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8

Variance reduction

Monte Carlo integration typically has an error variance of the form σ2/n. We
get a better answer by sampling with a larger value of n, but the computing
time grows with n. Sometimes we can find a way to reduce σ instead. To do
this, we construct a new Monte Carlo problem with the same answer as our
original one but with a lower σ. Methods to do this are known as variance
reduction techniques.

The techniques can be placed into groups, though no taxonomy is quite
perfect. First we will look at antithetic sampling, stratification, and common
random numbers. These methods all improve efficiency by sampling the input
values more strategically. Next we will consider conditioning and control vari-
ates. These methods take advantage of closed form solutions to problems similar
to the given one.

The last major method is importance sampling. Like some of the other
methods, importance sampling also changes where we take the sample values,
but rather than distributing them in more balanced ways it purposely oversam-
ples from some regions and then corrects for this distortion by reweighting. It is
thus a more radical reformulation of the problem and can be tricky to do well.
We devote Chapter 9 to importance sampling. Some more advanced methods
of variance reduction are given in Chapter 10.

8.1 Overview of variance reduction

Variance reductions are used to improve the efficiency of Monte Carlo methods.
Before looking at individual methods, we discuss how to measure efficiency.
Then we introduce some of the notation we need.
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4 8. Variance reduction

Measuring efficiency

Methods of variance reduction can sometimes bring enormous improvements
compared to plain Monte Carlo. It is not uncommon for the value σ2 to be re-
duced many thousand fold. It is also possible for a variance reduction technique
to bring a very modest improvement, perhaps equivalent to reducing σ2 by only
10%. What is worse, some methods will raise σ2 in unfavorable circumstances.

The value of a variance reduction depends on more than the change in σ2. It
also depends on the computer’s running time, possibly the memory consumed,
and quite importantly, the human time taken to program and test the code.

Suppose for simplicity, that a baseline method is unbiased and estimates
the desired quantity with variance σ2

0/n, at a cost of nc0, when n function
evaluations are used. To get an error variance of τ2 we need n = σ2

0/τ
2 and this

will cost c0σ
2
0/τ

2. Here we are assuming that cost is measured in time and that
overhead cost is small.

If an alternative unbiased method has variance σ2
1/n and cost nc1 under

these conditions then it will cost us c1σ
2
1/τ

2 to achieve the same error variance
τ2 that the baseline method achieved. The efficiency of the new method, relative
to the standard method is

E =
c0σ

2
0

c1σ2
1

. (8.1)

At any fixed level of accuracy, the old method takes E times as much work as
the new one.

The efficiency has two factors, σ2
0/σ

2
1 and c0/c1. The first is a mathematical

property of the two methods that we can often handle theoretically. The second
is more complicated. It can depend heavily on the algorithms used for each
method. It can also depend on details of the computing environment, includ-
ing the computer hardware, operating system, and implementation language.
Numerical results for c0/c1 obtained in one setting do not necessarily apply to
another.

There is no fixed rule for how large an efficiency improvement must be to
make it worth using. In some settings, such as rendering computer graphics for
animated motion pictures, where thousands of CPUs are kept busy for months,
a 10% improvement (i.e., E = 1.1) brings meaningful savings. In other settings,
such as a one-off computation, a 60-fold gain (i.e., E = 60) which turns a one
minute wait into a one second wait, may not justify the cost of programming a
more complicated method.

Computation costs so much less than human effort that we ordinarily require
large efficiency gains to offset the time spent programming up a variance reduc-
tion. The impetus to seek out an efficiency improvement may only come when
we find ourselves waiting a very long time for a result, as for example, when
we need to place our entire Monte Carlo calculation within a loop representing
many variants of the problem. A very slow computation costs more than just
the computer’s time. It may waste time for those waiting for the answer. Also,
slow computations reduce the number of alternatives that one can explore.
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8.2. Antithetics 5

The efficiency gain necessary to justify using a method is less if the program-
ming effort can be amortized over many applications. The threshold is high for
a one time program, lower for something that we are adding to our personal
library, lower still for code to share with a few coworkers and even lower for
code to be put into a library or simulation tool for general use.

In the numerical examples in this chapter, some of the methods achieve quite
large efficiency gains, while others are more modest. These results should not
be taken as inherent to the methods. All of the methods are capable of a great
range of efficiency improvements.

Notation

Monte Carlo problems can be formulated through expectations or integrals or
for discrete random variables, as sums. Generally, we will pick whichever format
makes a given problem easiest to work with.

We suppose that the original Monte Carlo problem is to find µ = E(f(X))
where X is a random variable from the set D ⊂ Rd with distribution p. When
p is a probability density function we may write µ =

∫
D f(x)p(x) dx. Most of

the time we just write µ =
∫
f(x)p(x) dx with the understanding that p(x) = 0

for x 6∈ D. The integral version is convenient when we are reparameterizing the
problem. Then, following the rules for integration is the best way to be sure of
getting the right answer.

Monte Carlo sampling of X ∼ p is often based on s uniform random vari-
ables through a transformation X = ψ(U), for U ∼ U(0, 1)s. Some variance
reductions (e.g., antithetic sampling and stratification) are easier to apply di-
rectly to U rather than to X. For this case we write µ =

∫
(0,1)s

f(ψ(u)) du,

or µ =
∫

(0,1)s
f∗(u) du, where f∗(u) = f(ψ(u)). When we don’t have to

keep track of both transformed and untransformed versions, then we just write
µ =

∫
(0,1)d

f(u) du, subsuming ψ into f . This expression may be abbreviated

to µ =
∫
f(u) du when the domain of u is clear from context.

Similar expressions hold for discrete random variables. Also some of the
methods extend readily to d =∞.

8.2 Antithetics

When we are using Monte Carlo averages of quantities f(Xi) then the random-
ness in the algorithm leads to some error cancellation. In antithetic sampling
we try to get even more cancellation. An antithetic sample is one that somehow
gives the opposite value of f(x), being low when f(x) is high and vice versa.
Ordinarily we get an opposite f by sampling at a point x̃ that is somehow
opposite to x.

Let µ = E(X) for X ∼ p, where p is a symmetric density on the symmetric
set D. Here, symmetry is with respect to reflection through the center point c
of D. If we reflect x ∈ D through c we get the point x̃ with x̃− c = −(x− c),
that is x̃ = 2c−x. Symmetry means that p(x̃) = p(x) including the constraint
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6 8. Variance reduction
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Some samples and antithetic counterparts

Figure 8.1: The left panel shows 6 points ui ∈ [0, 1]2 as solid points, connected to
their antithetic counterparts ũi = 1−ui, shown as open circles. The right panel
shows one random trajectory of 20 points joined by solid lines and connected to
the origin, along with its antithetic mirror image in open points.

that x ∈ D if and only if x̃ ∈ D. For basic examples, when p is N (0,Σ)
then x̃ = −x, and when p is U(0, 1)d we have x̃ = 1 − x componentwise. The
antithetic counterpart of a random curve could be its reflection in the horizontal

axis. See Figure 8.1 for examples. From the symmetry it follows that ˜̃x = x.
The antithetic sampling estimate of µ is

µ̂anti =
1

n

n/2∑
i=1

(
f(Xi) + f(X̃i)

)
, (8.2)

where Xi
iid∼ p, and n is an even number.

The rationale for antithetic sampling is that each value of x is balanced by
its opposite x̃ satisfying (x+ x̃)/2 = c. Whether this balance is helpful depends
on f . Clearly if f is nearly linear we could obtain a large improvement. Suppose
that σ2 = E((f(X)− µ)2) <∞. Then the variance in antithetic sampling is

Var(µ̂anti) = Var

(
1

n

n/2∑
i=1

f(Xi) + f(X̃i)

)
=
n/2

n2
Var(f(X) + f(X̃))

=
1

2n

(
Var(f(X)) + Var(f(X̃)) + 2Cov(f(X), f(X̃))

)
© Art Owen 2009–2013,2018 do not distribute or post electronically without
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8.2. Antithetics 7

=
σ2

n
(1 + ρ) (8.3)

where ρ = Corr(f(X), f(X̃)).
From −1 6 ρ 6 1 we obtain 0 6 σ2(1+ρ) 6 2σ2. In the best case, antithetic

sampling gives the exact answer from just one pair of function evaluations. In
the worst case it doubles the variance. Both cases do arise.

It is clear that a negative correlation is favorable. If f happens to be mono-
tone in all d components of x, then it is known that ρ < 0. Monotonicity of f is
a safe harbor: if f is monotone then we’re sure antithetic sampling will reduce
the variance. We can often establish monotonicity theoretically, for example by
differentiating f . But ρ < 0 can hold without f being monotone in any of its
inputs. Conversely ρ can be just barely negative when f is monotone. As a
result, monotonicity alone is not a good guide to whether antithetic sampling
will bring a large gain. See Exercise 8.1.

To get a qualitative understanding of antithetic sampling, break f into even
and odd parts via

f(x) =
f(x) + f(x̃)

2
+
f(x)− f(x̃)

2
≡ fE(x) + fO(x).

The even part satisfies fE(x) = fE(x̃) and
∫
D fE(x)p(x) dx = µ. The odd part

satisfies fO(x) = −fO(x̃) and
∫
D fO(x)p(x) dx = 0.

The even and odd parts of f are orthogonal. This is not a surprise, because
the product fO(x)fE(x) is an odd function. But to be careful and rule out
E(|fO(X)fE(X)|) =∞, we compute directly that∫

D
fE(x)fO(x)p(x) dx =

∫
D

(f(x) + f(x̃)

2

)(f(x)− f(x̃)

2

)
p(x) dx

=
1

4

∫
D

(
f(x)2 − f(x̃)2

)
p(x) dx = 0.

Now it follows easily that σ2 = σ2
E +σ2

O where σ2
E =

∫
D(fE(x)−µ)2p(x) dx and

σ2
O =

∫
D fO(x)2p(x) dx.

Reworking equation (8.3) yields µ̂anti = (2/n)
∑n/2
i=1 fE(Xi). Therefore Var(µ̂anti) =

2σ2
E/n and we can combine this with the variance of ordinary Monte Carlo sam-

pling as follows: (
V (µ̂)

V (µ̂anti)

)
=

1

n

(
1 1
2 0

)(
σ2

E

σ2
O

)
. (8.4)

We see from (8.4) that antithetic sampling eliminates the variance contri-
bution of fO but doubles the contribution from fE. Antithetic sampling is ex-
tremely beneficial for integrands that are primarily odd functions of their inputs,
having σ2

O � σ2
E. The connection to correlation is via ρ = (σ2

E−σ2
O)/(σ2

E +σ2
O)

(Exercise 8.3).

© Art Owen 2009–2013,2018 do not distribute or post electronically without
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8 8. Variance reduction

The analysis above shows that antithetic sampling reduces variance if ρ =

Corr(f(X), f(X̃)) < 0, or equivalently, if σ2
O > σ2

E. That analysis is appropriate
when the most of the computation is in evaluating f and there is no economy

in evaluating both f(X) and f(X̃).
Variance reduction is only part of the story because the cost of antithetic

sampling using n points could well be smaller than the cost of plain Monte Carlo
with n points. That will happen if it is expensive to generate X, compared to

the cost of computing f , but inexpensive to generate X̃. For example, X might
be a carefully constructed and expensive sample path from a Gaussian process

while X̃ = −X.
We can explore this effect by letting cx be the cost of generating X, and

cf be the cost of computing f(X) once we have X. We also let c̃x and c̃f be
the corresponding costs for the antithetic sample. For illustration, suppose that
to a reasonable approximation c̃x = 0 and c̃f = cf . In special circumstances
c̃f < cf because it may be possible to reuse some computation.

Under the assumptions we are exploring, the efficiency of antithetic sampling
relative to plain Monte Carlo is

Eanti =
2cx + 2cf
cx + 2cf

× σ2
O + σ2

E

2σ2
E

.

Then antithetic sampling is more efficient than plain Monte Carlo if

σ2
O

σ2
E

>
cf

cx + cf
.

If generating x costs ten times as much as computing f then antithetic sampling
pays off when σ2

O/σ
2
E > 1/11.

Because antithetic samples have dependent values within pairs, the usual
variance estimate must be modified. The most straightforward approach is to
analyze the data as a sample of size m = n/2 values of fE(X). Let Yi =

fE(Xi) = (f(Xi) + f(X̃i))/2 for i = 1, . . . ,m = n/2. Then take

µ̂anti =
1

m

m∑
i=1

Yi, and

s2
anti =

1

m− 1

m∑
i=1

(Yi − µ̂anti)
2,

and use s2
anti/m as the estimate of Var(µ̂anti).

