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3

Bandit methods

When you say you’re going to do an A/B test somebody usually suggests using
bandit methods instead. And vice versa.

In the bandit framework you try to optimize as you go and ideally spend
next to no time on the suboptimal choice between A and B, or other options.
It can be as good as having only O(log(n)) tries of any sub-optimal treatment
in n trials.

We review some theory of bandit methods. The main point is to learn the
goals and methods and tradeoffs with bandits. We also go more deeply into
Thompson sampling proposed originally in Thompson (1933).

Puzzlers and opinions

Most texts and articles are all about facts, not opinions. Facts are better.
Sometimes opinions fill in where we don’t have a desired fact. I’ll be putting
some of those in, and I expect you will be able to tell. I have been reading
the blog of Andrew Gelman https://statmodeling.stat.columbia.edu/ for
many years and have benefitted enormously. Some of the opinions he shares are
things I have long believed but never saw in print. It was nice to know that I
was not alone. Sometimes my opinion is different from his.

One opinion I’m planning to describe is that theorems have issues of external
validity. We have to think carefully about when and how to apply them.

I’m also going to put in some ‘puzzlers’. These are things that are potentially
confusing or apparently contradictory about the methods and their properties.
Sometimes there is a momentary puzzle while we figure things out. Other times
we do not get a clean answer. One of my goals is for students to learn to find
and solve their own puzzlers. When you spot and resolve a puzzler it deepens
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4 3. Bandit methods

your understanding. So, get confused and then get out of it. Spotting and
resolving puzzlers is also a way to find research ideas.

Here is a quote from Paul Halmos about reading mathematics:

Don’t just read it; fight it! Ask your own questions, look for
your own examples, discover your own proofs. Is the hypothesis
necessary? Is the converse true? What happens in the classical
special case? What about the degenerate cases? Where does the
proof use the hypothesis?

It is good to poke at statistical ideas in much the same way, with a view to
which problems they suit.

3.1 Exploration and exploitation

In a regular experiment we get data on n subjects estimate E(Y |A) and E(Y |B).
We pick what seems to be the better of A and B from our data and retain that
choice hypothetically forever. Perhaps only for some N � n future uses before
we contemplate another change.

In this setting, we use the first n subjects to explore treatment differences.
Once we have the apparent best one, we exploit that knowledge for the next
N subjects by using the winning treatment.

One problem with experimentation is that something like n/2 of the subjects
will be getting the suboptimal treatment in the experiment. Maybe we can
avoid much of tha cost by biasing the experiment towards the seemingly better
treatment at each stage as the data come in.

The theoretically most effective way to do this is through what are called
bandit methods. The name comes from slot machines for gambling that are
sometimes called one-armed bandits. Each time you pull that arm you win a
random amount of money that has expected value less than what you paid to
play. The image for a multi-armed bandit is such a machine that offers you
K > 2 arms to pick from. Each arm has its own distribution of random payoffs.
In the gambling context of pulling n arms, the goal might be to minimize your
expected loss. Of course, the best move is not to play at all, so the metaphor is
imperfect.

In the experimental settings we care about, the goal is to maximize your
expected winnings. If we knew the best arm, we’d choose it every time. But
we don’t. Instead we sample from the arms to learn about payoffs on the fly
while also trying to get the best payoff. We will see bandit methods that pick
a suboptimal arm only O(log(n)) times as the number n of subjects goes to
infinity.

A very old method is called ‘play the winner’. Suppose that Yi ∈ {0, 1} with
1 being the desired outcome. Then if Yi = 1 we could take Wi+1 = Wi, while
for Yi = 0 we switch to Wi+1 = 1 −Wi when the choices are W ∈ {0, 1} or,
for K > 2 choices switch to a random other arm. These methods were studied
intensely in the 1960s and 1970s and the term ‘play the winner’ seems to be
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3.2. Regret 5

used to describe numerous different strategies. If there is a really great strategy
in the mix then play the winner can have long streaks of Yi = 1. If instead the
best arm has a small payoff, like Pr(Yi = 1) = 0.03, and the other arm (out of
2) has Pr(Yi = 1) = 0, then play the winner will alternate too much between
the best and worst arms.

3.2 Regret

These definitions are based on Bubeck and Cesa-Bianchi (2012). Suppose that
at time i = 1, 2, 3, . . . we have arms j = 1, 2, . . . ,K to pick from. If at time i
we pick arm j then we would get Yi,j ∼ νj . Notice that the distribution νj here
is assumed to not depend on i. We let µj = E(Yi,j) be the mean of νj and

µ∗ = max
16j6K

µj ≡ µj∗ .

