
Contents

3 Uniform random numbers 3
3.1 Random and pseudo-random numbers 3
3.2 States, periods, seeds, and streams 5
3.3 U(0, 1) random variables . 8
3.4 Inside a random number generator 10
3.5 Uniformity measures . 12
3.6 Statistical tests of random numbers 15
3.7 Pairwise independent random numbers 17
End notes . 18
Exercises . 20

1

2 Contents

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3

Uniform random numbers

Monte Carlo methods require a source of randomness. For the convenience of
the users, random numbers are delivered as a stream of independent U(0, 1)
random variables. As we will see in later chapters, we can generate a vast
assortment of random quantities starting with uniform random numbers. In
practice, for reasons outlined below, it is usual to use simulated or pseudo-
random numbers instead of genuinely random numbers.

This chapter looks at how to make good use of random number generators.
That begins with selecting a good one. Sometimes it ends there too, but in other
cases we need to learn how best to set seeds and organize multiple streams and
substreams of random numbers. This chapter also covers quality criteria for ran-
dom number generators, briefly discusses the most commonly used algorithms,
and points out some numerical issues that can trap the unwary.

3.1 Random and pseudo-random numbers

It would be satisfying to generate random numbers from a process that accord-
ing to well established understanding of physics is truly random. Then our
mathematical model would match our computational method. Devices have
been built for generating random numbers from physical processes such as ra-
dioactive particle emission, that are thought to be truly random. At present
these are not as widely used as pseudo-random numbers.

A practical drawback to using truly random numbers is that they make it
awkward to rerun a simulation after changing some parameters or discovering a
bug. We can’t restart the physical random number generator and so to rerun the
simulation we have to store the sequence of numbers. Truly random sequences
cannot be compressed, and so a lot of storage would be required. By contrast,

3

4 3. Uniform random numbers

a pseudo-random number generator only requires a little storage space for both
code and internal data. When re-started in the same state, it re-delivers the
same output.

A second drawback to physical random number generators is that they usu-
ally cannot supply random numbers nearly as fast as pseudo-random numbers
can be generated. A third problem with physical numbers is that they may
still fail some tests for randomness. This failure need not cast doubt on the
underlying physics, or even on the tests. The usual interpretation is that the
hardware that records and processes the random source introduces some flaws.

Because pseudo-random numbers dominate practice, we will usually drop
the distinction, and simply refer to them as random numbers. No pseudo-
random number generator perfectly simulates genuine randomness, so there is
the possibility that any given application will resonate with some flaw in the
generator to give a misleading Monte Carlo answer. When that is a concern,
we can at least recompute the answers using two or more generators with quite
different behavior. In fortunate situations, we can find a version of our problem
that can be done exactly some other way to test the random number generator.

By now there are a number of very good and thoroughly tested generators.
The best of these quickly produce very long streams of numbers, and have
fast and portable implementations in many programming languages. Among
these high quality generators, the Mersenne twister, MT19937, of Matsumoto
and Nishimura (1998) has become the most prominent, though it is not the
only high quality random number generator. We can not rule out getting a
bad answer from a well tested random number generator, but we usually face
much greater risks. Among these are numerical issues in which round-off errors
accumulate, quantities overflow to∞ or underflow to 0, as well as programming
bugs and simulating from the wrong assumptions.

Sometimes a very bad random number generator will be embedded in gen-
eral purpose software. The results of very extensive (and intensive) testing
are reported in L’Ecuyer and Simard (2007). Many operating systems, pro-
gramming languages and computing environments were found to have default
random number generators which failed a great many tests of randomness. Any
list of test results will eventually become out of date, as hopefully, the software
it describes gets improved. But it seems like a safe bet that some bad random
number generators will still be used as defaults for quite a while. So it is best to
check the documentation of any given computing environment to be sure that
good random numbers are used. The documentation should name the generator
in use and give references to articles where theoretical properties and empirical
tests have been published.

The most widely used random number generators for Monte Carlo sampling
use simple recursions. It is often possible to observe a sequence of their outputs,
infer their inner state and then predict future values. For some applications,
such as cryptography it is necessary to have pseudo-random number sequences
for which prediction is computationally infeasible. These are known as crypto-
graphically secure random number generators. Monte Carlo sampling does not
require cryptographic security.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.2. States, periods, seeds, and streams 5

3.2 States, periods, seeds, and streams

The typical random number generator provides a function, with a name such
as rand, that can be invoked via an assignment like x ← rand(). The result is
then a (simulated) draw from the U(0, 1) distribution. The function rand might
instead provide a whole vector of random numbers at once, but we can ignore
that distinction in this discussion. Throughout this section we use pseudo-code
with generic function names that resemble, without exactly matching, the names
provided by real random number generators.

The function rand maintains a state vector. What goes on inside rand

is essentially state ← update(state) followed by return f(state). After
modifying the state, it returns some function of new state value. Here we will
treat rand as a black box, and postpone looking inside until §3.4.

Even at this level of generality, one thing becomes clear. Because the state
variable must have a finite size, the random number generator cannot go on
forever without eventually revisiting a state it was in before. At that point it
will start repeating values it already delivered.

Suppose that we repeatedly call xi ← rand() for i > 1 and that the state
of the generator when xi0 is produced is the same as it was when xi0−P was
produced. Then xi = xi−P holds for all i > i0. From i0 on, the generator
is a deterministic cycle with period P . Although some generators cycle with
different periods depending on what state they start in, we’ll simplify things
and suppose that the random number generator has a fixed period of P , so that
xi+P = xi holds for all i.

It is pretty clear that a small value of P makes for a poor simulation of
random behavior. Random number generators with very large periods are pre-
ferred. One guideline is that we should not use more than about

√
P random

numbers from a given generator. Hellekalek and L’Ecuyer (1998) describe how
an otherwise good linear congruential generator starts to fail tests when about√
P numbers are used. For the Mersenne twister, P = 219937 − 1 > 106000,

which is clearly ample. Some linear congruential generators discussed in §3.4
have P = 232 − 1. These are far too small for Monte Carlo.

We can make a random number generator repeatable by intervening and
setting its state before using it. Most random number generators supply a
function like setseed(seed) that we can call. Here seed could be an encoding
of the state variable. Or it may just be an integer that setseed translates into
a full state variable for our convenience.

