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9

Split-plot and nested designs

In this chapter we look at split-plot designs. The terminology comes from
agriculture. One treatment factor might be applied to large plots of land. A
second treatment treatment factor is then applied to smaller areas, nested within
the plots. The original plots are then split up for the second treatment. The
more general term is split-unit design because the experimental unit doesn’t
have to be a plot of land. For instance in steel production one factor might
be applied to 350 tons of steel while it is being produced and a second factor
might be applied to ingots weight 10 kilograms from one production run (called
a “heat”).

There is a clear economic advantage to split-plot experiments. For instance,
it would be extremely expensive to increase the number of heats of steel being
made and quite inexpensive to look at a large number of ingots from each heat.
Cox (1958, Chapter 7.4) mentions another issue. We might have a limit on the
natural size of blocks that stops us from putting all AB combinations into one
block. Split-plot designs can fit into the block size more easily.

We will also look at two closely related topics. These are nested ANOVAs
and cluster randomized trials.

9.1 Split-plot experiments

In an agriculural setting, one might drive a tractor for one kilometer while
applying factor A (e.g., fertilizer) to plots of land. Then factor B (e.g., seed
type) could be applied to smaller units within that kilometer, called sub-plots.

We do this when factor A is expensive to change in time or money, while
factor B is inexpensive to change. The plots for factor A serve almost exactly like
blocks for factor B. They’re somewhat different from the usual blocks because
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4 9. Split-plot and nested designs

we want have purposely made them differ and want to study them in their own
right.

When we do computer experiments or Monte Carlo simulations, it often
makes sense to analyze them as designed experiments. If one factor A is set at
the beginning of an hour long computation and then a second factor B can be
set when there are just two minutes left in the computation, then a split-plot
design makes sense. We choose A, compute for 58 minutes, save the internal
state of the computation, and then vary factor B several times.

A split-plot design will ordinarily give us better comparisons for the inner
factor B because it is blocked by the outer factor and the outer factor is not
blocked. This is perhaps not surprising. If it is so much cheaper to vary factor
B then it is expected that we can study it with more precision.

To begin with, we will suppose that both A and B are fixed effects. We
consider random effects and mixed effects later.

Let’s vary factor A at I > 2 levels. We will have n plots at each of those
levels for a total of n× I plots. We depict them as follows

A1︷ ︸︸ ︷
B2 B3 B1

plot 1

A3︷ ︸︸ ︷
B1 B3 B2

plot 2

• • •

A2︷ ︸︸ ︷
B1 B2 B3

plot n× I

Here, factor A varies at the level of whole plots. Each level i appears n times.
Factor B varies at the level of sub-plots: j = 1, . . . , J , with J = 3 in the diagram.
Each level j appears nI times

The n appearances of each level of A could be from n replicates or from a
completely randomized design where I treatments were applied n times each in
random order to n× I plots. When replicates are used it is usual to include an
additive shift for them in the model.

We can compare levels of B using ‘within-plot’ differences such as Yijk−Yij′k
for levels j 6= j′ of factor B. We can compare levels of A using ‘between-plot’
differences such as Ȳi•k − Ȳi′•k. We expect between-plot differences to be less
informative when the plots vary a lot.

The AB interaction is estimated with ‘within-plot’ differences. More pre-
cisely, it uses between plot differences of within plot differences that are also
within plot differences of between plot differences:

Ȳij• − Ȳi•• − Ȳ•j• + Ȳ••• =
(
Ȳij• − Ȳi••

)
−
(
Ȳ•j• − Ȳ•••

)
Ȳij• − Ȳi•• =

1

J

J∑
j′=1

Ȳij• − Ȳij′• within

Ȳ•j• − Ȳ••• =
1

I

I∑
i=1

Ȳij• − Ȳi•• also within.

We see from the last line that the interaction is an average of within-plot dif-
ferences and so it gets within-plot accuracy.

