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4

Paired and blocked data, randomization inference

In this lecture we begin to look at some more traditional areas of experimental
design. Much of it is based on the work by George Box and co-authors. I quite
like this book: Box et al. (1978). I’m citing the first edition which I prefer to
the second. Wu and Hamada (2011) cover many of the same ideas with a rich
collection of examples, mostly from industrial experimentation.

These basic experimental design ideas have been used to give us about a cen-
tury of exponential growth in the quality and abundance of food and medicine
and industrial products. Ideas and insights from domain experts get boosted
by the efficiency with which well designed experiments can speed up learning of
causal relationships.

In this work we take regular regression theory as a prerequisite. Things
like normal theory regression, t-tests, p-values, confidence intervals and how to
analyze such data are mostly assumed. This course is mostly about making
data, while most other courses are about analyzing data. One exception: we
will cover the analysis of variance (ANOVA) in more detail than usual statistics
courses do. The ANOVA cannot be completely understood just in terms of
adding binary predictors, sometimes called a one-hot encoding. There is a bit
more going on.

The class web page has notes from Stat 305A on the one way ANOVA. Read
up through Chapter 1.2 and then Chapter 1.7 on random effects which we will
cover later. In between there is material on statistical power, interpretation
of treatment contrasts, multiple comparisons for ANOVA and false discovery
rates.
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4 4. Paired and blocked data, randomization inference

4.1 The ordinary two sample t-test

Let’s recall how we would do a t-test for a treatment effect. We have data Yij for
treatment groups i = 1, 2 and observations j = 1, . . . , ni. Think of i as W + 1,
where W ∈ {0, 1} is the treatment variable in causal inference from Chapter 1.
The goal is to learn about ∆ = E(Y1i)− E(Y2i). Defining this expectation will
require a model, and unlike the science tables in potential outcomes, ∆ here
does not depend on i. The t statistic is

tobs =
Ȳ1• − Ȳ2• −∆

s
√

1/n1 + 1/n2
∼ t(n1+n2−2).

This tobs is the observed value of a t-distributed random variable. Here
Ȳi• = (1/ni)

∑ni

j=1 Yij and s2 is the pooled variance estimate. This result is a
miracle. We have an algebraic expression tobs involving our unknown ∆ and
some quantities that are known after a short computation. Arithmetic that
combines knowns and unknowns ordinarily returns an unknown. This result is
special, because while tobs is unknown it has a known distribution. It is then
called a pivotal quantity.

Using the pivotal quantity we can get a 99% confidence interval for ∆ as{
∆ | |tobs| 6 t0.995(n1+n2−2)

}
.

If a special value of ∆, call it ∆0 is not in the confidence interval then we reject
H0 : ∆ = ∆0 at the 1% level. The usual ∆0 is of course 0, corresponding to a
null hypothesis of no treatment effect. We can get a p-value for H0 : ∆ = ∆0 as

p = Pr
(
|t(n1+n2−2)| > |tobs|

)
.

We can also get these results by pooling all n1 + n2 data into a regular
regression model

Yj = β0 + β1Wi + εi, i = 1, . . . , N ≡ n1 + n2 (4.1)

where Wi = 1 if observation i is from treatment 1 and Wi = 0 if observation i
is from treatment 2. Defining

X =



1 W1

...
...

1 Wn1

1 Wn1+1

...
...

1 Wn1+n2


=



1 1
...

...
1 1
1 0
...

...
1 0


and similarly defining Y ∈ RN with the treatment 1 data above the treatment
2 data, we can compute

β̂ = (XTX)−1XTY and s2 =
1

N − 2

N∑
i=1

(Yj − β̂0 − β̂1Wi)
2
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4.2. Randomization fixes assumptions 5

and now

tobs =
β̂1 − β1

s
√

((XTX)−1)22
.

In order to get these pivotal inferences we need to make 4 assumptions:
1) εi are normally distributed,
2) var(εi) does not depend on Wi,
3) εi are independent, and
4) there are no missing predictors.