When we don’t set the seed, some random number generators will seed
themselves from a hidden source such as the computer’s clock. Other generators
use a prespecified default starting seed and will give the same random numbers
every time they’re used. That is better because it is reproducible. Using the
system clock or some other unreproducible source damages not only the code
itself but any other applications that call it. It is a good idea to set a value for
the seed even if the random number generator does not require it. That way
any interesting simulation values can be repeated if necessary, for example to
track down a bug in the code that uses the random numbers.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

6 3. Uniform random numbers

By controlling the seed, we can synchronize multiple simulations. Suppose
that we have J different simulations to do. They vary according to a problem
specific parameter θj . One idiom for synchronization is:

given seed s, parameters θ1, . . . , θJ

for j = 1, . . . , J

setseed(s)

Yj ← dosim(θj)

end for

return Y1, . . . , YJ

which makes sure that each of the J simulations start with the same random
numbers. All the calls to rand take place within dosim or functions that it calls.
Whether the simulations for different j remain synchronized depends on details
within dosim.

Many random number generators provide a function called something like
getseed() that we can use to retrieve the present state of the random number
generator. We can follow savedseed← getseed() by setseed(savedseed) to
restart a simulation where it left off. Some other simulation might take place in
between these two calls.

In moderately complicated simulations, we want to have two or more streams
of random numbers. Each stream should behave like a sequence of independent
U(0, 1) random variables. In addition, the streams need to appear as if they are
statistically independent of each other. For example, we might use one stream
of random numbers to simulate customer arrivals and another to simulate their
service times.

We can get separate streams by carefully using getseed() and setseed().
For example in a queuing application, code like

setseed(arriveseed)

A← simarrive()

arriveseed← getseed()

alternating with

setseed(serviceseed)

S ← simservice()

serviceseed← getseed()

gets us separated streams for these two tasks. Once again the calls to rand()
are hidden, this time in simarrive() and simservice().

Constant switching between streams is cumbersome and it is prone to er-
rors. Furthermore it also requires a careful choice for the starting values of
arriveseed and serviceseed. Poor choices of these seeds will lead to streams
of random numbers that appear correlated with each other.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.2. States, periods, seeds, and streams 7

Algorithm 3.1 Substream usage

given s, n, nstep

setseed(s)

for i = 1, . . . , n

nextsubstream()

Xi ← oldsim(nstep)

restartsubstream()

Yi ← newsim(nstep)

end for

return (X1, Y1), . . . , (Xn, Yn)

This algorithm shows pseudo-code for use of one substream per Monte Carlo
replication, to run two simulation methods on the same random scenarios.

A better solution is to use a random number generator that supplies multiple
streams of random numbers, and takes care of their seeds for us. With such a
generator we can invoke

arriverng← newrng()

servicerng← newrng()

near the beginning of the simulation and then alternate A← arriverng.rand()
with S ← servicerng.rand() as needed. The system manages all the state
vectors for us.

Some applications can make use of a truly enormous number of streams of
random numbers. An obvious application is massively parallel computation,
where every processor needs its own stream. Another use is to run a separate
stream or substream for each of n Monte Carlo simulations. Algorithm 3.1
presents some pseudo-code for an example of this usage.

Algorithm 3.1 is for a setting with two versions of a simulation that we
want to compare. Each simulation runs for nstep steps. Each simulated case i
begins by advancing the random number stream to the next substream. After
simulating nstep steps of the old simulation, it returns to the beginning of its
random number substream, via restartsubstream, and then simulates the new
method. Every new simulation starts off synchronized with the corresponding
old simulation. Whether they stay synchronized depends on how their internal
details are matched.

If we decide later to replace n by n′ > n, then the first n results will be the
same as we had before and will be followed by n′ − n new ones. By the same
token, if we decide later to do longer simulations, replacing replacing nstep by
a larger value nstep′, then the first nstep steps of simulation i will evolve as

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

8 3. Uniform random numbers

before. The longer simulations will retrace the initial steps of the shorter ones
before extending them.

Comparatively few random number generators allow the user to have careful
control of streams and substreams. A notable one that does is RngStreams by
L’Ecuyer et al. (2002). Much of the description above is based on features of that
software. They provide a sequence of about 2198 points in the unit interval. The
generator is partitioned into streams of length 2127. Each stream can be used
as a random number generator. Every stream is split up into 251 substreams of
length 276. The design of RngStreams gives a large number of long substreams
that behave nearly independently of each other. The user can set one seed to
adjust all the streams and substreams.

For algorithms that consume random numbers on many different processors,
we need to supply a seed to each processor. Each stream should still simulate
independent U(0, 1) random variables, but now we also want the streams to
behave as if they were independent of each other. Making that work right
depends on subtle details of the random number generator being used, and the
best approach is to use a random number generator designed to supply multiple
independent streams.

While design of random number generators is a mature field, design for
parallel applications is still an active area. It is far from trivial to supply lots
of good seeds to a random number generator. For users it would be convenient
to be able to use consecutive non-negative integers to seed multiple generators.
That may work if the generator has been designed with such seeds in mind, but
otherwise it can fail badly.

Another approach is to use one random number generator to pick the seeds
for another. That can fail too. Matsumoto et al. (2007) study this issue. It
was brought to their attention by somebody simulating baseball games. The
simulation for game i used a random number generator seeded by si. The seeds
si were consecutive outputs of a second random number generator. These seeds
resulted in the 15’th batter getting a hit in over 50% of the first 25 simulated
teams, even though the simulation used batting averages near 0.250.

A better approach to getting multiple seeds for the Mersenne Twister is to
take integers 1 to K, write them in binary, and apply a cryptographically secure
hash function to their bits. The resulting hashed values are unlikely to show
a predictable pattern. If they did, it would signal a flaw in the hash function.
The advanced encryption standard (AES) (Daemen and Rijmen, 2002) provides
one such hash function and there are many implementations of it.

3.3 U(0, 1) random variables

The output of a random number generator is usually a simulated draw from the
uniform distribution on the unit interval. There is more than one unit interval.
Any of

[0, 1], (0, 1), [0, 1) or (0, 1]

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.3. U(0, 1) random variables 9

can be considered to be the unit interval. But whichever interval we choose,

U[0, 1], U(0, 1), U[0, 1) and U(0, 1]

are all the same distribution. If 0 6 a 6 b 6 1 and U is from any of these
distributions then P(a 6 U 6 b) = b − a. We could never distinguish between
these distributions by sampling independently from them. If we ever got U = 0,
then of course we would know it was from U[0, 1) or U[0, 1]. But the probability
of seeing U = 0 once in any finite sample is 0. Clearly, the same goes for seeing
U = 1. Even with a countably infinite number of observations from U[0, 1], we
have 0 probability of seeing any exact 0s or 1s.

For some theoretical presentations it is best to work with the interval [0, 1).
This half-open interval can be easily split into k > 2 congruent pieces [(i −
1)/k, i/k) for i = 1, . . . , k. Then we don’t have to fuss with one differently
shaped interval containing the value 1. By contrast, the open intervals ((i −
1)/k, i/k) omit the values i/k, while the closed intervals [(i−1)/k, i/k] duplicate
some. Half-open intervals offer mainly a notational convenience.