© Art Owen 2020 do not distribute or post electronically without author’s
permission



9.1. Split-plot experiments 5

The ANOVA for Factor A is based on Ȳi•k for i = 1, . . . , I and k = 1, . . . , n.
If we the plots are in a randomized block design then our analysis uses those
I × n numbers in a table like the following:

Source df
Replications n− 1
A I − 1
Whole plot error (I − 1)(n− 1)
Total In− 1

If the plots are not in n blocks of I units then we use

Source df
A I − 1
Whole plot error I(n− 1)
Total In− 1

Let’s prefer the blocked analysis. Then the sub-plot ANOVA table is

Source df
B J − 1
AB (I − 1)(J − 1)
“Sub-plot error” I(J − 1)(n− 1) by subtraction
Total I(J − 1)n by subtraction

The subtraction to get the subplot degrees of freedom is

(IJn− 1)− In− 1︸ ︷︷ ︸
whole plots

−(J − 1)− (I − 1)(J − 1) = I(J − 1)(n− 1).

It is the same df as for I replicates of a J × n experiment. The subtraction to
get the total degrees of freedom is

(IJn− 1)− (In− 1) = I(J − 1)n.

We still have to figure out the sums of squares that go in these tables. We
could do a full I ×J ×n ANOVA with replicates k = 1, . . . , n treated as a third
factor C crossed with factors A and B. Then the subplot error sum of squares
is SSABC + SSBC . The whole plot error sum of squares is SSAC . The replicates
sum of squares in the whole plot analysis is SSC . The sums of squares for A, B
and AB are, unsurprisingly, SSA, SSB and SSAB .

There is a different analysis in Montgomery (1997, Chapter 12-4). In our
notation, his model is

Yijk = µ+ αi + βj + (αβ)ij + ck + (βc)jk + (αβc)ijk + εijk,

where γk is the variable for block k = 1, . . . , n. That analysis treats blocks as
random effects and also allows them to have interactions with the fixed effects.
Most other authors choose models in which blocks simply do not interact with
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6 9. Split-plot and nested designs

other effects, for better or worse. There would be no way to estimate E(ε2ijk)
separately from SSABC in that model, without another level of replication. We
will stay with the analysis based on the two tables described above. However,
if you are in a setting where you suspect that there could be meaningful inter-
actions between blocks and treatments, then Montgomery’s approach provides
a way forward.

Yandell (1997, Chapter 23) is a whole chapter on split-plot designs mostly
motivated by agriculture.

9.2 More about split-plots

Jones and Nachtsheim (2009) focus on split-plot designs in industry. They
consider unsuspected split-plots and quote Cuthbert Daniel as saying that most
or all industrial experiments are split-plots. They raise an issue of unrecognized
split-plot experiments. Suppose that an experiment varies oven temperature A,
position in the oven B and recipe C. We think of an A×B × C experiment.

Suppose that temperature is at three levels and is done on a random order
schedule

350 400 375 375 350 400 · · ·
The question that arises is whether after run three they turned the oven off and
back on again or just kept it going at 375 degrees. If the other temperature
changes involved resetting the oven temperature but this one didn’t, then the
experiment may really be partly of split plot type, with the two consecutive
runs at 375 degrees being a double-size whole plot. It is also possible that the
operators might undo the randomization into:

350 350 400 400 375 375 · · ·
to save time and expense which would be a genuine split-plot. Jones and Nacht-
sheim (2009) advocate taking care to make sure that the analysis matches how
the experiment was done.

In a split-split-plot experiment, the sub-plots are split further into sub-
sub-plots for a third treatment factor C. The analysis involves three tables, one
at the plot level, one at the sub-plot level and a new third one at the sub-sub-plot
level.