So µ∗ is the optimal expected payout and j∗ is the optimal arm (or one that is
tied for optimal).

If we knew the µj we would choose arm j∗ every time and get expected
payoff nµ∗ in n tries. Instead we randomize our choice of arm, searching for
the optimal one. At time i we choose a random arm Ji ∈ {1, 2, . . . ,K} and get
payoff Yi,Ji

. Because we choose just one arm, we do not get to see what would
have happened for the other K − 1 arms. That is, we never see Yi,j′ for any
j′ 6= Ji, so we cannot learn from those values.

There are various ways to quantify how much worse off we are than optimal
play would be. The regret at time n is

Rn = max
j

n∑
i=1

Yi,j −
n∑

i=1

Yi,Ji
.

This is how much worse off we are compared to whatever arm would have been
the best one to use continually for the first n tries. Be sure that you understand
why Pr(Rn < 0) > 0 with this defniition. A harsher definition is

n∑
i=1

max
j
Yi,j −

n∑
i=1

Yi,Ji
.

This is how much worse off we would be compared to a psychic who knew the
future data. It is not a reasonable comparison so it is not the focus of our study.

The expected regret is

E(Rn) = E

(
max

j

n∑
i=1

Yi,j −
n∑

i=1

Yi,Ji

)
.

It is awkward to study because the maximizing j is inside the expectation.
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6 3. Bandit methods

Bubeck and Cesa-Bianchi (2012) define the pseudo-regret

R̄n = max
j

E

(
n∑

i=1

Yi,j −
n∑

i=1

Yi,Ji

)

= max
j
nµj −

n∑
i=1

E(Yi,Ji
)

= nµ∗ −
n∑

i=1

E(µJi
)

Each time we move maxj outside of a sum or expectation, things get easier.
What is random in the E(·) of R̄n is the sequence J1, . . . , Jn of chosen arms.
Other authors call R̄n the expected regret.

Now let ∆j = µ∗−µj > 0 be the suboptimality of arm j and define Tj(s) =∑s
i=1 1{Ji = j}. This is the number of times that arm j was chosen in the first

s tries. Then

R̄n = nµ∗ −
n∑

i=1

E(µJi) =

K∑
j=1

E(Tj(n))µ∗ −
K∑
j=1

E(Tj(n))µj =

K∑
j=1

E(Tj(n))∆j .

Our pseudo-regret comes from the expected number of each kind of suboptimal
pulls time their suboptimality. To derive this notice that

n =

K∑
j=1

Tj(n) =

K∑
j=1

E(Tj(n))

because exactly one arm is chosen for every i.

3.3 Upper confidence limit

Figure 3.1 depicts a hypothetical setting with three treatment arms, there de-
noted by A, B and C with confidence intervals for the expected value of Y in
all three arms.

Based on this information, which arm should we choose? There is an ar-
gument for arm B because the point estimate at the center of its confidence
interval is the highest of the three. But that does not take account of uncer-
tainty. If we would consider two restaurants one with six ratings that were all
5 stars and another with 999 5 star ratings and one 4 star rating, we would be
more confident about the second restaurant. One way to judge that and play
it safe is to rank by a lower confidence limit on the expected value. By that
measure, treatment C has the highest lower limit and so it seems best for the
cautious user.

The answer however, spoiled by the title of this section, is to choose arm
A because it has the highest upper confidence limit. Suppose that we went
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Figure 3.1: Hypothetical confidence intervals for E(Y |A), E(Y |B) and E(Y |C).

with B. Then it’s confidence interval would tend to get narrower with further
samples. It’s center could also shift up or down as sampling goes on, tending
towards the true mean which we anticipate to be somewhere inside the current
confidence interval, though that won’t always hold. What could happen is that
the confidence interval converges on a value above the center for A but below
the upper limit for A. Then if A were really as good as its upper limit, we would
never sample it and find out. The same argument holds for sampling from C.

Now suppose that we sample from A. Its confidence interval will narrow and
the center could move up or down. If A is really bad then sampling will move
the mean down and narrow the confidence interval and it will no longer keep
the top upper confidence limit. We would then stop playing it, at least for a
while. If instead, A was really good, we would find that out.

Given that we want to use the upper limit of a confidence interval, what
confidence level should we choose? The definitive sources on that point are
Gittins (1979), Lai and Robbins (1985) and Lai (1987). We can begin with a
finite horizon n, for instance the next n patients or visitors to a web page. At
step i we could use the 100(1− αi)% upper confidence limit.