In numerical work, real differences can arise between the various unit inter-
vals. The random number generators we have considered simulate the uniform
distribution on a discrete set of integers between 0 and some large value L. If
the integer x is generated as the discrete uniform variable, then U = x/L could
be the delivered continuous uniform variable. It now starts to make a differ-
ence whether “between” 0 and L includes either 0, or L, or both. The result
is a possibility that U = 0 or U = 1 can be delivered. Code that computes
− log(1− U), or 1.0/U or sin(U)/U for example can then encounter problems.

It is best if the simulated values never deliver U = 0 or U = 1. That is
something for the designer of the generator to arrange, perhaps by delivering
U = x/(L + 1) in the example above. The user cannot always tell whether
the random number generator avoids delivering 0s and 1s, partly because the
random number generator might get changed later. As a result it pays to be
cautious and write code that watches for U = 0 or 1. One approach is to reject
such values and take the next number from the stream. But rejecting those
values would destroy synchronization, with little warning to others using the
code. Also, the function receiving the value U may not have access to the next
element of the random number stream. As a result it seems better to interpret
U = 0 as the smallest value of U that could be safely handled and similarly take
U = 1 as the largest value that can be safely handled. In some circumstances
it might be best to generate an error message upon seeing U ∈ {0, 1}.

Getting U = 0 or U = 1 will be very rare if L is large, and the simulation
is not. But for large simulations these values have a reasonable chance of being
delivered. Suppose that L ≈ 232 and the generator might deliver either a 0 or
a 1. Then the chance of a problematic value is 2−31 and, when m numbers are
drawn the expected number m/231 of problematic inputs could well be large.

The numerical unit interval differs from the mathematical one in another
way. Floating point values are more finely spaced at the left end of the interval
near 0 than they are at the right end, near 1. For example in double precision,

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

10 3. Uniform random numbers

we might find that there are no floating point numbers between 1 and 1−10−17

while the interval between 0 and 10−300 does have some. In single precision
there is an even wider interval around 1 with no represented values. If uniform
random numbers are used in single precision, then that alone could produce
values of U = 1.0.

3.4 Inside a random number generator

Constructing random number generators is outside the scope of this book. Here
we simply look at how they operate in order to better understand their behavior.
The chapter end notes contain references which develop these results and many
others.

The majority of modern random number generators are based on simple
recursions using modular arithmetic. A well known example is the linear con-
gruential generator or LCG:

xi = a0 + a1xi−1 mod M. (3.1)

Taking a0 = 0 in the LCG, yields the multiplicative congruential generator
or MCG:

xi = a1xi−1 mod M. (3.2)

An LCG is necessarily slower than an MCG and because the LCG does not bring
much if any quality improvement, MCGs are more widely used. A generalization
of the MCG is the multiple recursive generator or MRG:

xi = a1xi−1 + a2xi−2 + · · ·+ akxi−k mod M, (3.3)

where k > 1 and ak 6= 0. Lagged Fibonacci generators which take the form
xi = xi−r + xi−s mod M for carefully chosen r, s and M are an important
special case, because they are fast.

A relatively new and quite different generator type is the inversive con-
gruential generator, ICG. For a prime number M the ICG update is

xi =

{
a0 + a1x

−1
i−1 mod M xi−1 6= 0

a0 xi−1 = 0.
(3.4)

When x 6= 0, then x−1 is the unique number in {0, 1, . . . ,M − 1} with xx−1 =
1 mod M . The ICG behaves as if it uses the convention 0−1 = 0.

These methods produce a sequence of integer values xi ∈ {0, 1, . . . ,M − 1},
that is, integers modulo M . With good choices for the constants aj and M , the
xi can simulate independent random integers modulo M .

The LCG takes on at most M different values and so has period P 6 M .
For the MCG we cannot allow xi = 0 because then the sequence stays at 0. As
a result P 6 M − 1 for the MCG. The MRG will start to repeat as soon as

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.4. Inside a random number generator 11

k consecutive values xi, . . . , xi+k−1 duplicate some previously seen consecutive
k-tuple. There are Mk of these, and just like with the MCG, the state with k
consecutive 0s cannot be allowed. Therefore P 6Mk − 1.

There are three main ways to choose M . Sometimes it is advantageous to
choose M to be a large prime number. The value 231 − 1 is popular because
it can be exploited in conjunction with 32 bit integers to get great speed. A
prime number of the form 2k − 1 is called a Mersenne prime. Another choice
is to take M = 2r for some integer r > 1. For the MRG (3.3) it is reasonable
to combine a small M with a large k to get a large value of Mk − 1. The
third choice, with M = 2 is especially convenient because it allows fast bitwise
operations to be used.

MRGs with M = 2 are called linear feedback shift register (LFSR)
generators. They are also called Tausworthe generators. With M = 2, the
MRG delivers simulated random bits xi ∈ {0, 1}. We might use 32 of them to
produce an output value ui ∈ [0, 1]. The original proposals took 32 consecutive
bits to make ui. Instead it is better to arrange for the lead bits of consecutive
ui to come from consecutive x’s, as much as possible. Let the k’th bit of ui be
uik. In generalized feedback shift registers the bits u1k, u2k, . . . are an
LFSR for each k. A further operation, involving multiplication of those bits by
a matrix (modulo 2), leads to a twisted GFSR (TGFSR). Twisting is a key
ingredient of the Mersenne twister.

The MRG can be compactly written as,
xi
xi−1
xi−2

...
xi−k+1

 =


a1 a2 · · · ak
1

1
. . .

1




xi−1
xi−2
xi−3

...
xi−k

 mod M (3.5)

or si = Asi−1 mod M for a state vector si = (xi, xi−1, . . . , xi−k+1)T and the
given k by k matrix A with elements in {0, 1, . . . ,M−1}. This matrix represen-
tation makes it easy to jump ahead in the stream of an MRG. To move ahead
2ν places, we take

si+2ν = (A2νsi) mod M = ((A2ν mod M)si) mod M.

The matrix A2ν mod M can be rapidly precomputed by the iteration A2ν =
(A2ν−1

)2 mod M .
Equation (3.5) also makes it simple to produce and study thinned out sub-

streams x̃i ≡ x`+ki, based on taking every k’th output value. Those substreams

are MRGs with Ã = Ak mod M . The thinned out stream is not necessarily
better than the original one. In the case of an MCG, the thinned out sequence
is also an MCG with ã1 = ak1 mod M . If this value were clearly better, then we
would probably be using it instead of a1.