In a strip-plot experiment, there are two whole plot factors that when
crossed define the whole plots. The name comes from agriculture. A tractor
might drive North to South placing 8 different kinds of fertilizer on the ground.
Later that year a crop-dusting plain might fly East to West trajectories over the
farm land, spraying 12 different pesticide treatments. That crossed structure
generates 96 different whole plots. Each of those whole plots can then be divided
into 4 subplots for four kinds of brocolli. Yandell (1997, Chapter 24.2) discusses
strip-plot experiments.
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9.3. Nested ANOVAs 7

9.3 Nested ANOVAs

Sometimes the levels of B are only defined and make sense with respect to
a specific setting of factor A. Kirk (2013) describes an experiment where rats
were exposed to ionized air. There were four animals per cage. There were
eight cages. Each cage and the animals in it got exposed to either positive or
negative ionization. They then studied a measure of the animals’ activity level.
We can sketch the setup as follows:

Cage 1 2 3 4 5 6 7 8
+ve: •••• •••• •••• ••••

−ve: •••• •••• •••• ••••

We could also depict it this way:

Cage 1 2 3 4
+ve: •••• •••• •••• ••••

−ve: •••• •••• •••• ••••

However, in this diagram there is no meaningful connection between cage 1 at
positive ionization and cage 1 at negative ionization. If we treat ‘cage’ as a
factor then its meaning is dependent on the ionization level. It would not make
sense to make comparisons between cage numbers 1, 2, 3 and 4 in general.

In the setting above we say that the factor ‘cage’ is nested within the factor
‘ionization’. If we were studying schools we might label first grade classrooms
with numbers 1 through 4 but classroom would ordinarily be nested within
school. Schools can be nested within school boards and those can be nested
within counties within states. Nesting is a hierarchical relationship often drawn
using branching tree diagrams instead of a grid of boxes formed by horizontal
and vertical lines as we have for crossed effects.

When B is nested within A, we write B(A). This is a little odd because we
just put A inside the parentheses. But since we read left to right, “B nested
within A” gets the label B(A).

Whether something is nested or crossed can become subtle. Ingots might
ordinarily be nested within heats. For instance, we might randomly select three
ingots from each heat to study. Then they are clearly nested. Then again some-
body might always take the first and last and middle ones from a subsequent
step in the production line. In that case the first one out of one heat does have
a meaningful connection with the first one out of another heat and we have a
crossed structure.

Suppose we get Yijk for animal k in cage j that gets treatment i. Then for
1 6 i 6 I, 1 6 j 6 J and 1 6 k 6 n our model has

Yijk = µ+ αi + βj(i) + εijk or εk(ij).

For identifiability we set
∑I

i=1 αi = 0 and
∑J

j=1 βj(i) = 0 for each i = 1, . . . , I.
We do not require βj(i) to sum to zero over i for any j because that would be a
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8 9. Split-plot and nested designs

sum of values that had no meaningful connection. The ANOVA decomposition
for this setting is

SSE(A,B) =
∑
ijk

(Yijk − Ȳij•)2

SSB(A) =
∑
ijk

(Ȳij• − Ȳi••)2 = n
∑
ij

(Ȳij• − Ȳi••)2

SSA =
∑
ijk

(Ȳi•• − Ȳ•••)2 = Jn
∑
i

(Ȳi•• − Ȳ•••)2, and

SST =
∑
ijk

(Yijk − Ȳ•••)2 = SSE(A,B) + SSB(A) + SSA.

The new quantity is

SSB(A) = n

I∑
i=1

J∑
j=1

(Ȳij• − Ȳi••)2.

For each level i, it has J − 1 degrees of freedom and so it has I(J − 1) degrees
of freedom in total.

Recall that the AB interaction has (I − 1)(J − 1) df. This B(A) sum of
squares gets I(J − 1)− (I − 1)(J − 1) = J − 1 more df. They are the df for the
B main effect. The B main effect is meaningless when j = 1 has no persistent
meaning as i varies. As a result we lump the B main effect in with the prior
AB interaction to get SSB(A) = SSB + SSAB .

9.4 Expected mean squares and random effects

Now let’s consider a model with a random effect B nested within another random
effect A. The model has

Yijk = µ+ ai + bj(i) + εijk

where ai
iid∼ (0, σ2

A), independently of bj(i)
iid∼ (0, σ2

B), and εijk
iid∼ (0, σ2). When

we say something has distribution (µ, σ2) it is like N (µ, σ2) but without assum-
ing normality. Derivations of F distributions require a normal distribution but
expected mean squares do not. The expected mean squares in this setting are

E(MSA) = σ2 + nσ2
B(A) + nJσ2

A

E(MSB(A)) = σ2 + nσ2
B(A), and

E(MSE) = σ2.