For the last one, we need to know that E(Yj) is not really β0 + β1Wi + β2Ui for
some other variable Ui.

Assumption 1 is hard to believe, but the central limit theorem reduces the
damage it causes. Assumption 2 can be serious but does little damage if n1

.
= n2.

We can also just avoid pooling the variances and use
√
s21/n1 + s22/n2 in place

of s
√

1/n1 + 1/n2.
Assumption 3 is critical and violations can be hard to detect. Assumption 4

is even more critical and harder to detect. We almost don’t even notice we are
making an assumption about Ui because Ui is missing from equation (4.1).

4.2 Randomization fixes assumptions

Box et al. (1978) consider a hypothetical neighbor with two fertilizers and 11
tomato plants. Let’s go with 10 plants. We could plant them in a row like this:

A A A A A B B B B B

That would not be a good design. Maybe there’s a hidden trend variable Ui = i
where the plots correspond to i = 1, . . . , 10 from left to right.

We could instead try:

A B A B A B A B A B

That is better but could still be problematic. For instance there could be corre-
lations between the yield of adjacent plants. Those would be positive if nearby
locations had similar favorability. Or they could be negative if one plants roots
or shade adversely affected its neighbors.

We could then try randomizing the run order perhaps getting this:

A B B B A A B A A B

A random order cannot correlate with any trend.
Under our model, the t statistic numerator ∆̂−∆ = Ȳ•A − Ȳ•B −∆ equals(

ε1 + ε2 + ε3 + ε4 + ε5 − ε6 − ε7 − ε8 − ε9 − ε10
)
/5, A’s first(

ε1 − ε2 + ε3 − ε4 + ε5 − ε6 + ε7 − ε8 + ε9 − ε10
)
/5, alternate(

ε1 − ε2 − ε3 − ε4 + ε5 + ε6 − ε7 + ε8 + ε9 − ε10
)
/5, random

in our three allocations.
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6 4. Paired and blocked data, randomization inference

If there is an unknown Ui then it is within the εi. If Ui = c× (i− 5.5) then
our model has put that Ui inside εi and we get a bias of

E(∆̂)−∆ =


−5c, A’s first

−c, alternate

0.6c, random.

Putting A’s first gave the worst bias. The alternating plan improved a lot, but
could have done very badly with some high frequency bias. The random plan
came out best. The bias will be Op(1/

√
N) under randomization, whether the

Ui constitute a trend or an oscillation or something else.
Next, let’s consider what happens if there are correlations in the εi. We will

consider local correlations

corr(Yi, Yi′) =


1, i = i′

ρ, |i− i′| = 1

0, else.

Now

var(∆̂) =
1

25
vTcov(ε)v

where vi = 1 for Wi = 1 and vi = −1 for Wi = 0. Using σ2 for var(εi), we get

var(∆̂) =
2

5
σ2 +

σ2

25
×


14ρ, A’s first

−18ρ, alternate

2ρ, random.

The data analyst will ordinarily proceed as if ρ = 0 especially in small data sets
where we cannot estimate ρ very well. For the plants ρ could well be positive
or negative making var(∆̂) quite different from 2σ2/5.

Box et al. (1978) take the view that randomization makes it reasonably safe
to use our usual statistical models. A forthcoming book by Tirthankar Dasgupta
and Donal Rubin will, I expect, advocate for using the actual randomization
that was done to drive the inferences.

4.2.1 About permutation testing

The original motivation for the t-test by Fisher was based on the asymptotic
equivalence between a t-test and a permutation test. As a result we do not
expect permutation tests to repair any problems that would have affected the
t-test.

A t-test tests the ‘small’ null hypothesis H0 : E(Y |A) = E(Y |B) that the
mean of Y is the same for W = 0 and W = 1. A permutation test addresses the
‘large’ null hypothesis H0 : L(Y |A) = L(Y |B). Here L(·) refers to the law or
distribution of contents, so this hypothesis makes the strong assumption that
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4.3. Paired analysis 7

the distribution of Y is exactly the same for W = 0 and W = 1. It is a test of
H0 designed to have power versus H0.