The representation (3.5) includes the MCG as well, for k = 1, and similar,
though more complicated formulas, can be obtained for the LCG after taking
account of the constant a0.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

12 3. Uniform random numbers

a a2 a3 a4 a5 a6

0 0 0 0 0 0
1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

Table 3.1: The first column shows values of a ranging from 0 to 6. Subsequent
columns show powers of a taken modulo 7. The last 6 entries of the final column
are all 1’s in accordance with Fermat’s theorem. The primitive roots are 3 and 5.

3.5 Uniformity measures

For simplicity, suppose that our random number generator produces values xi
for i > 1 and that it has a single cycle with period P , so that xi+P = xi. The
first thing to ask of a generator is that the values x1, . . . , xP when converted to
ui ∈ [0, 1] should be approximately uniformly distributed. Though P is usually
too large for us to in fact produce a histogram of u1, . . . , uP , the mathematical
structure in the generator allows comparison of that histogram to the U(0, 1)
distribution.

Naturally, P genuinely independent U(0, 1) random variables would not have
a perfectly flat histogram. We prefer a perfectly flat histogram for u1, . . . , uP
because an uneven one would over-sample some part of the unit interval and
whichever part it oversampled would bring an unreasonable bias. For P large
enough, the genuinely random values would have a very flat histogram with high
probability.

Designers of random number generators carefully choose parameters for us.
Suppose that the MCG has xn+1 ≡ anx1 mod m where m = p is a prime
number. If an ≡ 1 mod p then xn+k = xk for all k, and the period is at most
n. For each a let r(a) = min{k > 0 | ak ≡ 1 mod p}. We know that the
period cannot be any larger than p − 1 because there are only p − 1 nonzero
integers modulo p. A primitive root is a value a with r(a) = p−1, attaining the
maximum period. Table 3.1 illustrates that for p = 7 there are two primitive
roots a = 3 and a = 5. For a large p, the designer of a random number generator
may restrict attention to primitive roots, but then has to consider other criteria
to choose among those roots.

Simply getting good uniformity in the values u1, . . . , uM is not enough. The
LCG

xn = xn−1 + 1 mod m (3.6)

achieves perfect uniformity on values 0 through m − 1 by going through them
in order, and so it produces a perfect discrete uniform distribution for ui. Of

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.5. Uniformity measures 13

course, it badly violates the independence we require for successive pairs of
random numbers.

The way that bad generators like (3.6) are eliminated is by insisting that
the pairs (u1, u2), (u2, u3), . . . , (uP , u1) have approximately the U[0, 1]2 distri-
bution. The RANDU number generator Lewis et al. (1969), was designed in
part to get the best distribution for Spearman correlations of 10 consecutive
points (ui, ui+L) at lags L ∈ {1, 2, 3}. RANDU was a very popular genera-
tor. Unfortunately, RANDU has very bad uniformity. The consecutive triples
(ui, ui+1, ui+2) are all contained within 15 parallel planes in [0, 1]3. RANDU is
now famous for its unacceptable three dimensional distribution, and not for the
care taken in tuning the two dimensional distributions.

Ideally the k-tuples (ui, ui+1, . . . , ui+k−1) for general k should also be very
uniform, at least for the smaller values of k. The pseudo-random number gen-
erators that we use can only gaurantee uniformity up to some moderately large
values of k.

If a good random number generator is to have near uniformity in the values
of (ui, ui+1, . . . , ui+k−1) ∈ [0, 1]k, then the search for good generators requires
a means of measuring the degree of uniformity in a list of k-tuples.

A very direct assessment of uniformity begins by splitting the unit interval
[0, 1) into 2` congruent subintervals [a/2`, (a+ 1)/2`) for 0 6 a < 2`. The sub-
interval containing ui can be determined from the first ` bits in ui. The unit
cube [0, 1)k is similarly split into 2k` subcubes. A random number generator
with period P = 2K is k-distributed to `-bit accuracy if each of the boxes

Ba ≡
k∏
j=1

[
aj
2`
,
aj + 1

2`

)
,

for 0 6 aj < 2`, has 2K−k` of the points (ui, ui+1, . . . , ui+k−1) for i = 1, . . . , P .
We also say that such a random number generator is (k, `)-equidistributed.
We will see a more powerful form of equidistribution, using not necessarily
cubical regions, in Chapter 15 on quasi-Monte Carlo.

Many random number generators have a period of the form P = 2K − 1,
because the state vector is not allowed to be all zeros. Such random number
generators are said to be (k, `)-equidistributed if each of the boxes Ba above has
2K−k` points in it, except the one for a = (0, 0, . . . , 0), which then has 2K−k`−1
points in it.

The Mersenne twister MT19937 is 623-distributed to 32 bits accuracy. It is
also 1246-distributed to 16 bits accuracy, 2492-distributed to 8 bits accuracy,
4984-distributed to 4 bits accuracy, 9968-distributed to 2 bits accuracy and
19937-distributed to 1 bit accuracy. One reason for its popularity is that the
dimension k = 623 for which equidistribution is proven is relatively large. This
fact may be more important than the enormous period which MT19937 has.

Marsaglia (1968) showed that the consecutive tuples (ui, . . . , ui+k−1) from
an MCG have a lattice structure. Figure 3.1 shows some examples for k = 2,
using p small enough for us to see the structure.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

14 3. Uniform random numbers

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 59 a = 33

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 59 a = 44

A good and a bad lattice

Figure 3.1: This figure illustrates two very small MCGs. The plotted points are
(ui, ui+1) for 1 6 i 6 P . The lattice structure is clearly visible. Both MCGs
have M = 59. The multiplier a1 is 33 in the left panel and 44 in the right. Two
basis vectors are given near the origin. The points lie in systems of parallel lines
as shown.

A lattice is an infinite set of the form

L =

{ k∑
j=1

αjvj | αj ∈ Z
}
, (3.7)

where vj are linearly independent basis vectors in Rk. The tuples from the
MCG are the intersection of the infinite set L with the unit cube [0, 1)k. The
definition of a lattice closely resembles the definition of a vector space. The
difference is that the coefficients αj are integers in a lattice, whereas they are
real values in a vector space. We will study lattices further in Chapters 15
through 17 on quasi-Monte Carlo. There is more than one way to choose the
vectors v1, . . . , vk. Each panel in Figure 3.1 shows one basis (v1, v2) by arrows
from the origin.

The lattice points in k dimensions lie within sets of parallel k−1 dimensional
planes. Lattices where those planes are far apart miss much of the space, and so
are poor approximations to the desired uniform distribution. In the left panel
of Figure 3.1, the two marked lines are distance 0.137 apart. The points could
also be placed inside a system of lines 0.116 apart, nearly orthogonal to the set
shown. The first number is the quality measure for these points because we
seek to minimize the maximum separation. The lattice on the right is worse,
because the maximum separation, shown by two marked lines, is 0.243.