It is easy to choose the treatment for the n’th subject. We just take the
arm that we think has the highest mean. There is no n+ 1’st subject to benefit
from what we learn from subject n. So we could take αn = 1/2. That would
be the center of our confidence interval (if it is symmetric). If we are picking
a fixed sequence α1, . . . , αn then it makes sense to have αi increasing towards
0.5 because as time goes on, there is less opportuntity to take advantage of any
learning. The αi should start small, especially if n is large.

A finite horizon might not be realistic. We might not know how many
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8 3. Bandit methods

subjects will be in the study. Another approach is to define the discounted
regret

∞∑
i=1

(µ∗ − E(µJi))θ
i−1 0 < θ < 1.

This regret is the immediate regret plus θ times a similar future quantity

µ∗ − E(µJ1) + θ

∞∑
i=1

(µ∗ − E(µJi+1))θi−1.

It is much more reasonable to use some constant α in the discounted setting
than in the fixed n setting. Choosing θ can be complicated. The average index
is

∞∑
i=1

iθi−1
/ ∞∑

i=1

θi−1 =
1

1− θ

by considering the mean of a geometric distribution. So if we pick θ = 0.99 then
the weighted average index is 100. Or, if we have a time horizon like n = H in
mind we can set θ = 1− 1/H.

Finding the critical αi values is complicated and depends on the underly-
ing parametric distribution one might assume for the distributions νj . For us,
the main idea is that betting on optimism paid off by keeping pseudo-regret
O(log(n)).

3.4 Thompson sampling

Thompson sampling goes back to Thompson (1933). The method was for-
gotten and rediscovered a few times. It is comparatively recently that most
articles are online and findable over the internet, so the reinvention is under-
standable. The idea in Thompson sampling is to choose arm i with probability
Pr(µi is the best). This probability is a Bayesian one, so that it can be up-
dated based on the observations so far. Thompson’s motivation was for medical
problems. The current surge in interest is from internet services.

Agrawal and Goyal (2012) showed that Thompson sampling can have a
pseudo-regret of O(log(n)). That puts it in the same performance league as
UCB methods and Thompson is easier to deploy at least in simple settings.

We will focus on the Bernoulli case. The response values are Yi,j ∈ {0, 1}.
Let µj = Pr(Yi,j = 1). Then the likelihood function that we will use is

L(µ1, . . . , µK) =

n∏
i=1

p(Yi,Ji
|Ji) =

n∏
i=1

µ
Yi,Ji

Ji
(1− µJi

)1−Yi,Ji . (3.1)

Each factor µ
Yi,Ji

Ji
(1 − µJi

)1−Yi,Ji is a likelihood contribution for (µ1, . . . , µK)
based on the conditional distribution of Yi = Yi,Ji

given Ji. There’s a brief
discussion about using a conditional likelihood below.
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3.4. Thompson sampling 9

Taking this conditional likelihood (3.1) as our likelihood, we then pick a

conjugate prior distribution in the beta family. Taking µj
ind∼ Beta(aj , bj) they

have joint prior distribution proportional to

K∏
j=1

µ
aj−1
j (1− µj)

bj−1 0 6 µj 6 1.

Taking aj = bj = 1 makes µj ∼ U[0, 1] independently. This is a popular choice.
If K is very large and we know that the µj are likely to be very near zero from
past experience then we could work with aj < bj . The mean of Beta(a, b) is
µ = a/(a + b) and the variance is µ(1 − µ)/(a + b + 1) and these facts might
help us settle on (aj , bj).

Let Sj =
∑n

i=1 Yi,Ji1{Ji = j} and Fj =
∑n

i=1(1 − Yi,Ji)1{Ji = j} be the
numbers of successes and failures, respectively, observed in arm j. Then we can
write our conditional likelihood as

K∏
j=1

µ
Sj

j (1− µj)
Fj .

Notice that although (Sj , Fj) are defined by summing over all i = 1, . . . , n,
they do not depend on any unobserved Y values. Multiplying our conditional
likelihood by the prior density we find a posterior density proportional to

K∏
j=1

µ
aj+Sj−1
j (1− µj)

bj+Fj−1.

This means that the posterior distribution has µj
ind∼ Beta(aj + Sj , bj + Fj).

This expression also shows that aj and bj can be viewed as numbers of prior
pseudo-counts. We are operating as if we had already seen aj successes and bj
failures from arm j before starting.