Permutation tests have the advantage that they are very easy to explain to
non-statistician users and they appear to have very clear validity.

Permutation tests can be cumbersome. In an observational setting where we
get (Xi, Yi,Wi) for a Wi ∈ {0, 1} and Xi ∈ R it is tricky to use permutations
to study whether Y ⊥⊥ W . We could permute (W,X) versus Y or we could
permute W versus (X,Y ). Neither gives an exact test. [This was studied
by David Freedman.] Losing exactness loses a lot of the motivation behind
permutations.

One of the best analyses of permutation tests is in the statistical theory book
by Lehmann and Romano. They show how it comes from a group symmetry
argument.

We will take the BHH view that if our experiment was randomized then we
are reasonably safe to use the usual regression models.

4.3 Paired analysis

The next (hypothetical) example from BHH involves 10 kids and running shoes.
There were two different materials for the soles of those shoes. Each kid gets
one material on the right shoe and the other one on the left. We can diagram
the situation as follows, deciding randomly whether to use left or right for
material A:

A B B A B A B A A B

A B B A A B A B B A

BHH contemplate very big differences between the kids. Suppose that some
are in the chess club while others prefer skateboarding. Figure 4.1 shows an
exaggerated simulated example of how this might come out. The left panel
shows that tread wear varies greatly over the 30 subjects there but just barely
between the treatments. The right panel shows a consistent tendency for tread
B to show more wear than tread A, though with a few exceptions.

The way to handle it is is via a paired t-test. Let Di = Y1i − Y2i for
i = 1, . . . , n (so there are N = 2n measurements). Then do a one-sample t-test
for whether E(D) = ∆ where ∆ is ordinarily 0.

The output from a paired t-test on this data is

t = -2.7569, df = 29, p-value = 0.009989

95 percent confidence interval: -0.59845150 -0.08868513

with of course more digits than we actually want. The difference is barely
significant at the 1% level. An unpaired t-test on this data yields:

t = -0.2766, df = 57.943, p-value = 0.7831

95 percent confidence interval: -2.829992 2.142856
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8 4. Paired and blocked data, randomization inference
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Figure 4.1: Hypothetical shoe wear numbers for 30 subject and soles A versus B.

and the difference is not statistically significant, with a much wider confidence
interval.

In this setting the paired analysis is correct or at least less wrong and that
is not because of the smaller p-value. It is because the unpaired analysis ignores
correlations between measurements for the left and right shoe of a given kid.

In class somebody asked what would be missing from the science table for
this example. We get both the A and B numbers. What we don’t get is what

would have happened if a kid who got A B had gotten B A instead. The

science table would have had a row like LA LB RA RB for each kid and

we would only see two of those four numbers. We would never get LA LB
for any of the kids. It is certainly possible that there are trends where left shoes
get a different wear pattern than right shows. Randomization protects against
that possibility.

If we model the (Y1j , Y2j) pairs as random with a correlation of ρ and equal
variance σ2 then our model gives

var(Dj) = var(Y1j − Y2j) = 2σ2(1− ρ)

and we see that the higher the correlation, the more variance reduction we get.
Experimental design offers possibilities to reduce the variance of your data and
this is perhaps the simplest such example.

The regression model for this paired data is

Yij = µ+ bj + ∆Wij + εij

where bj is a common effect from the j’th pair, ∆ is the treatment effect and
Wij ∈ {0, 1} is the treatment variable. This model forces the treatment differ-
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4.4. Blocking 9

ence to be the same in every pair. Then

Dj = Y1j−Y2j = (µ+ bj +∆W1j +ε1j)− (µ+ bj +∆W2j +ε2j) = ∆+ε1j−ε2j .

4.4 Blocking

Pairs are blocks of size 2. We can use blocks of any size k > 2. They are very
suitable when there are k > 2 treatments to compare. Perhaps the oven can
hold k = 3 cakes at a time. Or the car has k = 4 wheels on it at a time.