The number of planes on which the points lie tends to be smaller when those
planes are farther apart. The relationship is not perfectly monotone because the
number of parallel planes required to span the unit cube depends on both their

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.6. Statistical tests of random numbers 15

separation and on the angles that they make with the coordinate axes of the
cube. For an MCG with period P , Marsaglia (1968) shows that there is always
a system of (k!P)1/k or fewer parallel planes that contain all of the k-tuples.

MCGs are designed in part to optimize some measure of quality for the
planes in which their k-tuples lie. Just as a bad lattice structure is evidence
of a flaw in the random number generator, a good lattice structure, combined
with a large value of P is proof that the k dimensional projections of the full
period are very uniform. Let dk = dk(u1, . . . , uP) be the maximum separation
between planes in [0, 1]k for the k-tuples formed from u1, . . . , uP . We want a
small value for d1 and d2, and remembering RANDU, for dk at larger values of
k. It is customary to use ratios sk = d∗k/dk where d∗k is some lower bound for dk
given the period P . The idea is to seek a generator with large (near 1) values
for sk for all small k. Computing dk can be quite difficult and the choice of a
generator involves trade-offs between the quality at multiple values of k. Gentle
(2003, Chapter 2.2) has a good introduction to tests of lattice structure.

Inversive congruential generators produce points that do not have a lattice
structure. Nor do they satisfy strong (k, `)-equidistribution properties. Their
uniformity properties are established by showing that the fraction of their points
within any box

∏k
j=1[0, aj] is close to the volume

∏
j ak of that box. We will

revisit this and other measures of uniformity, called discrepancies, in Chapter 15
on quasi-Monte Carlo.

3.6 Statistical tests of random numbers

The (k, `)-equidistribution and spectral properties mentioned in §3.5 apply to
the full period of the random number generator. They describe uniformity for
the set of all P k-tuples of the form (xi, xi+1, . . . , xi+k−1) for 1 6 i 6 P and
small enough k. In applications, we use only a small number n � P of the
random numbers. We might then be concerned that individual small portions
of a generator could behave badly even though they work well when taken
together.

To address this concern, some tests have been designed for small subsets of
random number generator output. Some of the tests are designed to mimic the
way random number generators might be used in practice. Others are designed
to probe for specific flaws that we suspect or know appear in some random
number generators.

Dozens of these tests are now in use. A few examples should give the idea.
The references in the chapter end notes describe the tests in detail.

One test described by Knuth (1998) is based on permutations. Take k con-
secutive output values ui, ui+1, . . . , ui+k−1 from the sequence where k > 1 is
a small integer, such as 5. If the output values are ranked from smallest to
largest, then there are k! possible orderings. All k! orderings should be equally
probable. We can test uniformity by finding n non-overlapping k-tuples, count-
ing the number of times each of k! orderings arises and running Pearson’s χ2

test to compare the observed counts versus the expected values n/k!.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

16 3. Uniform random numbers

The χ2 tests gives a p-value

p = P
(
χ2
(k!−1) >

k!∑
`=1

(O` − E`)2

E`

)
where O` is the number of times that ordering ` was observed and E` = n/k!
is the expected number of times, and χ2

(ν) is a chi-squared random variable on
ν degrees of freedom. Small values of p are evidence that the ui are not IID
uniform. If the ui are IID U(0, 1), then the distribution of p approaches the
U(0, 1) distribution as n→∞.

A simple test of uniformity is to take large n and then compute a p-value
such as the one given above. If p is very small then we have evidence of a
problem with the random number generator. It is usually not enough to find
and report whether one p-value from a given test is small or otherwise. Instead
we want small, medium and large p-values to appear with the correct relative
frequency for sample sizes n comparable to ones we might use in practice. In
a second-level test we repeat a test like the one above some large number
N of times and obtain p-values p1, . . . , pN . These should be nearly uniformly
distributed. The second level test statistic is a measure of how close p1, . . . , pN
are to the U(0, 1) distribution. A popular choice is the Kolmogorov-Smirnov
statistic

KS = sup
06t61

∣∣∣ 1

N

N∑
j=1

1pj6t − t
∣∣∣.

The second level p-value is P(QN > KS) where QN is a random variable that
truly has the distribution of a Kolmogorov-Smirnov statistic applied to N IID
U(0, 1) random variables. That is a known distribution, which makes the sec-
ond level test possible. Small values, such as 10−10 for the second order p-
value indicate a problem with the random number generator. Alternatives to
Kolmogorov-Smirnov, such as the Anderson-Darling test, have more power to
capture departures from U(0, 1) in the tails of the distribution of pj .

A second-level test will detect random number generators that are too uni-
form, having for example too few pj below 0.01. They will also capture subtle
flaws like p values that are neither too high nor too low on average, but instead
tend to be close to 0.5 too often.

There are third-level tests based on the distribution of second-level test
statistics but the most practically relevant tests are at the first or second level.
We finish this section by describing a few more first level tests which can be
used to construct corresponding second order tests.

Marsaglia’s birthday test has parameters m and n. In it, the RNG is used
to simulate m birthdays b1, . . . , bm in a hypothetical year of n days. Each bi
should be U{1, 2, . . . , n}. Marsaglia and Tsang (2002) consider n = 232 and
m = 212. The sampled bi values are sorted into b(1) 6 b(2) 6 · · · 6 b(m) and
differenced, forming di = b(i+1) − b(i) for i = 1, . . . ,m− 1. The test statistic is
D, the number of values among the spacings di that appear two or more times.
The distribution of D is roughly Poi(λ) where λ = m3/(4n) for m and n in the

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

3.7. Pairwise independent random numbers 17

range they use. For the given m and n, we find λ = 4. The test compares N
sample values of D to the Poisson distribution. The birthday test seems strange,
but it is known to detect problems with some lagged Fibonacci generators.

A good multiplicative congruential generator has its k-tuples on a well
separated lattice. Those points are then farther apart from each other than
P random points in [0, 1)k would be. Perhaps a small sample of n points
vj = (ujk+1, . . . , u(j+1)k) for j = 1, . . . , n preserves this problem and the points
avoid each other too much. The close-pair tests are based on the distribution
of MDn,k = min16j<j′6n ‖vj−vj′‖. Here ‖z‖ is a convenenient norm. L’Ecuyer
et al. (2000) find that norms with a wraparound feature, (treating 0 and 1 as
identical) are convenient because boundary effects disappear making it easier
to approximate the distribution that MDn,k would have given perfect uniform
numbers.

