate 72 by Monte Carlo, via

. 1 &
7721 = 272 CC% —u'Zg u))27

. ~ ~2
and, because we don’t need to estimate 12, we have E(7,) = 72.

The most important Sobol’ indices are the ones for singletons {j}. Then I?

is the mean square of the main effect for z;, while ?? includes all interaction
mean squares that x; contributes to. Now

d
=Y > lgewon= Y lulol. (A7)

j=1 Jj=1uCl:d uCl:d j=1 uCl:d

M&
M
ilvg

We can use this cardinality weighted sum of variance components to define the
mean dimension of f. If 02 # 0, then the mean dimension of f is

1
=253 lulo?.

The mean dimension is easier to estimate than the effective dimension. We only
need to compute d averages, one for each of the ?3

The above v(f) is a mean dimension in the superposition sense. We can
also define a mean dimension in the truncation sense. For non-empty u, define
[u] =max{j | j € u} and set [&] = 0. Then we can use

ranelf) = = Y[l
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as the mean dimension of f in the truncation sense.
There are additional ways to estimate Sobol’ indices. For instance, using

2= / / F(@)(f (@aiz) — f(2)) dwdz (A18)

we don’t have to subtract an estimate of x2. Another choice is

2= [[[ @ - fwim (@) - ) dedydz (A1)

for independent x,y, z ~ UJ[0, 1]%. Either of these can be the basis of a Monte
Carlo or randomized quasi-Monte Carlo algorithm to estimate 72. There is
some discussion in the end notes.

A.7 Anchored decompositions

The anchored decomposition is another way to write f as a sum of 2¢ func-
tions each one depending only on «,, for one set u C {1,...,d}. The functions
are defined with respect to a special point ¢ € [0,1]%, called the anchor. We will
obtain the decomposition

F@) =" fuelz) (A.20)

where, after the anchor has been chosen, f, . depends on x only through x,.

Before giving a general expression, we show an example for the case with
d = 3 and ¢ = 0. In this case, the constant term is fz o(z) = f(0,0,0). The
main effect for x; is friy,0(x) = f(21,0,0) — £(0,0,0) and those of z» and
x3 are similarly defined. Instead of using E(f(x)) as the baseline we subtract
f(e) = £(0,0,0). If we use only the terms with |u| =0 or 1, we get an additive
approximation

f(xl,0,0) + f(07x270) + f(0,0,iL’g) - 2f(07030)

This approximation is not generally the closest additive function to f in mean
square. We can however compute it at any x that we like, unlike fyqq(x).
Furthermore, it is defined without assuming that x has independent components
or even that x is random at all.

The term for u = {1,2} is

f{l,Q},O(w) = f(z1,72,0) — fzo(x) - f{l},o(w) - f{2},o(w)
= f($1,$2,0) - f(wla(),O) - f(O,xQ,O) + f(anaO)a

after simplification. The terms for u = {1,3} and v = {2,3} are similar. The
term for u = {1,2,3} is

f{1,2,3},0(w) = f(z1,22,23) — fo,0(x) — f{1},0(ﬂ3) - f{z},o(ﬂf) - f{g},o(w)
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- f{1,2},o($) - f{z,:s},o(w) - f{1,3},o(w)
= f(z1,22,23) — £(0,0,0) + f(21,0,0) + f(0,22,0) + f(0,0, x3)
- f(0a$27x3) - f(xhov'xi’)) - f(oaan'r?))a

after some algebra. The alternating signs above generalize to higher dimensions.
Just as in the ANOVA, the terms are k-fold differences of differences.

The general anchored decomposition is constructed just like the ANOVA but
at each step instead of subtracting an average over one of the x; we subtract
the value we get in f at x; = ¢;. To begin with, we take

fo.c(®) = [(c).

Then for non-empty v C {1,...,d}, we define

fuel®@) = f(@uieu) = foel

vCu

The counterpart to the Mobius equality (A.12) that the ANOVA satisfied is

fuel@) = (=1 f(ayie_y). (A.21)

vCu

In the ANOVA decomposition, the term f,(x) integrated to 0 over x; for
any j € u. Here f, o(x) =0 if x; = ¢; for any one of j € u. We can prove that
using (A.21) to write

Fue@) = S (-1 f(@ye,)

vCu

= Y ()N (f(@uiemy) = f(@orjie—uj)).

vCu—j

If j is in u but not v and ¢; = z;, then x,:c_, and x,;:c_,_; are the same
point and then each term in the sum above is zero, making f, .(x) = 0.