If we have k = 3 treatments and block size of 3 we can arrange the treatments
as follows:

B A C︸ ︷︷ ︸
block 1

C B A︸ ︷︷ ︸
block 2

B A C︸ ︷︷ ︸
block 3

• • • A B C︸ ︷︷ ︸
block B

with independent random assigments within each of B blocks.
Suppose that there are positive correlations for measurements within blocks

but independence between blocks. Then differences of averages ȲA• − ȲB•,
ȲA• − ȲC•, and ȲB• − ȲC• should cancel out block effects just like we saw with
paired tests and be more accurate than unblocked experiment:

A C B B C B A A · · · B

with N = kB cells. This latter design would be randomized completely in one
of N !/(B!)k ways.

There are lots of use cases for blocked experiments in agriculture and a few
from medicine and industry. In each of the settings below we might have B
blocks that each can have k experimental runs.

Treatments Block Response
Potato variety Farm split into k plots Yield
Cake recipe Bake event, oven holds k cakes Moisture
Diets Litters of k animals Weight gain
Cholesterol meds Volunteer Chol. levels
Sunscreen Volunteer Damage
Technician Shift Production
Ways to teach reading School Comprehension
Ion injection Cassette of Si wafers Yield or speed

A block is usually about the same size as our number of treatments. If the
problem is to compare a control treatment to k − 1 alternatives and the block
has size k + 1 then we might apply the control treatment twice within each
block, especially if comparisons to the control of greatest importance.

4.5 Basic ANOVA

The class web page has Stat 305A notes on how to use regression to analyze
this ANOVA.

© Art Owen 2020 do not distribute or post electronically without author’s
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10 4. Paired and blocked data, randomization inference

The statistical model for a most basic ANOVA comparing k > 2 treatments
is

Yij = µ+ αi + εij , i = 1, . . . , k j = 1, . . . , ni. (4.2)

This is called the one-way ANOVA because it has only one treatment factor.
We will later consider multiple treatment factors. This model is not identified,
because we could replace µ by µ − η and αi by αi + η for any η ∈ R without
changing Yij . One way to handle that problem is to impose the constraint∑k

i=1 niαi = 0. Many regression packages would force α1 = 0. This model can
be written

Yij = µi + εij (4.3)

which is known as the cell mean model. We can think of a grid of boxes or
cells µ1 µ2 · · · µk and we want to learn the mean response in each of

them.
The null hypothesis is that the treatments all have the same mean. That

can be written as
H0 : µ1 = µ2 = · · · = µk

or as
H0 : α1 = α2 = · · · = αk = 0.

The ‘big null’ is that L(Yi1) = L(Yi2) = · · · = L(Yil) and that is what permuta-
tions test.

We can test H0 by standard regression methods. Under H0 the linear model
is just

Yij = µ+ εij . (4.4)

We could reject H0 by a likelihood ratio test if the ‘full model’ (4.3) has a
much higher likelihood than the ‘sub model’ (4.4). When the likelihoods in-
volve Gaussian models, log likelihoods become sums of squares and the results
simplify.

Here are the results in the balanced setting where ni = n is the same for all
i = 1, . . . , k. The full model has MLE

µ̂i = Ȳi• =
1

n

n∑
j=1

Yij

and sum of squares

k∑
i=1

n∑
j=1

(Yij − µ̂i)
2 =

k∑
i=1

n∑
j=1

(Yij − Ȳi•)2.

The sub-model from the null hypothesis has MLE

µ̂ = Ȳ•• =
1

k

k∑
k=1

Ȳi• =
1

nk

k∑
i=1

n∑
j=1

Yij .
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4.5. Basic ANOVA 11

Source df SS MS F
Treatments k − 1 SSB MSB = SSB/(k − 1) MSB/MSW
Error N − k SSW MSW = SSW/(N − k)
Total N − 1 SST

Table 4.1: This is the ANOVA table for a one way analysis of variance.