To run these tests we need to know the true distribution of their test statistics
on IID U(0, 1) inputs. That true distribution is usually easiest to work out if
the k-tuples in the test statistic are non-overlapping (ujk+1, . . . , u(j+1)k) for
j = 1, . . . , n. Sometimes the tests are run instead on overlapping k-tuples
(uj+1, . . . , uj+k) for j = 1, . . . , n. Tests on overlapping tuples are perfectly
valid, though it may then be much harder to find the proper distribution of the
test statistic.

3.7 Pairwise independent random numbers

Suppose that we really want to use physical random numbers, and that we
stored nd simulated U(0, 1) random variables from a source that has passed
enough empirical testing to win our trust. We can put these together to obtain
n points U1, . . . ,Un ∼ U(0, 1)d. We may find that n is too small. Then it is
possible, as described below, to construct N = n(n−1)/2 pairwise independent
variables X1, . . . ,XN from U1, . . . ,Un. This much larger number of random
variables may be enough for our Monte Carlo simulation.

The construction makes use of addition modulo 1. For z ∈ R, define bzc to be
the integer part of z, namely the largest integer less than or equal to z. Then
z mod 1 is z−bzc. The sum of u and v modulo 1 is u+v mod 1 = u+v−bu+vc.
We write u + v mod 1 as u ⊕ v for short. The N vectors Xi are obtained as
Uj ⊕ Uk for all pairs 1 6 j < k 6 n. Addition modulo 1 is applied separately
for each component of Xi.

A convenient iteration for generating the Xi is

i← 0

for j = 1, . . . , n− 1

for k = j + 1, . . . , n

i← i+ 1

Xi ← Uj ⊕Uk

end double for loop

(3.8)

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

18 3. Uniform random numbers

In a simulation we ordinarily use Xi right after it is created.
The vectors Xi are pairwise independent (Exercise 3.9). This means that

Xi is independent of Xi′ for 1 6 i < i′ 6 N . They are not fully independent.
For example

(U1 ⊕U2) + (U3 ⊕U4)− (U1 ⊕U3)− (U2 ⊕U4)

is always an integer. As a result, the Xi can be used in problems where pairwise
independence, but not full independence, is enough.

Proposition 3.1. Let Y = f(X) have mean µ and variance σ2 <∞ when X ∼
U(0, 1)d. Suppose that X1, . . . ,XN are pairwise independent U(0, 1)d random

variables. Let Yi = f(Xi), Ȳ = (1/N)
∑N
i=1 Yi and s

2 = (N − 1)−1
∑N
i=1(Yi −

Ȳ)2. Then

E(Ȳ) = µ, Var(Ȳ) =
σ2

N
, and E(s2) = σ2.

Proof. Exercise 3.10.

Pairwise independence differs from full independence in one crucial way. The
average Ȳ of pairwise independent and identically distributed random variables
does not necessarily satisfy a central limit theorem. The distribution depends
on how the pairwise independent points are constructed.

To get a 99% confidence interval for E(Y) we could form R genuinely inde-
pendent replicates Ȳ1, . . . , ȲR, each of which combines N pairwise independent
random variables, and then use the interval

¯̄Y ± 2.58

(
1

R(R− 1)

R∑
r=1

(Ȳr − ¯̄Y)2
)1/2

, where ¯̄Y =
1

R

R∑
r=1

Ȳr.

A central limit applies as R increases, assuming that 0 < σ2 <∞.

Chapter end notes

Extensive background on random number generators appears in Gentle (2003),
Tezuka (1995) and Knuth (1998). The latter book includes a description of
philosophical issues related to using deterministic sequences to simulate random
ones and a thorough treatment of congruential generators and spectral tests.
Gentle (2003, Chapter 1) describes and relates many different kinds of random
number generators. L’Ecuyer (1998) provides a comprehensive survey of random
number generation.

Multiplicative congruential generators were first proposed by Lehmer (1951).
Linear feedback shift register generators are due to Tausworthe (1965). To-
gether, these are the antecedents of most of the modern random number gener-
ators.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

End Notes 19

GFSRs were introduced by Lewis and Payne (1973) and TGFSRs by Mat-
sumoto and Kurita (1992). The Mersenne twister was introduced in Matsumoto
and Nishimura (1998).

TestU01 is a comprehensive test package for random number generators is
given by L’Ecuyer and Simard (2007). It incorporates the tests from Marsaglia’s
diehard test battery, available on the Internet, as well as tests developed by the
National Institute of Standards and Technology. When a battery of tests is
applied to an ensemble of random number generators, we not only see which
generators fail some test, we also see which tests fail many generators. The latter
pattern can even help spot tests that have errors in them (Leopardi, 2009).

For cautionary notes on parallel random number generation see Hellekalek
(1998), Mascagni and Srinivasan (2004) and Matsumoto et al. (2007). The latter
describe several parametrization techniques for picking seeds. They recommend
a seeding scheme from L’Ecuyer et al. (2002).

Owen (2009) investigates the use of pairwise independent random variables
drawn from physical random numbers, described in §3.7. The average

Ȳ =
1(
n
2

) n−1∑
j=1

n∑
k=j+1

f(Uj ⊕Uk) (3.9)

has a limiting distribution, as n→∞ that is symmetric (weighted sum of differ-
ences of χ2) but not Gaussian. Because it is non-Gaussian, some independent
replications of Ȳ are needed as described in §3.7 in order to apply a central limit
theorem. Because it is symmetric, we do not need a large number of replications.

There are many proposals to make new random number generators from
old ones. Such hybrid, or combined random number generators can be
used to get a much longer period, potentially as long as the product of the
component random number generators’ periods, or to eliminate flaws from one
generator. For example, the lattice structure of an MCG can be broken up by
suitable combinations with inversive generators (L’Ecuyer and Granger-Piché,
2003). Similarly, for applications in which the output must not be predictable,
a hybrid with physical random numbers may be suitable.

One way to combine two random number streams ui and vi is to deliver ui⊕vi
where ⊕ is addition modulo 1 as described in §3.7. A second class of techniques
is to use the output of one random number generator to shuffle the output of
another. Knuth (1998) remarks that shuffling makes it hard to skip ahead in
the random number generator. Combined generators can be difficult to analyze.
L’Ecuyer (1994, Section 9) reports that some combinations make matters worse
while others bring improvements. Therefore a combined generator should be
selected using the same care that we use to pick an ordinary generator.