8.3 Example: expected log return

As an example of antithetic sampling we consider the expected logarithmic
return of a portfolio. There are K stocks and the portfolio has proportion

© Art Owen 2009–2013,2018 do not distribute or post electronically without
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8.3. Example: expected log return 9

λk > 0 invested in stock k for k = 1, . . . ,K, with
∑K
k=1 λk = 1. The expected

logarithmic return is

µ(λ) = E
(
log
(∑K

k=1 λke
Xk
))

(8.5)

where X ∈ RK is the vector of returns. At the end of the time period, the
allocations are proportional to λke

Xk . By selling some of the stocks with the
largest Xk and buying some with the smallest Xk, it is possible to rebalance
the portfolio so that the fraction of value in stock k is once again λk.

The expected logarithmic return is interesting because if one keeps reinvest-
ing and rebalancing the portfolio at N regular time intervals then, by the law of
large numbers, one’s fortune grows as exp(Nµ+op(N)), assuming of course that
vectors X for each time period are independent and identically distributed. See
Luenberger (1998, Chapter 15). The log–optimal choice λ is the allocation that
maximizes µ. Log–optimal portfolios are of interest to very long term investors.
Luenberger (1998) describes other criteria as well.

Finding a model for the distribution of X and then choosing λ are challeng-
ing problems, but to illustrate antithetic sampling, simplified choices serve as
well as elaborate ones. We focus on the problem of evaluating µ(λ) for a given
λ. We probably have to solve that problem en route to finding the best λ and
definitely need to solve it once we have chosen λ. Here we take λk = 1/K for
k = 1, . . . ,K with K = 500. We also suppose that each marginal distribution is
Xk ∼ N (δ, σ2) but that X has the t(0, ν,Σ) copula. Here δ = 0.001, σ = 0.03,
ν = 4 and Σ = ρ1K1T

K + (1 − ρ)IK for ρ = 0.3. These values of δ and σ are
chosen to reflect roughly a one week time frame.

Letting f(X) = log(
∑K
k=1 e

Xk/K), the plain Monte Carlo estimate of µ is

µ̂ = 1
n

∑n
i=1 f(Xi). The antithetic counterpart to Xi has X̃ik = 2δ − Xik.

Using n = 10,000 sample values we find ρ̂(f(X), f(X̃))
.
= −0.999508 and so the

variance reduction factor from antithetic sampling is (1 + ρ)−1 .
= 2030.0.

For those n = 10,000 pairs we let Yi = (f(Xi) +f(X̃i))/2 = fE(Xi) and get
the estimate

µ̂anti =
1

n

n∑
i=1

Yi
.
= 0.00132.

The standard deviation is s =
(
(n−1)−1

∑n
i=1(Yi− µ̂anti)

2
)1/2 .

= 0.000252. The
99% confidence interval for µ is

µ̂anti ± 2.58sn−1/2 .
= 0.00132± 6.49× 10−6.

Antithetic sampling worked so well here because the function is nearly linear.
The exponentials in (8.5) operate on a random variable that is usually near 0
and the logarithm operates on an argument that is usually near 1, and as a
result the random variable whose expectation we take is nearly linear in X.
This near linearity is not limited to the particular λ and Σ we have used.

When X varies more widely, then the curvature of the exponential and
logarithmic functions makes more of a difference and antithetic sampling will

© Art Owen 2009–2013,2018 do not distribute or post electronically without
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10 8. Variance reduction

Stocks Period Correlation Reduction Estimate Uncertainty

20 week −0.99957 2320.0 0.00130 6.35× 10−6

500 week −0.99951 2030.0 0.00132 6.49× 10−6

20 year −0.97813 45.7 0.06752 3.27× 10−4

500 year −0.99512 40.2 0.06850 3.33× 10−4

Table 8.1: This table summarizes the results of the antithetic sampling to esti-
mate the expected log return of a portfolio, as described in the text. The first
column has the number K of stocks. The second column indicates whether the
return was for a week or a year. The third column is the correlation between
log returns and their antithetic counterpart. The fourth column turns this cor-
relation into a variance reduction factor. Then comes the estimate of expected
log return and the half width of a 99% confidence interval.

lose some effectiveness. Let’s consider for example, annual rebalancing, and
take δ = 52 × 0.01 and σ =

√
52 × 0.03. The annualized X has the same

mean and variance as the sum of 52 IID copies of the weekly random variable.
It does not have quite the same copula. We ignore that small difference and
simulate using the same t copula as before. In this case, we find a reduced but
still substantial variance reduction of about 40 fold. Conversely, running an
example with K = 20 instead of 500 leads to a slightly bigger advantage for
antithetic sampling. Four cases are summarized in Table 8.1.

8.4 Stratification

The idea in stratified sampling is to split up the domain D of X into separate
regions, take a sample of points from each such region, and combine the results
to estimate E(f(X)). Intuitively, if each region gets its fair share of points
then we should get a better answer. Figure 8.2 shows two small examples of
stratified domains. We might be able to do better still by oversampling within
the important strata and undersampling those in which f is nearly constant.

We begin with the notation for stratified sampling. Then we show that
stratified sampling is unbiased, find the variance of stratified sampling and show
how to estimate that variance.

Our goal is to estimate µ =
∫
D f(x)p(x) dx. We partition D into mutually

exclusive and exhaustive regions Dj , for j = 1, . . . , J . These regions are the
strata. We write ωj = P(X ∈ Dj) and to avoid trivial issues, we assume
ωj > 0. Next let pj(x) = ω−1

j p(x)1x∈Dj , the conditional density of X given
that X ∈ Dj .

To use stratified sampling, we must know the sizes ωj of the strata, and we
must also know how to sample X ∼ pj for j = 1, . . . , J . These conditions are
quite reasonable. When we are defining strata, we naturally prefer ones we can
sample from. If however, we know ωj but are unable to sample from pj , then
the method of post-stratification described on page 12 is available.

© Art Owen 2009–2013,2018 do not distribute or post electronically without
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8.4. Stratification 11
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Some stratified samples

Figure 8.2: The left panel shows 20 points xi ∈ [0, 1]2 of which 5 are sampled
uniformly from within each of four quadrants. The right panel shows 21 points
from the N (0, I2) distribution. There are 6 concentric rings separating the
distribution into 7 equally probable strata. Each stratum has 3 points sampled
from within it.

Let Xij ∼ pj for i = 1, . . . , nj and j = 1, . . . , J be sampled independently.
The stratified sampling estimate of µ is

µ̂strat =

J∑
j=1

ωj
nj

nj∑
i=1

f(Xij). (8.6)

We choose nj > 0 so that µ̂strat is properly defined. Unless otherwise specified,
we make sure that nj > 2, which will allow the variance estimate (8.10) below
to be applied.

Now

E(µ̂strat) =

J∑
j=1

ωjE
(

1

nj

nj∑
i=1

f(Xij)

)
=

J∑
j=1

ωj

∫
Dj

f(x)pj(x) dx

=

J∑
j=1

∫
Dj

f(x)p(x) dx =

∫
D
f(x)p(x) dx = µ, (8.7)

and so stratified sampling is unbiased.
We study the variance of µ̂strat to determine when stratification is ad-

vantageous, and to see how to design an effective stratification. Let µj =∫
Dj
f(x)pj(x) dx and σ2

j =
∫
Dj

(f(x)− µj)2pj(x) dx be the j’th stratum mean

© Art Owen 2009–2013,2018 do not distribute or post electronically without
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12 8. Variance reduction

and variance, respectively. The variance of the stratified sampling estimate is

Var(µ̂strat) =

J∑
j=1

ω2
j

σ2
j

nj
. (8.8)

An immediate consequence of (8.8) is that Var(µ̂strat) = 0 for integrands f
that are constant within strata Dj . The variance of f(X) can be decomposed
into within– and between–stratum components as follows

σ2 =

J∑
j=1

ωjσ
2
j +

J∑
j=1

ωj(µj − µ)2. (8.9)

Equation (8.9) is simply Var(f(X)) = E(Var(f(X |Z))) + Var(E(f(X |Z)))
where Z ∈ {1, . . . , J} is the stratum containing the random point X.

For error estimation, we write

µ̂j =
1

nj

nj∑
i=1

Yij , s2
j =

1

nj − 1

nj∑
i=1

(Yij − µ̂j)2, and

V̂ar(µ̂strat) =

J∑
j=1

ω2
j

s2
j

nj
. (8.10)

Clearly E(s2
j ) = σ2

j and so E(V̂ar(µ̂strat)) = Var(µ̂strat). A central limit theorem
based 99% confidence interval for µ is

µ̂strat ± 2.58
√

V̂ar(µ̂strat). (8.11)

The CLT-based interval (8.11) is reasonable if all the nj are large enough
that each µ̂j is nearly normally distributed. This condition is sufficient but not
necessary. The estimate µ̂strat is a sum of J terms ωj µ̂j . Even if every nj = 2,
it might be reasonable to apply a central limit theorem holding as J → ∞ as
described in Karr (1993, Chapter 7).

If we know ωj but prefer not to sample X ∼ pj (or if we cannot do that),
then we may still use the strata. In post-stratification we sample Xi ∼ p
and assign Xi to their strata after the fact. We let nj be the number of sample
points Xi ∈ Dj , let µ̂j be the average of f(Xi) for those points and s2

j be their
sample variance. Then we estimate µ by the same µ̂strat in (8.8) and use the
same confidence interval (8.11) as before.

The main difference is that nj are now random. There is also a risk of getting
some nj = 0 in which case we cannot actually compute µ̂strat by (8.7). However

P(minj nj = 0) 6
∑J
j=1(1 − ωj)n which we can make negligible by choosing n

and the strata appropriately. Similarly, a sound choice for n and the strata Dj
will make nj < 2 very improbable.

Post-stratified sampling is a special case of the method of control variates.
We will see this in Example 8.4 of §8.9.
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8.4. Stratification 13

A natural choice for stratum sample sizes is proportional allocation, nj =
nωj . In our analysis, we’ll suppose that all the nj are integers. We can usually
choose n and Dj to make this so, or else accept small non-proportionalities due
to rounding.

For proportional allocation, equation (8.6) for µ̂strat reduces to the ordinary
sample mean

µ̂prop =
1

n

J∑
j=1

nj∑
i=1

f(Xij). (8.12)

Also, with proportional allocation, equation (8.8) for Var(µ̂strat) becomes

J∑
j=1

ω2
j

σ2
j

nωj
=

1

n

J∑
j=1

ωjσ
2
j . (8.13)

Equation (8.13) allows us to show that stratified sampling with proportional
allocation cannot have larger variance than ordinary MC sampling. Let σ2

W =∑J
j=1 ωjσ

2
j and σ2

B =
∑J
j=1 ωj(µj − µ)2 be the within– and between–stratum

variances. We can compare IID and proportional stratification in one equation:(
Var(µ̂)

Var(µ̂prop)

)
=

1

n

(
1 1

0 1

)(
σ2

B

σ2
W

)
. (8.14)

A good stratification scheme is one that reduces the within–stratum variance,
ideally leaving σ2

B � σ2
W. If sampling from pj is slower than sampling from p,

then that reduces any efficiency gain from stratification.
Another way to look at proportional allocation is to construct the piece-wise

constant function h(x) with h(x) = µj when x ∈ Dj . Then (Exercise 8.5),

Var(µ̂prop) = (1− ρ2)Var(µ̂), (8.15)

where ρ is the correlation between f(X) and h(X) for X ∼ p.
A proportional allocation is not necessarily the most efficient. For instance,

given two strata with equal ωj but unequal σ2
j , we benefit by taking fewer points

from the less variable stratum. In the extreme, if σj = 0 then nj = 1 is enough
to tell us µj .

The problem of optimal sample allocation to strata has been solved in the
survey sampling literature. The result is known as the Neyman allocation, and
the formulation allows for unequal sampling costs from the different strata.
Suppose that for unit costs cj > 0 the stratified sampling costs C +

∑J
j=1 njcj

to generate random variables and evaluate f . Here C > 0 is an overhead cost
and cj is the (expected) cost to generate X from pj and then compute f(X).
To minimize variance subject to an upper bound on cost, take

nj ∝
ωjσj√
cj
. (8.16)
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14 8. Variance reduction

The solution (8.16) also minimizes cost subject to a lower bound on variance.
Equation (8.16) can be established by the method of Lagrange multipliers.
These optimal values nj usually need to be rounded to integers and some may
have to be raised, if for other reasons we insist that all nj be above some mini-
mum such as 2.