These sums of squared errors are connected by the ANOVA identity

k∑
i=1

n∑
j=1

(Yij − Ȳ••)2︸ ︷︷ ︸
SST

=

k∑
i=1

n∑
j=1

(Ȳi• − Ȳ••)2︸ ︷︷ ︸
SSB

+

k∑
i=1

n∑
j=1

(Yij − Ȳi•)2︸ ︷︷ ︸
SSW

.

The total sum of squares is equal to the sum of squares between treatment
groups plus the sum of squares within treatment groups. This can be seen
algebraicly by expanding

∑k
i=1

∑n
j=1(Yij − Ȳi• + Ȳi• − Ȳ••)

2. It is also just
Pythagoras (orthogonality of the space of fits and residuals) from a first course
in regression.

The F -test statistic based on the extra sum of squares principal is

F =
1

k−1
(
SSEnull − SSEfull

)
1

N−kSSEfull

=
1

k−1 (SST− SSW)
1

N−kSSW
=

1
k−1SSB
1

N−kSSW
≡ MSB

MSW
.

Here, N =
∑

i nk = nk is the total sample size. When we divide a sum of squares
by its degrees of freedom the ratio is called a mean square. We should reject
the null hypothesis if MSB is large. The question ‘how large?’ is answered
by requiring it to be a large enough multiple of MSW. We reject H0 if p =
Pr(Fk−1,N−k > F ;H0) is small.

These notes assume familiarity with the simple ANOVA tables for regression
and the one way analysis of variance. Table 4.1 contains the ANOVA table for
this design. There are two sources of variation in this data: treatment groups
and error. Because there are k treatments there are k − 1 degrees of freedom.
There are ni − 1 degrees of freedom for error in each of the k treatment groups
for a total of

∑
i(ni−1) = N−k. There is often another column for the p-value.

The mean square column provides information on statistical significance.
The sum of squares column is about practical significance. For instance R2 =
SSB/SST is the fraction of variation explained by the model terms.

To see why we care about mean squares consider ε ∼ N (0, σ2IN ). This is
a vector of noise that can be projected onto a one dimensional space parallel
to (1, 1, . . . , 1) where it affects Ȳ•• = µ̂, a k − 1 dimensional space spanned
by between treatment differences Ȳi• − Ȳ•• where it affects SSB and an N − k
dimensional space of within treatment differences Yij − Ȳi•. If Yij would be just
noise εij then we would have µ̂2 ∼ σ2χ2

(1), SSB ∼ χ2
(k−1) and SSW ∼ χ2

(N−k),

all independent. The χ2 mean equals its degrees of freedom and so we normalize
sums of squares into mean squares.

© Art Owen 2020 do not distribute or post electronically without author’s
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12 4. Paired and blocked data, randomization inference

4.6 ANOVA for blocks

The model for a blocked analysis is

Yij = µ+ αi + bj + εij i = 1, . . . , k j = 1, . . . , n.

Note that this model does not include an interaction. The treatment differences
αi − αi′ are the same in every block j. All values in block j are adjusted up
or down by the same constant bj . We denote it by bj instead of βj because
we may not be very interested in block j per se. A block might be a litter of
animals or one specific run through of our laboratory equipment. In a surfing
competition it might be about one wave with three athletes on it. That wave is
never coming back so we are only interested in αi, and maybe how that wave
helps us compare αi for different i, but not bj .

The parameter estimates here are µ̂ = Ȳ••, α̂i = Ȳi• − Ȳ••, b̂j = Ȳ•j − Ȳ••,
and

ε̂ij = Yij − µ̂− α̂i − b̂j = Yij − Ȳi• − Ȳ•j + Ȳ•• = (Yij − Ȳi•)− (Ȳ•j − Ȳ••).

We should get used to seeing these alternating sign and difference of differences
patterns.