The update matrix A in (3.5) is sparse. When we want to jump ahead
by 2µ places, then we use A2ν which may not be sparse. In the case of the
Mersenne Twister, large powers of A yield a dense 19937 × 19937 matrix of
bits, taking over 47 megabytes of memory and requiring slow multiplication.
RngStreams avoids this problem because it is a hybrid of several smaller random
number generators, and jumping ahead requires a modest number of small dense

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

20 3. Uniform random numbers

matrices. Improved methods of jumping ahead in the Mersenne Twister have
been developed (Haramoto et al., 2008) but they do not recommend how far to
jump ahead in order to form streams.

Recommendations

For Monte Carlo applications, it is necessary to use a high quality random num-
ber generator with a long enough period. The theoretical principles underlying
the generator and its quality should be published. There should also be a pub-
lished record showing how well the generator does on a standard battery of
tests, such as TestU01.

When using an RNG, it is good practice to explicitly set the seed. That
allows the computations to be reproduced later.

If many independent streams are required then a random number generator
which supports them is preferable. For example RngStreams produces indepen-
dent streams and has been extensively tested.

In moderately large projects, there is an advantage to isolating the random
number generator inside one module. That makes it easier to replace the random
numbers later if there are concerns about their quality.

Exercises

3.1. Let P = 219937 − 1 be the period of the Mersenne twister. Using the
equidistribution properties of the Mersenne twister:

a) For how many i = 1, . . . , P will we find max16j6623 ui+j−1 < 2−32?

b) For how many i = 1, . . . , P will we find min16j6623 ui+j−1 > 1− 2−32?

c) Supose that we use the Mersenne twister to simulate coin tosses, with toss
i being heads if ui < 1/2 and tails if 1/2 6 ui. Is there any index i in
1 6 i 6 P for which ui, . . . , ui+10000−1 would give 10,000 heads in a row?
How about 20,000 heads in a row?

Note that when i + j − 1 > P the value ui+j−1 is still well defined. It is
ui+j−1 mod P .

3.2. The lattice on the right of Figure 3.1 is not the worst one for p = 59. Find
another value of a for which the period of xi = axi−1 mod 59, starting with
x1 = 1 equals 59, but the 59 points (ui, ui+1) for ui = xi/59 lie on parallel lines
more widely separated than those with a = 44. Plot the points and compute
the separation between those lines. [Hint: identify a lattice point on one of
the lines, and drop a perpendicular from it to a line defined by two points on
another of the lines.]

3.3. Suppose that we are using an MCG with P 6 232.

a) Evaluate Marsaglia’s upper bound on the number of planes which will
contain all consecutive k = 10 tuples from the MCG.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

Exercises 21

b) Repeat the previous part, but assume now a much larger bound P 6 264.

c) Repeat the previous two parts for k = 20 and again for k = 100.

3.4. Suppose that an MCG becomes available with period 219937 − 1. What is
Marsaglia’s upper bound on the number of planes in [0, 1]10 that will contain
all 10-tuples from such a generator?

3.5. Consider the inversive generator xi = (a0 + a1x
−1
i−1) mod p for p = 59,

a0 = 1 and a1 = 17. Here x−1 satisfies xx−1 mod p = 1 for x 6= 0 and 0−1 is
taken to be 0.

a) What is the period of this generator?

b) Plot the consecutive pairs (xi, xi+1).

3.6. Here we investigate whether the digits of π appear to be random.

a) Find the first 10,000 digits of π − 3
.
= .14159 after the decimal point,

and report how many of these are 0’s, 1’s and . . . 9’s. These digits are
available in many places on the Internet.

b) Report briefly how you got them into a form suitable for computation.
You might be able to do it within a file editor, or you might prefer to
write your own short C or perl or other program to get the data in a
form suitable for computing. Either list your program or describe your
sequence of edits. Also: indicate which URL you got the π digits from.
One time, it appeared that not all π listings on the web agree!

c) A χ2 test for uniformity has test statistic

X2 =

9∑
j=0

(Ej −Oj)2/Ej

where Ej is the expected number of occurences of digit j and Oj is the
observed number. Report the value of X2 for this data. Report also the
p-value P(χ2

(9) > X2) where χ2
(9) denotes a chi-squared random variable

with 9 degrees of freedom and X2 is the value you computed. 9 degrees
of freedom are appropriate here because there are 10 cells, and one df is
lost because their probabilities sum to 1. No more are lost, because no
parameters need to be estimated to compute the Ej .

d) Now take the first 10,000 (non-overlapping) pairs of digits past the deci-
mal. There are 100 possible digit pairs. Count how many times each one
appears, and print the results in a 10 by 10 matrix. Compute X2 and the
appropriate p-value for X2. (Use 99 degrees of freedom.)

e) Split the first 1,000,000 digits after the decimal point into 1000 consecutive
blocks of 1000 digits. For each block of 1000 digits compute the p-value
using a χ2

(9) distribution to test the uniformity of digit counts 0 through
9. What is the smallest p-value obtained? What is the largest? Produce
a histogram of the 1000 p-values. If the digits are random, it should look
like the uniform distribution on [0, 1].

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

22 3. Uniform random numbers

3.7. Here we make a simple test of the Mersenne Twister, using a trivial starting
seed. The test requires the original MT19937 code, widely available on the
internet, which comes with a function called init by array.

a) Seed the Mersenne Twister using init by array with N = 1 and the un-
signed long vector of length N , called init key in the source code, having
a single entry init key[0] equal to 0. Make a histogram of the first 10,000
U(0, 1) sample values from this stream (using the function genrand real3).
Apply the χ2 test of uniformity based on the number of these sample val-
ues falling into each of 100 bins [(b − 1)/100, b/100) for b = 1, . . . , 100.
Report the p-value for this test.

b) Continue the previous part, until you have obtained 10,000 p-values, each
based on consecutive blocks of 10,000 sample values from the stream.
Make a histogram of these p-values and report the p-value of this second
level test.

This exercise can be done with the C language version of MT19937. If you use
a translation into a different language, then indicate which one you have used.

3.8 (Use of streams). Let Ui be a sequence of IID U(0, 1) random variables for

integers i, including i 6 0. Let T = min{i > 1 |
∑i
j=1

√
Uj > 40} be the first

future time that a barrier is crossed. Similarly, let S = min{i > 0 |
∑i
j=0 U

2
−j >

20} represent an event defined by the past and present at time 0. These events
are separated by time T + S. (They are determined via T + S + 1 of the Ui.)

a) Estimate µ40,20 = E(T+S) by Monte Carlo and give a confidence interval.
Use n = 1000 simulations.

b) Replace the threshold 40 in the definition of T by 30. Estimate µ30,20 =
E(T + S) by Monte Carlo and give a confidence interval, using n = 1000
simulations. Explain how you ensure that the same past events are used
for both µ40,20 and µ30,20. Explain how you ensure that the same future
points are used in both estimates.