When the sampling cost cj is the same in every stratum then the optimal
allocation has

nj =
nωjσj∑J
k=1 ωkσk

. (8.17)

Let µ̂n–opt be the stratified sampling estimate (8.6) with optimal nj from (8.17).
By substituting (8.17) into the stratified sampling variance (8.8) we find that

Var(µ̂n–opt) =
1

n

( J∑
j=1

ωjσj

)2

6
1

n

J∑
j=1

ωjσ
2
j = Var(µ̂prop). (8.18)

Equality holds in (8.18), only when σj is constant in j.
In typical applications, the values of σj are not known. We might make an

educated guess σ̂j and then employ nj ∝ ωj σ̂j . The optimal allocation only
depends on σ1, . . . , σJ through ratios σj/σk for j 6= k, and so only the ratios
σ̂j/σ̂k need to be accurate. Non-proportional allocations carry some risk. The
optimal allocation assuming σj = σ̂j can be worse than proportional allocation
if it should turn out that σj are not proportional to σ̂j . It can even give higher
variance than ordinary Monte Carlo sampling, completely defeating the effort
put into stratification.

From results in survey sampling (Cochran, 1977), it is known how to con-
struct theoretically optimal strata. The variance minimizing strata take the
form Dk = {x | ak−1 6 f(x) < ak} for some constants a0 < a1 < · · · < aJ .
There are also guidelines for choosing the aj . In practice we cannot usually
locate the contours of f and even when we can it will usually be very hard to
sample between them. But the intuition is still valuable: we want strata within
which f is as flat as possible.

8.5 Example: stratified compound Poisson

Compound Poisson models are commonly used for rainfall. Here we will look
at stratifying such a model.

In our model setting, the number of rainfall events (storms) in the coming
month is S ∼ Poi(λ) with λ = 2.9. The depth of rainfall in storm i is Di ∼
Weib(k, σ) with shape k = 0.8 and scale σ = 3 (centimeters) and the storms
are independent. If the total rainfall is below 5 centimeters then an emergency
water allocation will be imposed.

The total rainfall is thus X =
∑S
s=1Ds taking the value 0 when S = 0. It

is easy to get the mean and variance of X, but here we want P(X < 5), that is
E(f(X)) where f(X) = 1X<5. In a direct simulation, depicted in Figure 8.3,
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Figure 8.3: This figure depicts 1000 simulations of the compound Poisson model
for rainfall described in the text.

the rainfall was below the critical level 353 times out of 1000. Thus the estimate
of P(X < 5) is µ̂ = 0.353. Because this probability is not near 0 or 1 a simple
99% confidence interval of µ̂ ± 2.58

√
µ̂(1− µ̂)/n is adequate, and it yields the

confidence interval 0.314 6 P(X < 5) 6 0.392.

From simple Monte Carlo, we learn that the probability of a critically low
total rainfall is roughly 30 to 40 percent. From Figure 8.3 we see that this
probability depends strongly on the number of rainfall events.

Consider stratifying S according to a proportional allocation. The number
of times S = s in 1000 trials should be ns = 1000 e−λλs/s! where λ = 2.9. Two
issues come up immediately. First, the sample sizes ns are not integers. That is
not a serious problem. We can use rounded sample sizes, in an approximately
proportional allocation and still obtain an unbiased estimate of P(X < 5) and
a workable variance estimate. The second issue to come up is that when S = 0
we don’t really need to simulate at all. In that case we are sure that X < 5. For
the second issue we will take n0 = 2. That way we can use the plain stratified
sampling formulas (8.6) and (8.10), and we only waste 2 of 1000 simulations on
the foregone conclusion that with no storms there will be a water shortage.

Taking n0 = 2 samples with S = 0 and allocating the remaining 998 in
proportion to P(S = s)/(1− P(S = 0)) we get the counts

s 0 1 2 3 4 5 > 6
ns 2 169 244 236 171 99 79
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16 8. Variance reduction

s ωs ns Ts µ̂s σ̂2
s

0 0.055 2 2 1.000 0.000
1 0.160 169 152 0.899 0.091
2 0.231 244 111 0.455 0.249
3 0.224 236 33 0.140 0.121
4 0.162 171 3 0.018 0.017
5 0.094 99 1 0.010 0.010
6+ 0.074 79 1 0.013 0.013

Table 8.2: This table shows the results of a stratified simulation of the compound
Poisson rainfall model from the text. Here s is the number of storms. The last
stratum is for s > 6. Continuing, ωs is P(S = s) under a Poisson model, and
ns is the number of simulations allocated to S = s. Of ns trials, there were Ts
below the critical level. Then µ̂s and σ̂2

s are estimated within stratum means
and variances.

where the values from 6 on up have been merged into one stratum.

The S > 6 stratum is more complicated to sample from than the others. One
way is to first find q6 =

∑6
s=0 e

−λλs/s!. Then draw S = F−1
λ (q6 + (1 − q6)U)

where U ∼ U(0, 1) and Fλ is the Poi(λ) CDF.

The results of this simulation are shown in Table 8.2. Using those values,
the estimated probability of a shortage is µ̂strat =

∑
s ωsµ̂s

.
= 0.334. Using

equation (8.10), V̂ar(µ̂strat) =
∑
s ω

2
s σ̂

2
s/ns

.
= 9.84 × 10−5. The plain Monte

Carlo simulation has an estimated variance of p̂(1−p̂)/n .
= 0.353×0.643/1000

.
=

2.28 × 10−4, about 2.3 times as large as the estimated variance for stratified
sampling.

This value 2.3 is only an estimate, but it turns out to be close to correct.
In 10,000 independent replications of both methods the sample variance of the
10,000 plain Monte Carlo simulation answers was 2.24 times as large as that of
the 10,000 stratified sampling answers.

A variance reduction of just over 2–fold is helpful but not enormous. Such a
variance reduction would only justify the extra complexity of stratified sampling,
if we needed to run many simulations of this sort.

The estimated factor of 2.24 does not take into account running time. Strat-
ification has the possibility of being slightly faster here because most of the
samples are deterministic: instead of sampling 1000 Poisson random variables,
we generate 79 variables from the right tail of the Poisson distribution and use
pre-chosen values for the other 921 Poisson random variables.

A further modest variance reduction can be obtained by reducing the number
of observations with s > 5, increasing the number with s = 2 or 3, and replacing
the estimate from s = 1 by P(Weib(k, σ) 6 5). None of these steps can bring a
dramatic increase in accuracy because the strata s = 2 and 3 have high variance.
Stratifying on S cannot help with the variance of f(X) given S = s.
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8.6. Common random numbers 17

8.6 Common random numbers

Suppose that f and g are closely related functions and that we want to find
E(f(X) − g(X)) for X ∼ p. Perhaps f(x) = h(x, θ) for a parameter θ ∈ Rp,
and then to study the effect of θ we look at g(x) = h(x, θ̃) for some θ̃ 6= θ. We
assume at first that neither f nor g (nor h) makes any use of random numbers
other than X. Later we relax that assumption.

Because E(f(X)−g(X)) = E(f(X))−E(g(X)) we clearly have two different
ways to go. We could estimate the difference by

D̂com =
1

n

n∑
i=1

f(Xi)− g(Xi), (8.19)

for Xi
iid∼ p, or by differencing averages

D̂ind =
1

n1

n1∑
i=1

f(Xi1)− 1

n2

n2∑
i=1

g(Xi2) (8.20)

for Xij
iid∼ p. Taking n = n1 = n2 makes the computing costs in (8.19) and

(8.20) comparable, assuming that costs of computing f and g dominate those
of generating X.

The sampling variances of these methods are

Var(D̂com) =
1

n

(
σ2
f + σ2

g − 2ρσfσg
)

Var(D̂ind) =
1

n

(
σ2
f + σ2

g

)
,

(8.21)

where σ2
f and σ2

g are individual function variances and ρ = Corr(f(X), g(X)).
When ρ > 0 we are better off using common random numbers. There is no
guarantee that ρ > 0. When f and g compute similar quantities then we
anticipate that ρ > 0, and if so, then D̂com is more effective than D̂ind.

Most people would instinctively use the common variates. So at first sight,
the method looks more like avoiding a variance increase than engineering a
variance decrease. Later, when we relax the rule forbidding f , g, and h to use
other sources of randomness, we will find that retaining some common random
numbers requires considerable care in synchronization. The added complexity
might well tip the balance against using common random numbers.

Much the same problem arises if we are comparing E(f(X)) for X ∼ p

and E(f(X̃)) for X̃ ∼ p̃. Sometimes we can rewrite that problem in terms
of common random variables that get transformed to a different distribution

before f is applied. For instance, if the first simulation has Xi
iid∼ N (µ, σ2) and

the second has X̃i
iid∼ N (µ̃, σ̃2) then we can sample Zi

iid∼ N (0, 1) and use

D̂com =
1

n

n∑
i=1

f(µ+ σZi)− f(µ̃+ σ̃Zi).
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18 8. Variance reduction

More generally, when Xi is generated via a transformation Ψ(Ui; θ) of Ui ∼
U(0, 1)s then we can average f(Ψ(Ui; θ))− f(Ψ(Ui; θ̃)).

Acceptance-rejection sampling of X does not fit cleanly into this framework,
because the number s of needed uniform random variables is not fixed and may
vary with θ.

The construction above is a coupling of the random vectors X and X̃. Any

joint distribution on (X, X̃) with X ∼ p and X̃ ∼ p̃ is a coupling. Common

random numbers provide a particularly close coupling between X and X̃.

Example: dosage content uniformity

Medicines are typically sold with a label claim giving the amount of active
ingredient that should be in each dose. The actual amount fluctuates but should
be close to the claim. Sampling schemes are used to determine whether a given
lot has high enough quality. The average dose should be close to the target and
the standard deviation should not be too large.

There are many different types of test, depending on the product (tablet,
capsule, aerosol, skin patch, etc.). Here is one, based on the US Pharmacopeial
Convention content uniformity test. We will measure the dose as a percentage
of the label claim, and assume that the target value is 100% of label claim. In
some instances targets over 100% are considered, perhaps to compensate for
declining dosage in storage.

To describe the test, we need to introduce the function

M(x) =


98.5, x < 98.5

x, 98.5 6 x 6 101.5

101.5, x > 101.5.

(8.22)

This function will be used to make the test less sensitive to tiny fluctuations
in the average dose. Exercise 8.22 looks at whether using M(x) makes any
difference to the acceptance probability.

The test first samples 10 units, getting measured values x1, . . . , x10. Then
the values

x̄1 =
1

10

10∑
j=1

xj , s2
1 =

1

9

10∑
j=1

(xj − x̄1)2, and M1 = M(x̄1)

are computed. The lot passes if |x̄1 −M1| + 2.4s1 6 15. Otherwise, 20 more
units are sampled giving x11, . . . , x30. Then the values

x̄2 =
1

30

30∑
j=1

xj , s2
2 =

1

29

30∑
j=1

(xj − x̄2)2, and M2 = M(x̄2)

are computed. The lot passes if |x̄2 −M2| + 2.0s2 6 15 and min16j630 xj >
0.75M2 and max16j630 xj 6 1.25M2. Otherwise it fails.
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Figure 8.4: Each panel shows the estimated probability of passing the content
uniformity test for Xi ∼ N (100, σ2) as the standard deviation increases from 0
to 15 units. The smooth curve on the left is based on common random numbers.
The rougher curve on the right uses independent random numbers. Both were
based on n = 1000 replications.

When the quality is high, the product usually passes at the first stage, and
then the two stage test saves time and expense. But the two stage test is
not amenable to closed form analysis even when xj ∼ N (µ, σ2). Monte Carlo
methods are well suited to studying the probability of passing the test.

A direct simulation of the process is easy to do. But suppose that we want
to compare the effects of varying µ and σ on the passage probability. Then it
makes sense to use a common random number scheme with Z1, . . . , Z30 sampled
independently from N (0, 1) and Xj = µ + σZj for j = 1, . . . , 30. To keep the
simulation synchronized, we always reserve the values Z11, . . . , Z30 for the second
stage, even when the test is accepted at stage 1.

When µ = 100, the test will tend to fail if σ is high enough. Figure 8.4
shows Monte Carlo estimates of the probability of passing the uniformity test
for Xj ∼ N (100, σ2) with 0 6 σ 6 15. The probability of passing is very high
for σ 6 5.5 or so, but then it starts to drop quickly. When common random
numbers are used, the estimated probability is very smooth, and also monotone,
in σ. When independent random numbers are used, the estimated probability
is non-monotone and the non-smoothness is even visible to the eye.