For any anchor ¢ that we choose, we can compute all terms of the anchored
decomposition at any point @ that we choose. We may have to evaluate f up
to 2¢ times to do so. If possible, we should choose ¢ to be a point where the
computation of f(x) is simpler when some of the z; = ¢;. That could be 0 or
lor (1/2,...,1/2).

Appendix end notes

The ANOVA was introduced by Fisher and Mackenzie (1923). The frequent
occurence of physical phenomena well explained by a small number of low order
interactions among experimental variables, known as factor sparsity, has often
been remarked on by G. E. P. Box. The book of Box et al. (2005) presents
experimental designs geared to exploiting factor sparsity.
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The extension of ANOVA to the continuum was made by Hoeffding (1948)
in his study of U-statistics. Sobol’ (1969) introduced it independently to study
multidimensional integration problems. It was used by Efron and Stein (1981)
in the study of the jackknife. In his study of Latin hypercube sampling, Stein
(1987) used the ANOVA to find the best additive approximation to a given
function on [0, 1]%. Owen (1998) defines an ANOVA for the case d = oc.

The definitions of effective dimension are from Caflisch et al. (1997). The
first notion of effective dimension appeared in Richtmyer (1952). Numerous
ways to define effective dimension have been used. Owen (2019) includes a
historical survey. See Wasilkowski (2019) for an emphasis on information based
complexity.

Sobol’ indices and the identities (A.14) and the idea of freezing unimpor-
tant variables are from Sobol’ (1990), which was translated into English as
Sobol’ (1993). The identity (A.16) is known as the Jansen identity after Jansen
(1999). The index If /o? appears independently in Ishigami and Homma (1990).
These indices are the cornerstone of global sensitivity analysis, as distinct from
a local sensitivity analysis that just uses small perturbutions of the variables.
See Saltelli et al. (2008) for more about global sensitivity analysis. Razavi et al.
(2021) provide a comprehensive bibliography. Oakley and O’Hagan (2004) study
a Bayesian approach to estimating global sensitivity indices.

Janon et al. (2014) study the estimator (A.15) of 72. Mauntz (2002) and
Saltelli (2002) independently propose the unbiased estimator (A.18) of 72. The
estimator (A.19) of 72 that uses @, y, and z is from Owen (2013a). There is no
universally best estimator of 72 among all of these and other possible choices.
The one in (A.19) has an advantage when the corresponding upper index 72 is
small.

The notion of mean dimension is from Owen (2003a) and the identity (A.17)
is from Liu and Owen (2006) who also consider mean square dimensions. Many
other interesting and potentially useful quantities can be estimated using the
pick-freeze ideas. We can easily estimate Z\ulzl o= 2?21 I?. It is possible to
estimate ZIMIZQ o2 using an integral with only 2d + 2 different evaluations of f
(see Exercise A.5b) despite it being a sum of d(d — 1)/2 variance components.
Hooker (2004) considers T2 = > - 2. This superset importance measure
quantifies the effect of dropping all of the effects involving x, and possibly
more z; from a formula. Fruth et al. (2014) compare methods of estimating
Y2 from samples. See Owen (2013b) for these and other examples of things to

estimate.

The efficiency with which an ANOVA derived quantity can be estimated is
hard to predict because the variance of these estimators depends on some fourth
moments. Those are expectations of products of f evaluated at up to four pick-
freeze locations. Further complicating the problem is that estimators of these
quantities may differ in the number of function evaluations that they consume,
and when we have a large list of sensitivity indices and related quantities to
estimate, then some function evaluations can be reused in multiple estimates.
Then the cost of estimating a set of Sobol’ index quantities can be less than
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the sum of their individual costs. See Saltelli (2002), Owen (2013a), Tissot and
Prieur (2015) and Gilquin et al. (2019) for some of those issues.

Sobol’ indices provide a global sensitivity analysis, while derivatives are used
for a local sensitivity analysis. Sobol’ and Kucherenko (2009) show that

2
I? < iz/ <ﬁ> dx
m [0,1]¢ 8x]

connecting the two notions. Kucherenko and Iooss (2017) have more results of
this type including ones for Gaussian random variables.