The ANOVA decomposition is

SST = SSA + SSB + SSE

where

SST =

k∑
i=1

B∑
j=1

(Yij − Ȳ••)2,

SSA =

k∑
i=1

B∑
j=1

(Ȳi• − Ȳ••)2,

SSB =

k∑
i=1

B∑
j=1

(Ȳ•j − Ȳ••)2, and

SSE =

k∑
i=1

B∑
j=1

(Yij − Ȳi• − Ȳ•j + Ȳ••)
2.

The ANOVA table for it is in Table 4.2. You could write SSA as
∑

iB(Ȳi•−Ȳ••)2
and that is definitely what you would do in a hand calculation. The way it is
written is more intuitive. All the sums of squares are sums over all data points.

We test for treatment effects via

p = Pr
(
Fk−1,(k−1)(B−1) >

MSA

MSE

)
.

It is sometimes argued that one ought not to test for block effects. I don’t
quite understand that. If it turns out that blocking is not effective, then we

© Art Owen 2020 do not distribute or post electronically without author’s
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4.7. Latin squares 13

Source df SS MS F

Treatments k − 1 SSA MSA =
SSA

k − 1

MSA

MSE

Blocks B − 1 SSB MSB =
SSB

B − 1
(∗)

Error (k − 1)(B − 1) SSE MSE =
SSE

N − k
Total N − 1 SST

Table 4.2: This is the ANOVA table for a blocked design.

could just not do it in the next experiment which might then be simpler to
run and have more degrees of freedom for errror. A test can be based on
MSB/MSE ∼ FB−1,(k−1)(B−1).

The very old text books going back to 1930s place a lot of emphasis on
getting sufficiently many degrees of freedom for error. That concern is very
relevant when the error degrees of freedom are small, say under 10. The reason
can be seen by looking at quantiles of Fnum,den such as F .995

num,den and F .005
num,den

when the denominator degrees of freedom den is small. Check out qf in R, or
it’s counterpart in python or matlab. It is not a concern in A/B testing with
thousands or millions of observations.

4.7 Latin squares

Latin squares let you block on two sources of unwanted variation at once. Sup-
pose that you are testing 4 battery chemistries: A, B, C, D. You have 4 different
drivers and 4 different cars. The following diagram has each of A, B, C and D
exactly once per row and exactly once per column.


1 2 3 4

Car 1 A B C D
2 C D A B
3 B C D A
4 D A B C


You could have driver 1 (column) test car 1 one with treatment A. Then driver
2 takes car 2 with B and so on through all 16 cases ending up with driver 4
taking car 4 with treatment C. Now if there are car to car differences they are
balanced out with respect to treatments. Driver to driver differences are also
balanced out. This design only lets one car and one driver be on the track at
once.

The model for this design is

Yijt = µ+ ai︸︷︷︸
row

+ bj︸︷︷︸
col

+ τk︸︷︷︸
trt

+ εijk︸︷︷︸
err

.

© Art Owen 2020 do not distribute or post electronically without author’s
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14 4. Paired and blocked data, randomization inference

k: 1 2 3 4 5 6 7
#: 1 1 1 4 56 9,408 16,942,080

Table 4.3: This is integer sequence number A000315 in the online encyclopedia
of integer sequences by Neil J. A. Sloane: https://oeis.org/A000315.

It does not allow for any interactions between cars and drivers, cars and batteries
or drivers and batteries. Later when we take a closer study of interactions we
will see that an interaction between cars and drivers could look like an effect of
batteries. If there are no significant interactions like this then a Latin square
can be an extremely efficient way to gather information. Otherwise it is risky.
Sometimes a risky strategy pays off better than a cautious one. Other times
not.

To use a Latin square we start with a basic Latin square, perhaps like this
one

A B C D
B C D A
C D A B
D A B C

and then randomly permute the rows and columns. We might as well also
permute the symbols in it. Even if that is not necessary, it is easy to do, and
simpler to just do it than think about whether you should. The above Latin
square is called a cyclic Latin square because the rows after the first are simply
their predecessor shifted left one space with wraparound.