For large enough n, the non-smoothness would not be visible, but it would
still result in less accurate estimation of differences in acceptance probability.
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Figure 8.5: This plot shows contours of the acceptance probability of the content
uniformity test when the data are N (µ, σ2). The horizontal axis is µ and the
vertical axis is σ. Monte Carlo sampling with n = 100,000 points was run at
each point of the grid shown in light dots. Values of µ run from 85 to 115 in
steps of 0.5, while σ runs from 0.25 to 12.0 in steps of 0.25. Common random
numbers were used.

The acceptance probability is mapped out as a function of µ and σ in Fig-
ure 8.5. That figure was created by using a common random numbers Monte
Carlo sample on a grid of (µ, σ) pairs. There is a roughly triangular region in the
(µ, σ) plane where the success probability is over 99%. Because the probability
is between 99 and 100 percent there, and is monotone in σ and |µ − 100|, the
surface is very flat within this triangle. The region with 99.9% success probabil-
ity (not shown) is just barely smaller than the one with 99% probability. There
is a tiny bit of wiggle in some of the contours partly because the grid spacing is
wide and partly because those contours go through a region where failures are
rare events.

Implementing common random numbers

We want to estimate µj = E(h(X, θj)) for j = 1, . . . ,m using n random inputs
Xi, for i = 1, . . . , n. The content uniformity example had a large value of m
but in the simplest case, m = 2 and we’re interested in µ1−µ2. We still assume
that h really is a function of X and θ and in particular our implementation of
h does not cause more random numbers to be generated.
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Algorithm 8.1 Common random numbers algorithm I

setseed(seed)
µ̂j ← 0, 1 6 j 6 m
for i = 1 to n do
Xi ∼ p
µ̂j ← µ̂j + h(Xi, θj), 1 6 j 6 m

µ̂j ← µ̂j/n, 1 6 j 6 m
deliver µ̂1, . . . , µ̂m

This algorithm shows the method of common random numbers with the outer
loop over random samples. The only random numbers used in h are from Xi.
Setting the seed keeps the Xi reproducible if we change our list of θj . The
vectorized approach of equation (8.23) may be convenient.

We can run a nested loop over samples indexed by i and parameter values
indexed by j. There are two main approaches that we can take, depending on
which is the outer loop.

Algorithm 8.1 shows common random numbers with the outer loop over Xi

for i = 1, . . . , n. When Xi is multi-dimensional we have to make sure that
every component of X needed for any value of θj is provided. In the content
uniformity problem (page 18) we generate Z11 for every simulated batch even
though some only use Z1, . . . , Z10.

A vectorized implementation of Algorithm 8.1 is advantageous. It uses a
function H that takes X and a list Θ = (θ1, . . . , θm) of parameter values. This
H returns a list (h(X, θ1), . . . , h(X, θm)) and the simulation computes

(µ̂1, . . . , µ̂m) =
1

n

n∑
i=1

H(Xi,Θ). (8.23)

This vectorized H makes it easier to separate the code that creates Θ from that
which evaluates h.

Algorithm 8.2 shows common random numbers with the outer loop over the
parameters. It regenerates all n vectors Xi for each j. To keep these vectors
synchronized it keeps resetting the random seed. If we look at the output
from Algorithm 8.1 partway through the computation, we will see incomplete
estimates for all of the θj . If we do that for Algorithm 8.2 we will see completed
estimates for a subset of the θj .

Now suppose that we relax our constraint on h and allow it to sample random
numbers. That creates some messy synchronization issues described on page 36
of the end notes. Algorithm 8.1 is more robust to this change than Algorithm 8.2,
but both could bring unpleasant surprises. Such a relaxation leaves us with only
partially common numbers that we look at next.
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Algorithm 8.2 Common random numbers algorithm II

for j = 1 to m do
setseed(seed), µ̂j ← 0
for i = 1 to n do
Xi ∼ p
µ̂j ← µ̂j + h(Xi, θj)

µ̂j ← µ̂j/n
deliver µ̂1, . . . , µ̂m

This algorithm shows the method of common random numbers with the outer
loop over the parameter list. It keeps resetting the seed and regenerating the
data. The only random numbers used in h are from Xi.

Partial common random numbers

Sometimes we can take some but not all of the random variables in two simu-
lations to be common. For instance, suppose that we want to simulate how a
coffee shop operates. There is a process by which customers arrive and choose
what to order. Then another process defines how quickly their order is fulfilled.
We might want to compare two or more service processes. Perhaps the shop
adds one more barista at peak hours, or changes how the customers line up, or
buys new equipment. Under any of these changes we should be able to run the
same sequence of simulated customers through the shop. But there may be no
practical way to implement any form of common service times.

In general, we may be trying to find µ = E(f(X,Y )−g(X,Z)) for indepen-
dent inputs X, Y and Z. In the coffee shop example, X drives the customer
arrivals while Y (or Z) determines their service times conditionally on the set
of arrival times. We can use

µ̂ind =
1

n

n∑
i=1

f(Xi,Yi)− g(X̃i,Zi)

where Xi, X̃i, Yi and Zi are mutually independent. To make a more accurate

comparison we would rather have X̃i = Xi. Then we use

µ̂pcom =
1

n

n∑
i=1

f(Xi,Yi)− g(Xi,Zi)

This is only a ‘partial common random numbers’ algorithm because some but
not all of the inputs are common.

Example 8.1 (Coupling Poisson variables and processes). Suppose that X ∼
Poi(µ) and Y ∼ Poi(η) with 0 < µ < η. We can sample X and Y by inversion
from a common random variable U ∼ U(0, 1) and they will be closely coupled.
We can also simulate X ∼ Poi(µ), Z ∼ Poi(η − µ), and take Y = X + Z. This
second approach does not generate quite as close a connection between X and
Y but it underlies a useful generalization to Poisson processes.
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Let λj > 0 for j = 1, 2 be two intensity functions on [0, T ] with corresponding

cumulative intensity functions Λj(t) =
∫ t

0
λj(t) dt. We can sample these two

processes via Ti,j = Λ−1
j (Λj(Ti−1,j) + Ei), j = 1, 2, using the common random

numbers Ei
iid∼ Exp(1).

The processes Ti,1 and Ti,2 are simulated from common random numbers
but they won’t have any common event times. When common event times are
desired, we can proceed as follows. We define λ(t) = min(λ1(t), λ2(t)) and
λ∗j (t) = λj(t) − λ(t) for j = 1, 2. These have cumulative intensities Λ and Λ∗j ,
respectively, and they generate Poisson process realizations T i for i = 1, . . . , N
and T ∗j for i = 1, . . . , N∗j . Now we take

{T1,1, . . . , TN1,1} = {T 1, . . . , TN} ∪ {T ∗1,1, . . . , T ∗N∗
1 ,1
}, and

{T1,2, . . . , TN2,2} = {T 1, . . . , TN} ∪ {T ∗1,2, . . . , T ∗N∗
2 ,2
}.

If necessary, we sort the points of each process. These processes share N com-
mon event times while having N∗j unshared event times each. Anderson and
Higham (2012) use this method to couple multilevel simulations of continuous
time Markov chains.

Derivative estimation

An extreme instance of the value of common random numbers arises in estimat-
ing a derivative. Suppose that µ(θ) = E(h(X, θ)) and that we want to estimate
µ′(θ0) = dµ/dθ|θ=θ0 We assume that h(x, θ) is well behaved enough to satisfy

d

dθ

∫
h(x, θ)p(x) dx =

∫
∂

∂θ
h(x, θ)p(x) dx

at θ = θ0. If we can compute the needed partial derivative, then we can take

µ̂′(θ0) =
1

n

n∑
i=1

∂

∂θ
h(Xi, θ)

for Xi ∼ p. Otherwise, we may need to use divided differences, such as the
forward or centered estimators,

µ̂′F (θ0) =
1

n

n∑
i=1

h(Xi, θ0 + ε)− h(Xi, θ0)

ε
, or

µ̂′C(θ0) =
1

n

n∑
i=1

h(Xi, θ0 + ε)− h(Xi, θ0 − ε)
2ε

,

respectively, for some small ε > 0.
Using common random variables we can take a very small ε > 0, limited only

by numerical stability of the required differences. By contrast, with independent
random variables, the variance would be

Var(h(X, θ0)) + Var(h(X, θ0 + ε))

nε2
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leading to certain failure as ε→ 0.
If we cannot use common random numbers then there is a bias-variance

tradeoff in choosing the optimal ε given the sample size n. We can sketch the
result using Taylor series centered at θ0 for each of θ0 + ε and θ0 − ε. If h has
three partial derivatives with respect to θ then

h(X, θ0 ± ε) = h(X, θ0)± ε ∂
∂θ
h(X, θ0) +

ε2

2

∂2

∂θ2
h(X, θ0)± ε3

6

∂3

∂θ3
h(X, θ±)

where θ± is between θ0 and θ0 ± ε and may depend on X. Therefore

h(X, θ0 + ε)− h(X, θ0 − ε)
2ε

=
∂

∂θ
h(X, θ0) +Op(ε

2).

The result is that the bias in µ̂′C(θ0) is Op(ε
2) while the variance is O(1/(nε2)).

The optimal tradeoff has ε ∝ n−1/6 with a mean squared error of O(n−1/3).
Some references on page 36 of the end notes give more information on estimating
derivatives.

8.7 Conditioning

Sometimes we can do part of the problem in closed form, and then do the rest
of it by Monte Carlo or some other numerical method. Suppose for example

that we want to find µ =
∫ 1

0

∫ 1

0
f(x, y) dxdy where f(x, y) = eg(x)y. It is easy

to integrate out y for fixed x, yielding h(x) = (eg(x) − 1)/g(x). Then we have a
one dimensional problem, which may be simpler to handle. If g is complicated,
such as g(x) =

√
5/4 + cos(2πx), then we cannot easily integrate x out of h(x).

Nor, it seems, can we integrate f(x, y) over x for fixed y in closed form.
In general, suppose that X ∈ Rk and Y ∈ Rd−k are random vectors

and that we want to estimate E(f(X,Y )). The natural estimate is µ̂ =
(1/n)

∑n
i=1 f(Xi,Yi) where (Xi,Yi) ∈ Rd are independent samples from the

joint distribution of (X,Y ). Now let h(x) = E(f(X,Y ) | X = x). We might
also estimate µ by

µ̂cond =
1

n

n∑
i=1

h(Xi) (8.24)

where Xi are independently sampled from the distribution of X. The justifica-
tion for the method is that E(f(X,Y )) = E(E(f(X,Y ) |X)) = E(h(X)). The
function h(·) gives the conditional mean of Y in closed form and then we com-
plete the job by Monte Carlo sampling. The method is called conditioning,
or conditional Monte Carlo, for obvious reasons. The main requirement for
conditioning is that we must be able to compute h(·). We also need a method
for sampling X, but we have that already if we can sample (X,Y ) jointly.

We easily find that

Var(µ̂cond) =
1

n
Var(h(X)) =

1

n
Var(E(f(X,Y ) |X)).
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Recalling the elementary expression

Var(f(X,Y )) = E(Var(f(X,Y ) |X)) + Var(E(f(X,Y ) |X))

it is immediately clear that conditional Monte Carlo cannot have higher variance
than ordinary Monte Carlo sampling of f has and will typically have strictly
smaller variance. We summarize that finding as follows:

Theorem 8.1. Let (X,Y ) have joint distribution F and let f(x,y) satisfy
Var(f(X,Y )) = σ2 <∞. Define h(x) = E(f(X,Y ) |X = x) for (X,Y ) ∼ F .
Suppose that (Xi,Yi) ∼ F . Then

Var

(
1

n

n∑
i=1

h(Xi)

)
6 Var

(
1

n

n∑
i=1

f(Xi,Yi)

)
.

Conditioning is a special case of derandomization. The function f(X,Y )
has two sources of randomness, X and Y . For any given x and random Y we
replace the random value f(x,Y ) by its expectation h(x), removing one of the
two sources of randomness. For the function f(x, y) = eg(x)y at the beginning
of this section, derandomization brings a nice, but not overwhelming, variance
reduction. See Exercise 8.9.

Conditioning is sometimes called Rao-Blackwellization in reference to the
Rao-Blackwell theorem in theoretical statistics. In that theorem, the quantity
being conditioned on has to obey quite stringent conditions. Those conditions
usually don’t hold in Monte Carlo applications and, from Theorem 8.1, we don’t
need them. As a result, the term Rao-Blackwellization is not really descriptive
of the way conditioning is used in Monte Carlo sampling.