Let’s derive the first one. We start with SSA = nJ
∑I

i=1(Ȳi••− Ȳ•••)2. So it
is just nJ times a sample variance among

Ȳi•• = µ+ ai + b̄•(i) + ε̄i•• ∼
(
µ, σ2

A +
σ2
B(A)

J
+
σ2

nJ

)
.
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9.5. Additional models 9

We know from formulas for a sample variance that

E(SSA) = nJ(I − 1)
(
σ2
A +

σ2
B(A)

J
+
σ2

nJ

)
and so

E(MSA) = nJ
(
σ2
A +

σ2
B(A)

J
+
σ2

nJ

)
= σ2 + nσ2

B(A) + nJσ2
A.

The others are similar.

If B is a random effect nested in a fixed effect A, then

E(MSA) = σ2 + nσ2
B(A) +

nJ
∑I

i=1 α
2
i

I − 1

E(MSB(A)) = σ2 + nσ2
B(A)

E(MSE) = σ2

and we see that σ2
A is replaced by a sample variance among the αi. If both A

and B are fixed, then

E(MSA) = σ2 +
nJ
∑I

i=1 α
2
i

I − 1

E(MSB(A)) = σ2 + n

∑I
i=1

∑J
j=1 β

2
j(i)

I(J − 1)
, and

E(MSE) = σ2.

9.5 Additional models

There are more nesting patterns. We might have A, B(A) and C nested within
B within A, i.e., C(B(A)). Or we could have B and C and B×C nested within
A. Or we could have A crossed with B while C is nested within A. For instance
hospital A crossed with drug B and ward C nested within A. These designs can
be completely randomized or arranged in randomized block structures. There is
a comprehensive treatment of these situations in Kirk (2013, Chapter 11). The
online version has 71 pages with worked examples and formulas for expected
mean squares.

It is striking how complicated an analysis can become based on combinations
of a small number of choices based on how things are nested or crossed and the
way the blocks are structured. We are faced with a small but combinatorial
explosion of cases. It would be very useful to have a tool such as a probabiliistic
programming language that lets a user describe how the data were organized
and then sets up the analysis.
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10 9. Split-plot and nested designs

9.6 Cluster randomized trials

In cluster randomized trials, we might apply a treatment at random to a whole
village or a school or a sports team or a county or a marketing region, like the
Bay Area versus Pheonix or Chicago. The experimental unit is a cluster of one
of those types. We might also be able to get data on individuals within the
cluster. Perhaps people or, in a marketing context, stores.

Let the data be Yij for i = 1, . . . , n and j = 1, . . . , ni. Suppose that cluster
i got treatment trt(i) ∈ 1, . . . , I where ordinarily I is much less than n. We can
model the individual data via

Yij = µ+ αtrt(i) + εij ,

and we can model the cluster data via

Ȳi• = µ+ αtrt(i) + ε̄i•, i = 1, . . . , n.

The most straitforward analysis is to model the cluster level data using either
a randomization (permutation) approach or a one way ANOVA. It seems like a
shame to greatly reduce the sample size from N =

∑n
i=1 ni individuals to just

n� N clusters. It is then tempting to analyze the data on the individual level.
It would however be quite wrong to analyze the individual data as if they were
N independent measurements. There are instead inter-cluster correlations. An
individual level analysis can be quite unreliable if it considers the individuals to
be independent when they are in fact correlated. Suppose for instance that εij
have variance σ2, correlations ρ within a cluster and are independent between
clusters. Then

var(Ȳi•) = var(ε̄i•) =
σ2

ni

(
1 + (ni − 1)ρ

)
.

It is larger by a factor 1 + (ni− 1)ρ than it would be under independence. This
factor is called the design effect.

If we knew ρ then we could consider an individual level analysis. For two
treatments we could work out

var
(
avg(Yij |A)− avg(Yij |B)

)
in terms of ρ and σ2 and all the ni. Murray (1998) is an entire book on cluster
randomized trials also known as group randomized trials.
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