Figure 3.2 has pseudo-code for running the Thompson sampler for Bernoulli
data and beta priors. In this problem it is easy to pick arm j with probability
equal to the probability that µj is largest. We sample µ1, . . . , µK one time each
and let J be the index of the biggest one we get.

Thompson sampling is convenient for web applications where we might not
be able to update Sj and Fj as fast as the data come in. Maybe the logs can
only be scanned hourly or daily to get the most recent (Ji, Yi,Ji

) pairs. Then
we just keep sampling with the fixed posterior distribution between updates. If
instead we were using UCB then we might have to sample the arm with the
highest upper confidence limit for a whole day between updates. That could be
very suboptimal if that arm turns out to be a poor one.

Puzzler: the UCB analysis is pretty convincing that we win by betting
on optimism. How does optimism enter the Thompson sampler? We get just
one draw from the posterior for arm j. That draw could be better or worse
than the mean. Just taking the mean would not bake in any optimism and
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10 3. Bandit methods

Initialize:
Sj ← aj , Fj ← bj , j = 1, . . . ,K # aj = bj = 1 starts µj ∼ U[0, 1]

Run:
for i > 1

for j = 1, . . . ,K
θj ∼ Beta(Sj , Fj) # make sure min(Sj , Fj) > 0

J ← arg maxj θj # call it Ji if you plan to save them
SJ ← SJ +Xi,J

FJ ← FJ + 1−Xi,J

Figure 3.2: Pseudo-code for the Thompson sampler with Bernoulli responses
and beta priors. As written it runs forever.

would fail to explore. We could bake in more optimism by letting each arm
take m > 1 draws and report its best result. I have not seen this proposal
analyzed (though it might well be in the literature somewhere). It would play
more towards optimism but that does not mean it will work better; optimism
was just one factor. Intuitively, taking m > 1 should favor the arms with less
data, other things being equal. Without some theory, we cannot be sure that
m > 1 doesn’t actually slow down exploration. Maybe it would get us stuck
in a bad arm forever (I doubt that on intuitive grounds only). If we wanted,
we could take some high quantile of the beta distributions but deciding what
quantile to use would involve the complexity that we avoided by moving from
UCB to Thompson. For Bernoulli responses with a low success rate, the beta
distributions will initially have a positive skewness. That is a sort of optimism.

Puzzler/rabbit hole: are we leaving out information about µj from the
distribution of Ji? I think not, because the distribution of Ji is based on the past
Yi which already contribute to the conditional likelihood terms. A bit of web
searching did not turn up the answer. It is clear that if you were given J1, . . . , Jn
it would be possible at the least to figure out which µj was µ∗. But that doesn’t
mean they carry extra information. The random variables are observed in this
order:

J1 → Y1 → J2 → Y2 → · · · → Ji → Yi → · · · → Jn → Yn.

Each arrow points to new information about µ. The distribution of J1 does not
depend on µ = (µ1, . . . , µK). The likelihood is

p(y1 | J1;µ)p(J2 | J1, y1;µ)p(y2 | J2, J1, y1;µ)p(J3 | y2, J2, J1, y1;µ) · · ·

Now in our Bernoulli Thompson sampler our algorithm for choosing J3 was
just based on a random number generator that was making our beta random
variables. That convinces me that p(J3 | y2, J2, J1, y1;µ) has nothing to do with
µ. So the conditional likelihood is ok. At least for the Bernoulli bandit. Phew!
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3.5. Theoretical findings on Thompson sampling 11

3.5 Theoretical findings on Thompson sampling

Agrawal and Goyal (2012) generalize Bernoulli Thompson sampling to handle
bounded non-binary inputs. They get a value Y ∈ {0, 1} from Y ′ ∈ [0, 1] by
randomly taking Y = 1 with probabilty Y ′. This is pure randomness coming
from their algorrithm not their data. If the response is actually Y ′′ ∈ [a, b] for
known b > a we can start by setting Y ′ = (Y ′′ − a)/(b− a) and then sampling
Y ∼ Bern(Y ′).

Theorem 1. For K = 2 and Y ′i,j ∈ [0, 1] and Yi,j ∼ Bern(Y ′i,j) the pseudo-regret
is

Rn = O
( log(n)

∆
+

1

∆3

)
,

as n→∞, where ∆ is the suboptimality of the second best treatment.