Even though derandomization by conditioning always reduces variance, it is
not always worth doing. We could find our estimate is less efficient if computing
h costs much more than computing f does. For instance, to average

f(x) = cos
(
g(x1) +

d∑
j=1

ajxj

)
over x ∈ (0, 1)d, we can derandomize and average

1

ad

(
sin
(
g(x1) +

d−1∑
j=1

ajxj + ad

)
− sin

(
g(x1) +

d−1∑
j=1

ajxj

))

over (0, 1)d−1 instead. We have reduced the variance but will have nearly dou-
bled the cost, if evaluating sin(·) is the most expensive part of computing f .
Derandomizing d − 1 times would leave us with a one dimensional integrand
that requires 2d−1 sinusoids to evaluate.

Example 8.2 (Hit or miss). Let C = { (x, y) | a 6 x 6 b, 0 6 y 6 f(x) }.
Suppose that f(x) 6 c holds for a 6 x 6 b. Then the hit or miss Monte Carlo
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estimate of vol(C) is

v̂ol(C) =
c(b− a)

n

n∑
i=1

1Yi6f(Xi)

where (Xi, Yi) ∼ U([a, b]× [0, c]) are independent for i = 1, . . . , n. Now h(x) =
E(1Y6f(X) | X = x) = f(x)/c. Derandomizing hit or miss Monte Carlo by
conditioning, yields the estimate

c(b− a)

n

n∑
i=1

f(Xi)

c
=
b− a
n

n∑
i=1

f(Xi).

The result is perhaps the most obvious way to estimate vol(C) by Monte Carlo,
and it has lower variance than hit or miss. A case could be made for hit or miss
when the average cost of determining whether Y 6 f(X) holds is quite small
compared to the cost of precisely evaluating f(X) itself. But outside of such
special circumstances, there is little reason to use hit or miss MC for finding the
area under a curve.

Conditioning can be used in combination with other variance reduction
methods. The most straightforward way is to apply those other methods to
the problem of estimating E(h(X)). The combination of conditioning with
stratified and/or antithetic sampling of X is thus simple, provided that the dis-
tribution of X is amenable to stratification or has some natural symmetry that
we can exploit in antithetic sampling.

Conditioning brings a dimension reduction in addition to the variance reduc-
tion, because the dimension k of X is smaller than the dimension d, of (X,Y ).
When k is very small, then stratification methods or even quadrature can be
used to compound the gain from conditioning. The example in §8.8 has d = 38
and k = 1.

8.8 Example: maximum Dirichlet

The gambler Allan Wilson once tabulated the results of 79,800 plays at a roulette
table. Those values are given in the column labeled ‘Wheel 1’ in Table 8.3. The
wheel on that table had 38 slots, numbered 1 through 36 along with 0 and 00,
which we’ll denote by 37 and 38 respectively. The wheel seemed to be imperfect,
either due to manufacture or maintenance. The number 19 came up more often
than any other.

Suppose that the counts C = (C1, . . . , C38) for wheel 1 follow a Mult(N,p)
distribution with N = 79,800 and p = (p1, . . . , p38). If we adopt a prior dis-
tribution with p ∼ Dir(1, . . . , 1) then the posterior distribution of p given that
C = c is Dir(α1, . . . , α38) where αj = cj + 1. For this posterior distribution,
we would like to know P(p19 = max16j638 pj), the probability that number 19
really does come up most often.
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Number Wheel 1 Wheel 2

00 2127 1288
1 2082 1234

13 2110 1261
36 2221 1251
24 2192 1164w

3 2008 1438b

15 2035 1264
34 2113 1335
22 2099 1342
5 2199 1232

17 2044 1326
32 2133 1302
20 1912w 1227
7 1999 1192

11 1974 1278
30 2051 1336
26 1984 1296
9 2053 1298

28 2019 1205
0 2046 1189
2 1999 1171

14 2168 1279
35 2150 1315
23 2041 1296
4 2047 1256

16 2091 1304
33 2142 1304
21 2196 1351
6 2153 1281

18 2191 1392
31 2192 1306
19 2284b 1330
8 2136 1266

12 2110 1224
29 2032 1190
25 2188 1229
10 2121 1320
27 2158 1336

Avg 2100 1279.16

Table 8.3: This table gives counts from two roulette wheels described in Wilson
(1965, Appendix E). The best and worst holes, for the customer, are marked
with b and w respectively.
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In §5.4 we represented the Dirichlet distribution as normalized independent
Gamma random variables. Here we can define X = (X1, . . . , X38) where Xj ∼
Gam(αj) are independent, and pj = Xj/

∑38
k=1Xk. Clearly p19 is the largest pj

if and only if X19 is the largest Xj . Therefore, we want to find µ = E(f(X))
where

f(X) =

{
1, X19 = max16j638Xj

0, X19 < max16j638Xj .

A direct Monte Carlo estimate of µ proceeds by repeatedly sampling X ∈
[0,∞)38 and averaging f(X). Here we condition on X19. Given that X19 = x19,
the probability that X19 is largest is

h(x19) =
38∏

j=1,j 6=19

Gαj
(x19) (8.25)

where Gα(x) =
∫ x

0
e−yyα−1 dy/Γ(α) is the CDF of the Gam(α) distribution. To

find the answer for this roulette wheel, do Exercise 8.10.
By conditioning, we replace (1/n)

∑n
i=1 f(Xi) where Xij ∼ Gam(αj) are

independent by (1/n)
∑n
i=1 h(Yi) where Yi ∼ Gam(α19) are independent.

Computations for the function h(y) could, in some instances, underflow.
That does not happen for the roulette example, but if we want to get the
probability that the apparent worst number is actually the best, the values of
h become very small. Similarly for problems with higher dimensional Dirichlet
distributions and more unequal counts, underflow is more likely. Underflow can
be mitigated by working with software that computes log(Gαj

) directly. To
find the probability that component j0 is the largest of J components, we can
define h̃(y) =

∑J
j=1,j 6=j0 log(Gαj

(y)) find h∗ = max16i6n h̃(yi) for the sampled

yi values and report the answer as exp(h∗) times (1/n)
∑n
i=1 exp(h̃i − h∗).

8.9 Control variates

We saw in §8.7 on conditioning how to get a better estimate by doing part of
the problem in closed form. Control variates provide another way to exploit
closed form results. With control variates we use some other problem, quite
similar to our given one, but for which an exact answer is known. The precise
meaning of ’similar’ depends on how we will use this other problem, and more
than one method is given below. As for ’exact’, we will mean it literally, but in
practice it may just mean known with an error negligible compared to Monte
Carlo errors.

Suppose first that we want to find µ = E(f(X)) and that we know the
value θ = E(h(X)) where h(x) ≈ f(x). Letting µ̂ = (1/n)

∑n
i=1 f(Xi) and

θ̂ = (1/n)
∑n
i=1 h(Xi) we can estimate µ by the difference estimator

µ̂diff =
1

n

n∑
i=1

(
f(Xi)− h(Xi)

)
+ θ = µ̂− θ̂ + θ. (8.26)
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The expected value of µ̂diff is µ because E(θ̂) = θ. The variance of µ̂diff is

Var(µ̂diff) =
1

n
Var(f(X)− h(X)).

So if h is similar to f in the sense that the difference f(X)− h(X) has smaller
variance than f(X) has, we will get reduced variance by using µ̂diff .

In this setting h(X), the random variable whose mean is known, is the
control variate. The difference estimator is not the only way to use a control
variate. The ratio and product estimators

µ̂ratio = µ̂ θ/θ̂, and (8.27)

µ̂prod = µ̂ θ̂/θ (8.28)

respectively, are also used. These estimators are undefined when θ = 0, but
otherwise they generally converge to µ as n → ∞. See Exercise 8.18 for the
product estimator. The ratio and product estimators are usually biased because
E(θ̂/µ̂) 6= θ/µ and E(θ̂µ̂) 6= θµ in general. It is possible to generalize the control

variate method in very complicated ways. Maybe we could use µ̂ cos(θ̂ − θ) or
some more imaginative quantity. But we don’t. By far the most common way
of using a control variate is through the regression estimator, considered next.

For a value β ∈ R, the regression estimator of µ is

µ̂β =
1

n

n∑
i=1

(
f(Xi)− βh(Xi)

)
+ βθ = µ̂− β(θ̂ − θ). (8.29)

Taking β = 0 yields the simple MC estimator µ̂ and β = 1 gives us the difference
estimator. The regression estimator is unbiased: E(µ̂β) = µ for all β because

E(θ̂) = θ.
The variance of the regression estimator is

Var(µ̂β) =
1

n

(
Var(f(X))− 2βCov(f(X), h(X)) + β2Var(h(X))

)
.

By differentiating, we find that the best value of β is

βopt =
Cov(f(X), h(X))

Var(h(X))
=

E
(
(h(X)− θ)f(X)

)
E
(
(h(X)− θ)2

) ,

and after some algebra, the resulting minimal variance is

Var(µ̂βopt) =
σ2

n
(1− ρ2),

where ρ = Corr(f(X), h(X)). In the regression estimator, any control variate
that correlates with f is helpful, even one that correlates negatively.

In practice we don’t know βopt and so we estimate it by

β̂ =

n∑
i=1

(f(Xi)− f̄)(h(Xi)− h̄)

/ n∑
i=1

(h(Xi)− h̄)2,
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where f̄ = (1/n)
∑n
i=1 f(Xi) and h̄ = (1/n)

∑n
i=1 h(Xi). Then the regression

estimator of µ is µ̂β̂ . In general E(µ̂β̂) 6= µ, but this bias is usually small.

We postpone study of the bias until later (equation (8.34)) when we consider
multiple control variates. The estimated variance of µ̂β̂ is

V̂ar(µ̂β̂) =
1

n2

n∑
i=1

(
f(Xi)− µ̂β̂ − β̂(h(Xi)− h̄)

)2
,

and a 99% confidence interval is µ̂β̂ ± 2.58
√

V̂ar(µ̂β̂).

The variance with a control variate is σ2(1 − ρ2)/n which is never worse
than σ2/n and usually better. Whether the control variate is helpful ultimately
depends on how much it costs to use it. Suppose that the total cost of generating
Xi and then computing f(Xi) is, on average, cf . Let ch be the extra cost
incurred by the control variate on average. That includes the cost to evaluate
h(Xi) but not the cost of sampling Xi. We will suppose that the cost to compute

β̂ is small. If not then ch should be increased to reflect it. Control variates
improve efficiency when (1−ρ2)(cf+ch) < cf , that is when |ρ| >

√
ch/(cf + ch).

For illustration, if ch = cf then we need |ρ| >
√

1/2
.
= 0.71 in order to benefit

from the control variate.

Example 8.3 (Arithmetic and geometric Asian option). A well known and very
effective control variate arises in finance. Let f(X) = max(0, (1/m)

∑m
k=1 S(tk)−

K) be the value of an Asian call option, from §6.4, in terms of a geomet-
ric Brownian motion S(t) generated from X ∼ U(0, 1)d. Now let h(X) =
max(0,

∏m
k=1 S(tk)1/m −K), be the same option except that the arithmetic av-

erage has been replaced by a geometric average. The geometric average has a
lognormal distribution. Thus θ can be computed by a one dimensional inte-
gral with respect to the normal probability density function. The result is the
Black-Scholes formula.

A significant advantage of the regression estimator is that it generalizes easily
to handle multiple control variates. The potential value is greatest when f is
expensive but is approximately equal to a linear combination of inexpensive
control variates.

Suppose that E(hj(X)) = θj are known values for j = 1, . . . , J . Let h(x) =
(h1(x), . . . , hJ(x))T be a vector of functions with E(h(X)) = θ = (θ1, . . . , θJ)T,
and let β = (β1, . . . , βJ)T ∈ RJ . The regression estimator for J > 1 is

µ̂β =
1

n

n∑
i=1

(
f(Xi)− βTh(Xi)

)
+ βTθ = µ̂− βTH̄ + βTθ (8.30)

where H̄ = (1/n)
∑n
i=1 h(Xi). As before, E(µ̂β) = µ.

The variance of µ̂β is σ2
β/n where

σ2
β = E

((
f(X)− µ− βT(h(X)− θ)

)2)
. (8.31)
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Algorithm 8.3 Control variates by regression

given f(xi), hj(xi), θj = E(hj(X)), i = 1, . . . , n, j = 1, . . . , J
Yi ← f(xi), i = 1, . . . , n
Zij ← hj(xi)− θj i = 1, . . . , n, j = 1, . . . , J // centering
MLR ← multiple linear regression of Yi on Zij
µ̂reg ← estimated intercept from MLR
se← intercept standard error from MLR
deliver µ̂, se

This algorithm shows how to use linear regression software to do control variate
computation. It is essential to center the control variates. It may be necessary
to drop one or more control variates, if they are linearly dependent in the sample.