There are philosophical reasons to prefer the Shapley value from economics
and game theory (Shapley, 1953) to Sobol’ indices as a way to measure the
importance of independent inputs x; to the function f(x). In this context, the
Shapley value for x; is

It has 2?21 ;= 0?. The Shapley value shares o2 equally over all j € u. By
comparison, z? has a zero coefficient on o2 if |u| > 2, while f? counts all of o2 if
j € u. We easily find that I? < ¢; < ?? and Plischke et al. (2021) note that the
upper bound can be improved to (If +??) /2. There are no simple identities that
let us efficiently estimate the Shapley value, though we can efficiently estimate
both 1? and ?? by Sobol’ identities and they bracket ¢;. For more about how
Shapley value relates to Sobol’ indices, see Owen (2014), Song et al. (2016),
Owen and Prieur (2017) and Iooss and Prieur (2019).

The anchored decomposition goes back at least to Sobol’ (1969). The M&bius
relation (A.21) for it is from Kuo et al. (2010). They consider very general types
of decompositions with the ANOVA and the anchored decomposition as just two
examples.

Throughout this appendix, the inputs to f have been independent random
variables. Many real problems involve dependent variables but it is exceedingly
challenging to make the ANOVA work in such cases. This problem has been
considered by Chastaing et al. (2012), Hooker (2007) and Stone (1994) among
many others.

Exercises

A.1. Prove equation (A.12).
A.2. Prove equation (A.16).
A.3. Let u and v be disjoint subsets of 1:d. Show that
E((f(zu:wfu) - f(a:))(f(zv:ac,v) - f(:L’)) = TiUv'
A.4. Suppose that f(x) is a constant function on [0,1]? for d > 1. What then

is its effective dimension according to Definition A.37
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A.5. Let  and z be independent U[0, 1]¢ random vectors.
a) If d > 2 and j # k, show that

//f(wj:z—j)f(x—kIZk) dedz = p? + 17, 4y

This is from Saltelli (2002).

b) Define
o= [[(w6)- if(wjzz») ((@-250@) - ;ﬂwk:zk)) dzdz.
Show that

Q= Zai.

|u|=2
Note that df (z) in the integrand for Q is d x f(z), i.e., the d there is the
dimension, not a differential.

c) For d = 1 there are no two factor interactions and so 2 should be 0. Show
that the integrand in the definition of {2 reduces to zero for d = 1.

A.6. The Sobol’ g function on [0,1]% is

d
dor — 2|+ a;
o@) = [Lostoy), for gyl = 22200
j=1 + aj
where a; # —1. Typigally a; = 0 with larger values of a; making x; less
important. Note that [; g;(z)dz = 1.

a) Find a closed form expression for the ANOVA terms g, of this function.

b) Find a closed form expression for o2(g) = Var(g,(x)).

c) For d = 10 and a; = (j — 1) find the true value of 73(g) = o3(g) for
j=1,...,10.

d) Compute plain Monte Carlo estimates for IJQ. forj=1,...,10 using (A.15),
using (A.18) and using (A.19). For each j = 1,...,10 determine which
estimator you think is best, and explain how you decided. For sake of
simplicity, pretend that the only cost to the user is the number of times
that they must evaluate g and that the goal is to estimate z? with a small
squared error.

A.7. Find an expression that writes Y., -,.,72 as a weighted sum of ¢Z. Do
the same for > ,.,75. Check that your two results are consistent with the
identity 02 = 12 +72 .

A.8. Surjanovic and Bingham (2013) present a ‘steel column function’ f that
has 9 independent random input variables with given distributions.
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a) Estimate the normalized Sobol’ indices 77 /0? and F?/JQ forj=1,...,9
for this function. Use up to 10% function evaluations and either Monte
Carlo or randomized quasi-Monte Carlo. Describe the computation you
have chosen to do it.

b) Three of the variables, P;, P> and Ps refer to loads on the steel column.
Estimate the normalized Sobol’ indices (upper and lower)

¢) We would like to know whether the Sobol’ indices indicate that these load
variables interact greatly. Quantify the extent of their interactions using
the Sobol’ index estimates you found.

A.9. Find a way to compute estimated 99% confidence intervals for each of the
18 single variable Sobol’ indices in Exercise A.8.
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