The number of distinct k × k Latin squares to start with is given in Ta-
ble 4.3. Two Latin squares are distinct if you cannot change one into the other
by permuting the rows and columns and symbols. The number grows quickly
with k. Be sure to permute the Latin square, especially if your starting pattern
is cyclic. The cyclic pattern will be very bad if there is a diagonal trend in the
layout. In many of the original uses the Latin square was made up of k2 plots
of land for agriculture.

Not only are Latin squares prone to trouble with interactions, they also have
only a few degrees of freedom. With k2 data points there are k2 − 1 degrees of
freedom about the mean. We use up k − 1 of them for each of rows, columns
and treatments. That leaves k2−1−3(k−1) = (k−1)(k−2) degrees of freedom
for error.

Box et al. (1978, Chapter 8) provide a good description of how to analyze
Latin squares. I changed their car and driver example to have electric cars.
They give ANOVA tables for Latin squares and describe how to replicate them
in order to get more degrees of freedom for error. In a short course like this one,
we will not have time to go into those analyses.
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4.8 Esoteric blocking

There are a lot of more complicated and intricate ways to design experiments
in blocks. I describe a few of them below. I consider them things to “know
about”. If you ever find that you need them, then being able to connect the
problem they solve to their name will help you search for designs and analysis
strategies. They’re interesting to contemplate and we can really admire them
from an aesthetic point of view. We will return to one of them later when we
do space filling designs for computer experiments. For the rest, we don’t have
time to study them carefully in a short course like this one.

In the tableaux below:

A α B β C γ D δ
B δ A γ D β C α
C β D α A δ B γ
D γ C δ B α A β

the Latin letters (A, B, C, D) form a Latin square. So do the Greek letters
(α, β, γ, δ). These two Latin squares are mutually orthogonal meaning that
every combination of one Latin letter with one Greek letter appears the same
number of times (actually once). From two mutually orthogonal Latin squares
MOLS we get a Graeco-Latin square like the one shown.

We could use a Graeco-Latin square with treatments A, B, C and D blocked
out against three factors: one for rows, one for columns and one for Greek
letters. We are now in the setting of combinatoric existence and non-existence
results. For instance, no Graeco-Latin square exists for k = 6. Euler thought
there would be none for k = 10 but that was proved wrong in the 1950s.

The operational difficulties of arranging a real-world Graeco-Latin square
experiment are daunting. It is easy to do in software on the computer. You can
even do hyper-Graeco-Latin square experiments with three or more MOLS. For
instance if k is a prime number you can have k − 1 MOLS and then block out
k factors at k levels in addition to a treatment factor at k levels. Or you can
embed k2 points into [0, 1]k+1 and have every pairwise scatterplot be a k × k
grid. We will see this later for computer experiments and space-filling designs.
Be sure to randomize!

Sometimes the number of levels in a block is less than the number of treat-
ments we have in mind. For instance, consider a club of people are tasting 12
different wines and we don’t want anybody to taste more than 6 of them. Then
we would like to arrange our tastings so that each person tastes 6 wines. Those
people then represent incomplete blocks.

In an ideal world, each pair of wines would be tasted together by the same
number of tasters. That would give us balanced incomplete blocks. This
makes sense because the best comparisons between wines A and B will come
from people who tasted both A and B. That is, from within block comparisons.
There will also be between block comparisons. For instance if many people
found A better than B and many found B better than C that provides evidence
(through a regression model) that A is better than C. But the within block
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evidence from having A and C compared by the same people is more informative
if the block effects (people) are large.

In sporting leagues we have k teams and we compare then in games that are
(ordinarily) blocks of size B = 2. A tournament in which each pair of teams
played together the same number of times would be a balanced incomplete block
design.

There are also partially balanced incomplete block designs where the
number of blocks where two treatments are together is either λ or λ + 1. So,
while not equal, they are close to equal.

We will not consider how to analyze incomplete block designs. If you use
one in your project, the other topics from this course will prepare you to read
about them and adopt them.

There are even design strategies where one blocking factor has k levels and
another has fewer than k levels. So the design is incomplete in that second factor.
If you find yourself facing a situation like this, look for Youden squares.
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