To minimize (8.31) with respect to β is a least squares problem and the solu-
tion vector β satisfies Var(h(X))β = Cov(h(X), f(X)). If the J by J matrix
Var(h(X)) is singular, then one of the hj is a linear combination of the other
J − 1 control variates. There is no harm in deleting that redundant variate. As
a result we can assume that the matrix Var(h(X)) is not singular. Then the
optimal value of β is

βopt = Var(h(X))−1Cov(h(X), f(X))

=
(
E
(
[h(X)− θ][h(X)− θ]

))−1E
(
[h(X)− θ]f(X)

)
. (8.32)

In applications we ordinarily do not know βopt. The usual way to estimate
it is by replacing expectations by sample averages:

β̂ =

(
1

n

n∑
i=1

(
h(Xi)− H̄

)(
h(Xi)− H̄

)T)−1
1

n

n∑
i=1

(
h(Xi)− H̄

)
f(Xi). (8.33)

Equation (8.33) is the least squares estimate of βopt.
The usual estimate of µ with control variates is µ̂β̂ . The estimated variance

is

V̂ar(µ̂β̂) =
1

n2

n∑
i=1

(
f(xi)− µ̂β̂ − β̂

T(h(xi)− h̄)
)2
.

Both the estimate, and its standard error
√

V̂ar(µ̂β̂), can be computed using
standard multiple linear regression software. See Algorithm 8.3. The key insight
is to treat µ as the intercept in a multiple linear regression relating f(X) to
predictors hj(X)− θj . The regression formula is f(X) ≈ µ+ (h(X)− θ)Tβ. It
is crucial to subtract θj from the control variates in order to make µ = E(f(X))
match the regression intercept.

The error of the regression estimator using β = β̂ is

µ̂β̂ − µ = µ̂β̂ − µ̂βopt
+ µ̂βopt

− µ

= (µ̂− β̂TH̄ + β̂Tθ)− (µ̂− βT
optH̄ + βT

optθ) + µ̂βopt
− µ
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= (β̂ − βopt)
T(θ − H̄) + µ̂βopt − µ. (8.34)

The first term in (8.34) is the product of two components of mean zero, while
the second term is the error in the unknown optimal regression estimator. The
second term has mean zero, but the first does not in general, because the ex-
pected value of a product is not necessarily the same as the product of the
expected values. As a result, the control variate estimator is usually biased.

Although estimating β from the sample data brings a bias, that bias is
ordinarily negligible. Each of the factors β̂ − βopt and H̄ − θ is Op(n

−1/2)
so their product is Op(n

−1). The second term µ̂βopt
− µ in (8.34) is of larger

magnitude Op(n
−1/2). For large n, the first term is negligible while the second

term is unbiased. On closer inspection, the first term in (8.34) is the sum of
J contributions, so the bias might be regarded as a J/n term. Ordinarily J is
not large enough to cause us to change our mind about whether the sum of J
terms of size Op(n

−1) is negligible compared to a single Op(n
−1/2) term. Thus,

for applications with J �
√
n, it is common to neglect the bias from using

estimated control variate coefficients.
When an unbiased estimator is required, then we can get one by using an

estimate of βopt that is independent of the Xi used in µ̂β̂ . For example β̃ can be

computed from (8.33) using only a pilot sample X̃1, . . . , X̃m
iid∼ p independent

of the Xi. Then µ̂β̃ can be computed by (8.30) using X1, . . . ,Xn and taking

β = β̃. Now E(µ̂β̃) = µ and

Var(µ̂β̃) = E(Var(µ̂β̃ | X̃1, . . . , X̃m)) =
1

n
E(σ2

β̃
).

If f(Xi) and h(Xi) have finite fourth moments then β̃ = βopt + Op(1/
√
m).

Since σ2
β is differentiable with respect to β and takes its minimum at βopt we

have σ2
β̃

= σ2
βopt

+ Op(1/m). Exercise 8.20 asks you to allocate computation

between the m pilot observations and the n followup observations. See page 35
of the end notes for more sophisticated bias removal.

Example 8.4 (Post-stratification). Suppose that we have strata D1, . . . ,DJ as

in §8.4, but instead of a stratified sample, we take Xi
iid∼ p for i = 1, . . . , n. Let

hj(x) = 1{x ∈ Dj} for j = 1, . . . , J . The stratum probabilities ωj ≡ P(X ∈ Dj)
are known. Therefore we can use hj(x) as a control variate with mean θj = ωj .
If we use the stratum indicators as control variates, we get the same estimate
µ̂strat as in post-stratification. The corresponding variance estimate is slightly
different.

Using control variates multiplies the asymptotic variance of µ̂ by a factor
1−R2 where the R2 is the familiar proportion of variance explained coefficient
from linear regression. If J = 1 then R2 = ρ2 where ρ is the correlation of f(X)
and h(X).

If the cost of computing h is high, then the variance reduction from control
variates may need to be large in order to make it worthwhile. Let cf be the cost
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8.10. Moment matching and reweighting 33

of computing f(X) including the cost of computing X. Let ch be the additional
cost of computing the vector h(X) given that we are already committed to
computing X and f(X). If some parts of the f computation can be saved and
reused in computing h, then the related costs should be included in cf but not

in ch. The cost of computing β̂ has an O(J3) term and an O(nJ2) term. We
suppose that the part that grows proportionally to n is included in ch unless
somehow it was needed for computing f(X). We also suppose that J � n, so
that the O(J3) cost may be neglected.

Under the assumptions above, using control variates multiplies the variance
by 1− R2 but multiplies the cost per observation by (cf + ch)/cf . It improves
efficiency if

(1−R2)× cf + ch
cf

< 1.

As a simple special case, suppose that ch = Jcf . After some rearrangement, we
find efficiency is improved if R2 > J/(J + 1).

When J is large it will be very hard to have R2 > J/(J + 1). Multiple
control variates may still be worthwhile if they are much less expensive than
f . Suitable control variates include low order polynomials in the components of
X. These are either inexpensive to compute, or nearly free if we already had
to compute them in order to compute f(X). When the control variates cost on
average ε times as much as f , then they improve efficiency if R2 > Jε/(Jε+ 1).

8.10 Moment matching and reweighting

When we know the value of E(X) ≡ θ we can use it to improve our estimate of
µ = E(f(X)) via control variates as described in §8.9. A simple and very direct
alternative approach is to adjust the sample values, setting

X̃i = Xi + θ − X̄ (8.35)

where X̄ = (1/n)
∑n
i=1 Xi, and then estimate µ by the moment matching

estimator

µ̂mm =
1

n

n∑
i=1

f(X̃i). (8.36)

Moment matching can also be applied to the variance of X. Suppose that
we know E((X − θ)(X − θ)T) ≡ Σ, as we would for a simulation based on

Xi ∼ N (θ,Σ). Let Σ̂ = (1/n)
∑n
i=1(Xi−X̄)(Xi−X̄)T be the sample variance

matrix, and suppose that Σ̂ has full rank, as it will for large enough n, if Σ has
full rank. We can then set

X̃i = θ + Σ1/2Σ̂−1/2(Xi − X̄)

and use (8.36).
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In financial applications a multiplicative form of moment matching is com-
monly used replacing geometric Brownian motion sample paths Xi(t) by

X̃i(t) = Xi(t)×
E(Xi(t))

X̄(t)
, where X̄(t) =

1

n

n∑
i=1

Xi(t).

An analysis in Boyle et al. (1997) shows that moment matching is asymptot-
ically like using the known moments in control variates but with a non-optimal
value for the coefficient β.

It is harder to get confidence intervals for moment matching estimators.

The n values X̃i are no longer independent. To get a variance estimate we can
repeat the computation K times independently getting µ̂mm,1, . . . , µ̂mm,K , and
then use

µ̂mm =
1

K

K∑
k=1

µ̂mm,k, and

V̂ar(µ̂mm) =
1

K(K − 1)

K∑
k=1

(µ̂mm,k − µ̂mm)2.

The pooled estimate µ̂mm ordinarily has a small bias.
Despite their lesser accuracy and greater complexity, a motivation to use mo-

ment matching arises in financial valuation, where the expectations correspond
to various prices. There one reasons that the Monte Carlo must reproduce
certain known prices, in order to be credible. If one decides to buy (or sell)
securities at a price determined by a Monte Carlo model that is higher (respec-
tively lower) than the market price, then an adversarial trader could exploit
that difference.

Another way to meet the goal of moment matching is to reweight the sample.
We can replace the equal weight estimator by

n∑
i=1

wif(Xi) (8.37)

using the same carefully chosen weights wi for each function f . The weights
should satisfy

∑n
i=1 wiXi = θ in the case of (8.35) above. They should also

satisfy
∑n
i=1 wi = 1.

It turns out that control variate estimates of µ already take the form (8.37).
Suppose that the vector h of control variates has E(h(X)) = θ ∈ RJ . The
case (8.35) simply has h(X) = X. Then the estimator (8.33) of β takes the
form

β̂ =

n∑
i=1

S−1
HH(h(Xi)− H̄)f(Xi)

for S−1
HH =

∑n
i=1(h(Xi) − H̄)(h(Xi) − H̄)T. As a result the control variate

estimator is

µ̂β̂ =
1

n

n∑
i=1

f(Xi)− β̂T(H̄ − θ) =

n∑
i=1

wif(Xi), for
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wi =
1

n
− (h(Xi)− H̄)TS−1

HH(H̄ − θ).

One slim advantage of moment matching over control variates is that it will
automatically obey some natural constraints. For example, if f(x) = exp(x)
then we know that E(f(X)) cannot be negative. It is possible for control variates
to supply a negative estimate for such a quantity that must be positive. By
contrast, we can be sure that µ̂mm is not negative when f(x) > 0 always holds.
Some methods to find non-negative weights with

∑
i wih(Xi) = θ and

∑
i wi = 1

(when they exist) are describe on page 38 of the end notes.

Moment matching and related methods allow one to bake in certain desirable

properties of the sample points X̃i. Their main attraction arises when those
properties are important enough to give up on some estimation accuracy and
simplicity of forming confidence intervals.

Chapter end notes

There is a large literature on variance reduction methods. For surveys, see
Wilson (1984) and L’Ecuyer (1994).

Antithetic sampling was introduced by Hammersley and Morton (1956).
Some generalizations of antithetic sampling are considered in Chapter 10.

Stratification is a classic survey sampling method. See Cochran (1977), for
issues of variance estimation and also for design of strata. It is not just stratifi-
cation. Antithetics, control variates and importance sampling (Chapter 9) have
direct antecedents in the survey sampling literature.

The difference estimator is also commonly used in classical quadrature meth-
ods. Suppose that both h(x) and f(x) are unbounded, but f(x) − h(x) is
bounded, and

∫
h(x) dx is known. Then it often pays to use numerical quadra-

ture on f − h and add in the known integral of h. For Monte Carlo sampling it
will ordinarily be better to use regression estimator. However for quasi-Monte
Carlo and randomized quasi-Monte Carlo (Chapters 15 through 17) we may
prefer the difference estimator if f − h is then of bounded variation.

The ratio and product estimators are not available when θ = E(h(X)) = 0.
Their typical applications are in problems where h(x) > 0. The reason that
complicated nonlinear control variates are seldom used is that, in large samples,
they are almost equivalent to the regression estimator, which is simple to use.
See Glynn and Whitt (1989).

The regression estimator for control variates has a mildly annoying bias.
Avramidis and Wilson (1993) describe a way to get rid of it. They split the
sample into m > 2 subsets of equal size and arrange that each coefficient esti-
mate β̂ is always applied to points independent of it. The result is an unbiased
estimate of µ using control variates. When m > 3 they are also able to get an
unbiased estimate of Var(µ̂).

Kahn and Marshall (1953) make an early mention of the method of common
random numbers, referring to it as correlation of samples. They liken it to
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pairing and blocking which had long been an important part of the design of
physical experiments.

Lunney and Anderson (2009) use Monte Carlo methods to measure the power
of the content uniformity test under some alternatives with non-normally dis-
tributed data.

Asmussen and Glynn (2007, Chapter VII) cover Monte Carlo estimation of
derivatives. They include many algorithms of varying complexity for the case
where X is a process and θ is a parameter of that process. Burgos and Giles
(2012) look at multilevel Monte Carlo for estimation of derivatives.