3.9. Suppose that U , V , and W are independent U(0, 1) random variables.
Show that U ⊕V is independent of U ⊕W . [The ⊕ operation is defined in §3.7.]

3.10. Prove Proposition 3.1 on low order moments of functions of pairwise
independent random vectors.

3.11 (Research). Given n points Ui ∼ U(0, 1)d we can form N = 2n−1 pairwise
independent random vectors X1, . . . ,XN by summing all non-empty sets of Ui

modulo 1. For instance with n = 3 we get seven pairwise independent vectors
U1, U2, U3, U1⊕U2, U1⊕U3, U2⊕U3, and U1⊕U2⊕U3. This scheme allows
us to recycle about log2(N) physical random vectors instead of about

√
2N as

required by combining pairs. For a function f we then use the average Ỹ of N
function values f(U1), . . . , f(U1 ⊕ · · · ⊕Un) to estimate

∫
(0,1)d

f(u) du.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

Exercises 23

a) For n = 8, d = 1 and f(X) = exp(Φ−1(X)) compute the distribution

of Ỹ , the average of all N = 255 pairwise independent combinations.
Do this by computing it 10,000 times using independent (pseudo)random
U1, . . . , U8 ∼ U(0, 1) inputs each time. Show the histogram of the 10,000

resulting values Ỹ1, . . . , Ỹ10,000. Does it appear roughly symmetric?

b) Revisit the previous part, but now using n = 23 and averaging only the
N =

(
23
2

)
= 253 pairwise sums of U1, . . . , Un as described in §3.7. Show

the histogram of the resulting values Ȳ1, . . . , Ȳ10,000 from equation (3.9).
Does it appear roughly symmetric?

c) Compare the two methods graphically, by sorting their values so that

Ỹ(1) 6 Ỹ(2) 6 · · · 6 Ỹ(10,000) and Ȳ(1) 6 Ȳ(2) 6 · · · 6 Ȳ(10,000) and plotting

Ỹ(r) versus Ȳ(r). If the methods are roughly equivalent then these points
should lie along a line through the point (µ, µ) (for µ = exp(1/2)) and
slope

√
253/255. Do the methods appear to be roughly equivalent? What

value do you get for
∑10,000
r=1 (Ỹr − µ)4/

∑10,000
r=1 (Ȳr − µ)4?

The function Φ−1 is the inverse of the N (0, 1) cumulative distribution function.
This exercise requires a computing environment with an implementation of Φ−1.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

24 3. Uniform random numbers

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

Bibliography

Daemen, J. and Rijmen, V. (2002). The design of Rijndael: AES-The advanced
encryption standard. Springer, Berlin.

Gentle, J. E. (2003). Random number generation and Monte Carlo methods.
Springer, New York, 2nd edition.

Haramoto, H., Matsumoto, M., Nishimura, T., Panneton, F., and L’Ecuyer,
P. (2008). Efficient jump ahead for F2-linear random number generators.
INFORMS Journal on Computing, 20(3):385–390.

Hellekalek, P. (1998). Don’t trust parallel Monte Carlo! In Proceedings of the
twelfth workshop on parallel and distributed simulation, pages 82–89.

Hellekalek, P. and L’Ecuyer, P. (1998). Random number generators: selection
criteria and testing. In Hellekalek, P. and Larcher, G., editors, Random and
quasi-random point sets, pages 223–265. Springer, New York.

Knuth, D. E. (1998). The Art of Computer Programming, volume 2: Seminu-
merical algorithms. Addison-Wesley, Reading MA, 3rd edition.

L’Ecuyer, P. (1994). Uniform random number generation. Annals of operations
research, 53(1):77–120.

L’Ecuyer, P. (1998). Random number generation. In Banks, J., editor, Handbook
on Simulation. Wiley, New York.

L’Ecuyer, P., Cordeau, J.-F., and Simard, R. (2000). Close-point spatial tests
and their applications to random number generators. Operations Research,
48(2):308–317.

L’Ecuyer, P. and Granger-Piché, J. (2003). Combined generators with com-
ponents from different families. Mathematics and computers in simulation,
62:395–404.

25

26 Bibliography

L’Ecuyer, P. and Simard, R. (2007). TestU01: a C library for empirical testing
of random number generators. ACM transactions on mathematical software,
33(4):article 22.

L’Ecuyer, P., Simard, R., Chen, E. J., and Kelton, W. D. (2002). An object-
oriented random number package with many long streams and substreams.
Operations research, 50(6):131–137.

Lehmer, D. H. (1951). Mathematical models in large-scale computing units. In
Proceedings of the second symposium on large scale digital computing machin-
ery, Cambridge MA. Harvard University Press.

Leopardi, P. (2009). Testing the tests: using random number generators to
improve empirical tests. In L’Ecuyer, P. and Owen, A. B., editors, Monte
Carlo and Quasi-Monte Carlo Methods 2008, pages 501–512, Berlin. Springer-
Verlag.

Lewis, P. A. W., Goodman, A. S., and Miller, J. M. (1969). A pseudo-random
number generator for the System/360. IBM System Journal, 8(2):136–146.

Lewis, T. G. and Payne, W. H. (1973). Generalized feedback shift register
pseudorandom number algorithms. Journal of the ACM, 20(3):456–468.

Marsaglia, G. (1968). Random numbers fall mainly in the planes. Proceedings
of the National Academy of Science, 61:25–28.

Marsaglia, G. and Tsang, W. W. (2002). Some difficult-to-pass tests of random-
ness. Journal of Statistical Software, 7(3):1–9.

Mascagni, M. and Srinivasan, A. (2004). Parametrizing parallel multiplicative
lagged-Fibonacci generators. ACM Transactions on Mathematical Software,
30(7):899–916.

Matsumoto, M. and Kurita, Y. (1992). Twisted GFSR generators. ACM trans-
actions on modeling and computer simulation, 2(3):179–194.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM transactions on modeling and computer simulation, 8(1):3–30.

Matsumoto, M., Wada, I., Kuramoto, A., and Ashihara, H. (2007). Common de-
fects in initialization of pseudorandom number generators. ACM transactions
on modeling and computer simulation, 17(4).

Owen, A. B. (2009). Recycling physical random numbers. Electronic Journal
of Statistics, 3:1531–1541.

Tausworthe, R. C. (1965). Random numbers generated by linear recurrence
modulo two. Mathematics of Computation, 19(90):27–49.

Tezuka, S. (1995). Uniform random numbers: theory and practice. Kluwer
Academic Publishers, Boston.

© Art Owen 2009–2013 do not distribute or post electronically without
author’s permission