Hesterberg and Nelson (1998) explore the use of control variates for quantile
estimation. For random pairs (Xi, Yi) one or more known quantiles of the X
distribution can be used as control variates for α quantile of the Y distribution.
The most direct approach is to estimate E(1Y6y) using 1X6x1

, . . . ,1X6xs
as

control variates, and estimate the α quantile of Y to be the value y for which
Ê(1Y6y) = α. They consider using a small number of values xj at or near the
α quantile of X. Extreme variance reductions are hard to come by because it is
hard to find regression variables that are extremely predictive of a binary value
like 1Y6y.

Barraquand (1995) and Duan and Simonato (1998) use some moment match-
ing methods on sample paths of geometric Brownian motion. Cheng (1985) gives
an algorithm to generate n random vectors from the distribution N (0, Ip) con-
ditionally on their sample mean being µ and sample covariance being Σ. In
that approach the constraints are built in to the sample generation rather than
imposed by transformation afterwards. Pullin (1979) had earlier done this for
samples from N (0, 1).

Common random numbers with randomness in h

Here we allow the function h(X, θ) in common random numbers to generate fur-
ther random numbers. We assume that the number of further random numbers
h(X, θ) uses depends on both X and θ. If instead h() always takes the same
number of uniform random numbers we can include them in X and proceed as
if h does not generate random variables.

We begin with Algorithm 8.1 and we assume that all the dependence we
wanted to incorporate comes through the shared Xi and so h(Xi, θj) for 1 6
i 6 n and 1 6 j 6 m are conditionally independent given X1, . . . ,Xn.

In Algorithm 8.1, an h that consumes random numbers would advance
the random number stream by some number of positions and thereby change
X2, . . . ,Xn. The differences µ̂j−µ̂k would still be unbiased estimates of µj−µk.
The additional randomness in h would increase the variance of µ̂j − µ̂k, reduc-
ing the gain from common random numbers. Because the n sample differences
h(Xi, θj)−h(Xi, θk) going into that estimate are still statistically independent,
our confidence intervals remain reliable.

The challenge with Algorithm 8.1 starts when we consider changing our
parameter list θ1, . . . , θm, perhaps by adding θm+1, . . . , θm+k. To account for
changing parameters it is less ambiguous to write µ̂(θj) instead of µ̂j . When
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h consumes random numbers, then changing the parameter list θ1, . . . , θm, can
change X2 and all subsequent Xi that Algorithm 8.1 uses.

If we add new parameters θm+1, . . . , θm+k to our list and rerun Algorithm 8.1
for all m + k parameter values, then it is likely that all of our old estimates
µ̂(θj) for j 6 m will have changed. The estimates still reflect common random
numbers. But we might have preferred those old values to remain fixed.

A very serious problem (i.e., an error) arises when we store the values µ̂(θj)
for j = 1, . . . ,m, and then instead of re-running Algorithm 8.1 on the whole list,
we just run it on the list of k new parameter values. Then the new estimates
µ̂(θm+1), . . . , µ̂(θm+k) will not have been computed with the same Xi that the
old ones used. Even though that algorithm starts by setting the seed, synchro-
nization will already be lost for X2 because h generated random numbers. We
would have lost the accuracy advantage of common random numbers for com-
parisons involving one of the first m parameters and one of the last k. Also,
some of the random numbers used to generate Xi for the first set of parameters
may end up incorporated into both Xi and Xi+1 (or some other set of variables)
for the second set. The differences h(Xi, θr)−h(Xi, θs), i = 1, . . . , n would not
be independent if r 6 m < s. So we would get unreliable standard deviations
for those comparisons.

To be sure that Xi is the same for all sets Θ, we should not let h use the
same stream of random numbers that Xi are generated from. Even giving h
its own stream of random numbers leaves us with synchronization problems.
Computing h(X1, θm+1) would affect the random numbers that h(X2, θ1) sees.

If we want µ̂(θj) to be unaffected by the other θk ∈ Θ, then the solution is to
give h a different random number stream for each value of θ that we use. One
approach is to maintain a lookup table of θ’s and their corresponding seeds.
Another is to hash the value of θj into a seed (or a stream identifier) for h
to use. If each θj gets its own stream, as in L’Ecuyer et al. (2002) then the
common seed for all of those streams gets set at the beginning of the algorithm.
If each θj is hashed into its own seed for a random number generator like the
Mersenne Twister (Matsumoto and Nishimura, 1998), then seeded copies of that
generator should be created at the beginning of the algorithm. Now each µ̂(θ)
is a reproducible function of θ and n and the seeds used.

Now consider Algorithm 8.2 where h consumes random numbers. For each
θj it sets the seed then does a Monte Carlo sample. It is more fragile than
Algorithm 8.1. That algorithm still works if we run all θj at once and do not
mind having µ̂(θj) depend on the set of other θ values in Θ. For Algorithm 8.2,
if h generates random numbers then Xi for i > 2 will vary with θj and we lose
synchronization. To ensure that Xi are really common we should not let h use
the stream that we use to generate Xi. To keep each µ̂(θ) unaffected by changes
to the set Θ, we should once again give every value of θ its own stream, and set
the seed for that stream at the same time the X stream’s seed is set.
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Alternative reweightings

As described in §8.10, control variates reweight the sample values but might
include some negative weights. We would prefer to have weights wi that satisfy

wi > 0,

n∑
i=1

wi = 1, and

n∑
i=1

wih(Xi) = θ. (8.38)

Ideally, the weights wi should be as close to 1/n as possible, subject to the
constraints in (8.38). Then we may estimate µ by

µ̂w =

n∑
i=1

wif(Xi).

Constraints (8.38) cannot always be satisfied. If min16i6n hj(Xi) > θj then
there is no way to satisfy (8.38). More generally, if θ is outside the convex hull
of {h(X1), . . . , h(Xn)}, so that there exists a hyperplane with θ ∈ RJ on one
side and all of h(Xi) on the other, then (8.38) cannot be satisfied. If θ is outside
the convex hull of h(Xi) then maybe n is too small, or J is too large, or the
functions hj are poorly chosen.

If a solution to (8.38) exists then there is an n−J − 1 dimensional family of
solutions. To choose weights in this family we need to choose a measure of their
distance from (1/n, . . . , 1/n). One such way is to maximize the log empirical
likelihood −

∑n
i=1 log(nwi) subject to (8.38). A second way is to maximize the

entropy −
∑n
i=1 wi log(wi) subject to (8.38). Both of these criteria favor wi that

are nearly equal. Each of them leads to weighted Monte Carlo estimates with
the same asymptotic variance that µ̂β̂ has.

If we maximize the empirical likelihood, then a Lagrange multipliers argu-
ment yields

wEL
i =

1

n

1

1 + λT(h(Xi)− θ)
where the Lagrange multiplier λ ∈ RJ satisfies

n∑
i=1

h(Xi)− θ
1 + λT(h(Xi)− θ)

= 0.

(Owen, 2001, Chapter 3) gives details including computation of λ. Empirical
likelihood and entropy are two members in a family of non-negative weighting
methods. For Monte Carlo applications where non-negativity is not needed,
regression based control variates are simpler to use.

Exercises

Antithetics

8.1. Given ε > 0, construct an increasing function f(x) on 0 6 x 6 1 such that

0 > Corr(f(X), f(1−X)) > −ε
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for X ∼ U(0, 1).

8.2. Find an example for the following set of conditions, or prove that it is
impossible to do so: 0 < Var(µ̂anti) < Var(µ̂) = ∞. Here µ̂ is ordinary Monte
Carlo sampling with a finite even number n > 2 of function values and µ̂anti is
antithetic sampling with n/2 pairs. If this is possible, then µ̂anti has an infinite
efficiency relative to ordinary Monte Carlo without having 0 variance.

8.3. Show that the correlation in antithetic sampling is

ρ =
σ2

E − σ2
O

σ2
E + σ2

O

,

in the notation of §10.2.

8.4 (Antithetic sampling and spiky integrands). Here we investigate what hap-
pens with antithetic sampling and a spiky function. We will use

f(x) =


0, 0 < x 6 0.9

100, 0.9 < x 6 0.91

0, 0.91 < x < 1

for X ∼ U(0, 1) as a prototypical spiky function.

a) Determine whether antithetic sampling is helpful, harmful, or neutral for
the example f . You may do this by finding the variance of µ̂ under IID
and under antithetic sampling using the same sample size. You may find
the variances either theoretically or from a large enough simulation.

b) Explain your findings from the part above, in terms of the even and odd
parts of f .

c) Construct a spiky function for which you would have reached a very dif-
ferent conclusion about the effectiveness of antithetic sampling.

Stratification

8.5. Prove equation (8.15), which represents the variance reduction from pro-
portional allocation in terms of a correlation between f and the within stratum
mean of f .

8.6. Equation (8.14) expresses the sampling variance of the stratified estimator
and the ordinary MC estimator in terms of between and within variances σ2

B and
σ2

W. Given f with
∫
f(x)2 dx <∞ show how to construct functions fB(x) and

fW(x) such that f(x) = fB(x)+fW(x) with
∫
fW(x) dx =

∫
fB(x)fW(x) dx =

0 and
∫
fB(x) dx =

∫
f(x) dx = µ,

∫
fW(x)2 dx = σ2

W,
∫

(fB(x)−µ)2 dx = σ2
B,

and for which the stratified sampling estimate of the mean of fB has variance
zero.
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Stratified Brownian motion

Figure 8.6: This figure shows 30 sample paths of standard Brownian motion
B(·) ∼ BM(0, 1) on T = [0, 1]. They are stratified on B(1) ∼ N (0, 1). See
Exercise 8.7. Also shown is the N (0, 1) density function partitioned into 30
equi-probable intervals.

8.7 (Stratified Brownian motion). Here we investigate stratified Brownian mo-
tion, as shown in Figure 8.6. Let path i at time t take the value Bi(t) for
i = 1, . . . , N and t ∈ {1/M, 2/M, . . . , 1}. To stratify standard Brownian motion
on its endpoint, we take Bi(1) = Φ−1((i−Ui)/N) for independent U1, . . . , UN ∼
U(0, 1). Points Bi(j/M), for j = 1, . . . ,M − 1 are then sampled conditionally
on Bi(1). See §xxx.

a) Write a function to generate stratified standard Brownian motion. It
should take arguments M,N ∈ N, and i ∈ {1, . . . , N}. It should produce
the sample path of stratified Bi(t) at t = j/M for j = 1, . . . ,M . Describe
how you sampled the path Bi(·), conditionally on Bi(1), with enough
detail to make it clear that your method is correct. Turn in your code
with comments. [Note: if you prefer, you may instead write the function
to generate and return all N paths i = 1, . . . , N at once.]

b) Generalize your function to generate stratified Brownian motion with drift
δ ∈ R and volatility σ > 0 on the interval T = [0, T ] for T > 0. As before
the value of B(T ) is stratified. Explain how your generalization works,
and turn in your code. You may either pass the new arguments δ, σ, and
T into a generalized version of your previous function, or you may write a
wrapper function that calls your previous function and modifies its output
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to take account of δ, σ and T .

c) Let S(·) ∼ GBM(S0, δ, σ) be geometric Brownian motion (§6.4). For M =
100, let

f(S(·)) = max
06j6M

S(j/M)− min
06j6M

S(j/M).

We want µ = E(f(S(·))) for δ = 0.05, σ = 0.3, and T = 1. For N = 1000
and M = 100 generate two independent stratified Geometric Brownian
motions with these parameters. Estimate µ and give a 99% confidence
interval. [Hint: the two independent stratified samples can be pooled into
one stratified sample of n = 2N paths, with J = N strata having nj = 2
for j = 1, . . . , N .]

The function f is related to the value of a lookback option whose payoff
is equivalent to buying at the minimum and selling at the maximum price
in the time interval [0, T ]. As given, f omits the discount factor e−δT that
compensates for waiting until time T to collect the payoff.

d) Estimate the variance reduction obtained from stratification. Use R inde-
pendent replications of the stratified sampling method on n = 2N paths,
where R > 300. The variance should be compared to that obtained by
plain Monte Carlo with 2N paths.

e) Compare the time required to compute 2N = 2000 sample paths of length
M = 100 by stratification to that required to compute 2N sample paths
of length M without stratification. Report the details of the hardware,
operating system, and the software in which you made the comparison.

8.8 (Stratification with nj = 1). Consider proportional allocation (see §8.4) in
the special case where all the strata have equal probability. Then ωj = 1/J and
nj = m for j = 1, . . . , J where the sample size is n = mJ .

a) Suppose first that m > 2 and let s2
j be as given in (8.10). Define s̄2 =

(1/J)
∑J
j=1 s

2
j . Show that the formula for V̂ar(µ̂strat) in (8.10) reduces to

s̄2/n.

b) Now suppose that m = 1 and that n = J is an even number. We saw in
§xxx that the stratified sampling estimate µ̂strat is Ȳ = (1/n)

∑n
i=1 Yi, in

this setting where Yi = f(Xi). For m = 1 we cannot use equation (8.10)

for V̂ar(µ̂strat). For j = 1, . . . , n/2 let s̃2
j = (f(X2j−1) − f(X2j))

2, put

s̃2 = (2/n)
∑n/2
j=1 s̃

2
j and let Ṽ = s̃2/n. Prove that E(Ṽ ) > Var(Ȳ ).

c) Suppose now that stratum i is [(i− 1)/n, i/n), that n is very large, and f

has two derivatives on [0, 1]. Roughly how large will E(Ṽ )/Var(Ȳ ) be?

Conditioning

8.9. Let (X,Y ) ∼ U(0, 1)2 and put f(x, y) = eg(x)y for g(x) =
√

5/4 + cos(2πx).
Let h(x) = (eg(x) − 1)/g(x).
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a) Using n = 106 samples estimate the variance of f(x, y). Similarly, estimate
the variance of h(x).

b) Report the efficiency gain from conditioning assuming that f and h cost
the same amount of computer time. Then report the efficiency gain taking
account of the time it takes to compute both f and h. In this case give
details of the computing environment that you obtained the results for.
Also hand in your source code.

c) Repeat the two steps above for g(x) =
√

1 + cos(2πx) taking special care
near x = 1/2. (Hint: you may need a Taylor expansion.)

Exercises 8.10 through 8.13 require a function that computes the CDF of
the Gamma distribution.

8.10. Here we find the answer to the roulette problem of §8.8, using conditional
Monte Carlo, but no other variance reductions.

a) What is the numerical value of α19 for wheel 1?

b) Use conditional Monte Carlo to find the probability that number 19 has
the highest probability of coming up on wheel 1 of §8.8. Give a 99%
confidence interval.

c) Estimate the probability that 3 is the highest probability number for wheel
2 of Table 8.3 and give a 99% confidence interval.

d) Give a 99% confidence interval for p19 of wheel 1 and p3 of wheel 2. A
gambler will make money in the long run by betting on a wheel with
p > 1/36, and lose if p < 1/36, while the game is fair if p = 1/36. Do
these confidence intervals include 1/36? You don’t need to do a Monte
Carlo for this part, the Monte Carlo you need is reported in Table 8.3.

e) On wheel 1, the second most common number was 36. Estimate the prob-
ability that number 36 is the most probable, and give a 99% confidence
interval.

8.11. Devise a strategy to find the probability that number 19 is the second
best number for wheel 1 based on the data in Table 8.3. Give a formula for your
method, and implement it, reporting the answer and a 99% confidence interval.

8.12. For the simulation in Exercise 8.10b estimate how much the variance was
reduced by conditioning.

8.13. For the simulation in Exercise 8.10b sample p19 by stratified sampling,
with 2 observations per stratum and the same sample size you used there (plus
one if your sample size was odd). Report the ratio of the estimated variance of
p̂19 using ordinary IID sampling to that using stratified sampling. Both Monte
Carlos in the ratio should employ conditioning.

8.14. In introductory probability exercises we might imagine a perfect roulette
wheel with pj = 1/38 exactly. In Exercise 8.10 we considered p uniformly
distributed over all possible probability vectors. Neither of these models is
reasonable. A more plausible model is that p ∼ Dir(A,A, . . . , A) for some value
of A with 1 < A <∞. Then p |X ∼ Dir(A+ C1, . . . , A+ C38).
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a) For what value of A does

E
( 38∑
j=1

(pj − 1/38)2

)
=

38∑
j=1

(Cj/N − 1/38)2

hold, where the counts Cj come from wheel j, and N =
∑38
j=1 Cj?

b) Consider the following empirical Bayes analysis. Taking the number A
obtained from part a replace the prior Dir(1, . . . , 1) by Dir(A, . . . , A). This
empirical Bayes analysis will change the estimated probability that 19 is
really the best hole for wheel 1. Assuming that A > 1, the prior for p will
concentrate closer to the center of the simplex, and we anticipate a lower
probability that wheel 19 is best.

How much does P(p19 > max16j638 pj) change when we replace αj = 1
by αj = A in the prior distribution? Use conditional Monte Carlo and
common random numbers with n = 10,000 sample points to estimate the
difference in these probabilities.

Control variates

8.15. Let f and h be two functions of the random variable X ∼ p. Define
µ = E(f(X)), θ = E(h(X)), and ∆ = µ− θ. Assume that we know θ and that
our goal is to estimate ∆. Two estimators come to mind. The first estimator is
∆̂1 = 1

n

∑n
i=1(f(xi) − θ). The second estimator, ∆̂2 is obtained by estimating

the mean of f(X)− h(X), using h(X) as a control variate.
For which values of ρ = Corr(f(X), h(X)) is ∆̂2 more efficient than ∆̂1?

You may use the following simplifying assumptions:
i) Var(f(X)) = Var(h(X)) = σ2 ∈ (0,∞).
ii) The cost to evaluate h is the same as that for f .

iii) The cost to sample X is negligible.
iv) n is large enough that the delta method approximation to the variance

of the regression estimator is accurate enough.

8.16. In quadrature problems it is common to subtract a singularity that we
can handle analytically. Here we look at what might happen if we used control
variates instead.

Let f(x) = x−1/2 + x for x ∈ (0, 1). Let h(x) = x−1/2. We know that

θ ≡
∫ 1

0
h(x) dx = 2, and of course µ ≡

∫ 1

0
f(x) dx = 5/2. Suppose that X ∼

U(0, 1). Here we estimate E(f(X)) by Monte Carlo using h as a control variate,
and forgetting for the moment that we know µ. That is, we use µ̂β̂ instead of

µ̂1 = (1/n)
∑n
i=1(f(xi)− 1(h(xi)− 2)).

a) Show that Var(f(X) − βh(X)) < ∞ if and only if β = 1. State the
variance of f(X)− h(X).

b) Let µ̂β̂ be the usual control variate estimate of µ. Suppose that n = 1000.
Do a nested Monte Carlo analysis that repeats the size n simulation R =
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10,000 times. Report the sample mean, sample variance and histogram of
β̂ over the R replicates. Does β̂ look like it is roughly normally distributed
around the true value β = 1?

c) Show the sample mean, sample variance and histogram of µ̂β̂ over the R
estimates. Compare µ̂β̂ to µ̂2, by judging their sample squared errors. For
practical purposes, do they appear to have very similar or sharply different
accuracy? Either way, which one came out better than the other, in your
simulations?

d) Repeat the previous two parts with R = 10,000 and n = 50.

e) Inspect the histogram of β̂ values from part b. Find an apparent upper

bound β̂ 6 A and then prove it holds. [Hint: Chebyshev’s sum inequalities
may be useful. If a1 > a2 > · · · > an and b1 > b2 > · · · > bn and c1 6
c2 6 · · · 6 cn then n

∑
i aibi >

∑
i ai
∑
i bi and n

∑
i aici 6

∑
i ai
∑
i ci.]

8.17. Suppose that E(f(X)2) < ∞ and E(h(X)2) < ∞ and θ = E(h(X)) 6=
0. Consider the ratio estimator µ̂R = θ

∑n
i=1 f(Xi)/

∑n
i=1 h(Xi). Show that

P(|µ̂R − µ| > ε)→ 0 holds for any ε > 0, and µ = E(f(X)).

8.18. Under the conditions of Exercise 8.17, show that P(|µ̂P − µ| > ε) → 0,

where µ̂P =
(

1
n

∑n
i=1 f(Xi)

)(
1
n

∑n
i=1 h(Xi)

)
/θ.

8.19. Suppose that a control variate g(X) has a correlation of 0.1 with the
variable f(X) of interest. By how much does its use reduce the variance of
E(f(X))? How much faster than f does the control variate function have to be
for its use to improve the efficiency measure (8.1)?

8.20. For the unbiased control variate problem suppose that we will take N =
n + m observations. The fraction of the sample allocated to finding the pilot
estimate β̃ is f = m/N . Then a fraction 1−f is used for the final estimate. Sup-
pose that the mean squared error takes the form (1/n)(A+σ2

0/m) for constants
A > 0 and σ2

0 > 0.

a) Find the value of f that minimizes the mean squared error for fixed N > 0
over the interval 0 6 f 6 1. Let f vary continuously, even though fN
must really be an integer.

b) Let m(N) be the optimal solution from part a. For what r, if any, does
m(N)/Nr approach a limit as N →∞?

If the answer in part b is r = 1 then the pilot sample should be a fixed fraction
of the total data set. For r = 0 we get a fixed number of pilot samples.

8.21. If µ̂ and θ̂ are positively correlated then µ̂/θ̂ should be more stable because
fluctuations in the numerator and denominator will offset each other. If they
are negatively correlated we would expect µ̂θ̂ to be more stable. Investigate
this intuition by finding the delta method approximation to the variance of µ̂R
and µ̂P . Assume that 0 < Var(f(X)) = σ2 < ∞, 0 < Var(θ̂) = τ2 < ∞,
cor(f(X), h(X)) = ρ ∈ (−1, 1), and that θ 6= 0. By comparing the variances,
decide whether ρ > 0 favors the product estimator, or the ratio estimator, or
neither as n→∞.
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Common random numbers

8.22. The content uniformity test on page 18 involved a small shift of the target
value from 100 towards x̄, but not going more than a distance of 1.5 units.
This was implemented by the target shifting function M(x) in equation (8.22).
It is natural to wonder whether target shifting makes much difference to the
acceptance probability. We can turn off that feature by replacing M(x) with

M̃(x) = 100 for all x. Assume throughout that Xj ∼ N (µ, σ2) for j = 1, . . . , 30
are independent.
a) Suppose that µ = 102 and σ = 3. Estimate the amount (and direction)

of the change in acceptance probability that arises from the use of target
shifting.

b) Now suppose that µ = 100. Is there any σ for which target shifting changes
the acceptance probability by more than 5%?

c) Are there any (µ, σ) pairs for which the acceptance probability changes by
more than 50% due to target shifting? If so, describe the region where
this happens. If not, what is the greatest change one can find? In either
case, indicate which (µ, σ) pairs result in the greatest change in acceptance
probability.

Make a reasonable choice of Monte Carlo method for this problem, explain-
ing the reasons for your choice. State the sample size you used. There will
necessarily be numerical uncertainty because you cannot sample all configura-
tions and n must be bounded.

8.23. In the content uniformity test, a really good product will pass at the first
level, while a very bad one will not pass at all. Which combinations of µ and σ
lead to the greatest probability that the test will have to carry on to the second
level, but will then pass?

8.24. Figure 8.5 was made with n = 100,000 simulated cases, which may have
been more than necessary. How could one determine whether a given sample
size n is large enough for such a contour plot?

8.25. In financial applications one often needs the partial derivatives of an op-
tion value with respect to parameters like δ and σ. These derivatives, termed
‘Greeks’ are needed for hedging. For the lookback option function f of Exer-
cise 8.7c define g(δ, σ, T ) = E(f(S(·))) for the given values of δ, σ, and T . Using
plain Monte Carlo, without stratification, estimate the following:

a) g(0.051, 0.3, 1)− g(0.05, 0.3, 1),

b) g(0.05, 0.31, 1)− g(0.05, 0.3, 1), and

c) g(0.05, 0.3, 1.01)− g(0.05, 0.3, 1).

Give a confidence interval in each case. Make a reasonable choice for n.

8.26. Give an example where common random numbers increases variance.
That is, find a distribution p and functions f and g and prove that Var(D̂com) >

Var(D̂ind) holds with your p, f and g.
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46 8. Variance reduction

8.27. Exercise 5.13 is about sampling a bivariate distribution with Gaussian
margins and the same copula that the Marshall-Olkin bivariate exponential
distribution has.

In the notation of that exercise, suppose that λ1 = λ2 = 1 and that we want
Corr(Y1, Y2) = 0.7.

a) What value of λ3 should we use? Devise a way to solve this problem using
common random numbers and a fixed n × 3 matrix with independent
components that were sampled from the U(0, 1) distribution. Report the
value of λ3 that you get.

b) Repeat the previous part 10 times independently and report the 10 values
you get.
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