Proof. This is Theorem 1 of Agrawal and Goyal (2012). They refer to expected
regret but it appears to be pseudo-regret in the terminology of Bubeck and
Cesa-Bianchi (2012).

The pseudo-regret grows like O(log(n)) for fixed ∆. If arm 1 is the sub-
optimal one then this means that E(T1(n)) = O(log(n)). If the cumulative
number of mistakes grows logarithmically then the typical gap between mis-
take times has to be growing exponentially. For instance E(T1(2n) − T1(n)) =
O(log(2n)−log(n)) = O(1) (because the constant log(2) is O(1)). Each doubling
of n brings at most a constant expected number of suboptimal arm choices.

Now let’s look into the denominator ∆. The pseudo-regret is larger when
∆ is smaller. If arms return 2% and 3% respectively, the bound leads us to
expect much worse results than if they are 2.99% and 3%. The reason is that a
suboptimal but nearly optimal arm will get chosen much more often than one
that is very suboptimal. What about ∆ = 0? Something discontinuous happens
here. The pseudo-regret bound is ∞. The actual pseudo-regret is exactly 0. It
is not a contradiction: 0 <∞.

I promised a discussion of external validity of theorems. The big-O in
our theorem means that there exist constants C <∞ and N <∞ such that

R̄n 6 C ×
( log(n)

∆
+

1

∆3

)
for all n > N.

Sometimes it holds for N = 1. In a given situation we might expect R̄n to grow
like log(n) but be disappointed. Maybe it happens for extremely large N (in
our problem). Or maybe the value of C is so large that C log(n)/n is not very
small for any n that we can afford. We need more information than the O(·)
result in the theorem to know if things are going to be good.

It can be valuable to spot-check theorems with some simulated examples.
Simulated examples on their own are unsatisfying, also for external validity
reasons. The ones in the literature might have been cherry-picked. Ideally the
examples are known to be similar to our use case or perhaps to cover a wide
range of possibilities.
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12 3. Bandit methods

A theorem can also be misleadingly pessimistic. If an error quantity En =
o(g(n)) it means that limn→∞ g(n)|En| = 0. Anything that is o(g(n)) is auto-
matically O(g(n)). In this case there is a theorem from Lai (1987) showing that
no method could be o(log(n)), so that doesn’t happen here.

In this case we can think of what is perhaps the best possible case for Thomp-
son sampling. One arm has µj = 1 and the other has µj = 0.

Puzzler: In class, I wondered what would happen if instead of adding Yi,Ji

to Sj and 1− YiJi to Fj we added the probabilities Y ′I,Ji
to Sj and 1− Y ′iJi

to
Fj . That takes some noise out of the algorithm. It leads to beta distributions
with non-integral parameters, but those are ok. It would complicate the analysis
behind the theorem. We know from Lai and Robbins that we would not get a
better convergence rate than O(log(n)). Specifically, their bound is of the form(

K∑
j=2

∆j

KL(νj ||ν∗)
+ o(1)

)
log(n),

for Kullback-Leibler divergence

KL(P ||Q) =

∫ ∞
−∞

p(x) log
(p(x)

q(x)

)
dx

in the case of continuous distributions P and Q with a natural modification for
discrete distributions. Perhaps we get a better constant in the rate from using
Y ′ instead of Y .

Agrawal and Goyal (2012) have additional results to cover the case K > 2.

Theorem 2. For K > 2 and optimal arm j∗ = 1

R̄n = O

((
K∑
j=2

1

∆2
j

)2

log(n)

)
for suboptimalities ∆j. Also

R̄n = O

(
∆max

∆3
min

K∑
j=2

1

∆2
j

)
log(n)

)
where ∆min = min26j6K ∆j and ∆max = max26j6K ∆j.

Proof. The first result is Theorem 2 of Agrawal and Goyal (2012) and the second
is their Remark 3.

The second bound is better for large K, while the first is better for small ∆j .

3.6 More about bandits

Suppose that A is better than B. Then from a bandit we only get O(log(n))
samples from B. Therefore we do not get a good estimate of

∆ = E(Y |A)− E(Y |B).
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3.6. More about bandits 13

We can be confident that we are taking the best arm but we cannot get a good
estimate of the amount of improvement. For some purposes we might want to
know how much better the best arm is.

Maybe Wi = (Wi1, . . . ,Wi,10) ∈ {0, 1}10 because we have 10 decisions to
make for subject i. We could run a bandit with K = 210 arms but that is
awkward. An alternative is to come up with a model, such as Pr(Y = 1 |W ) =
Φ(WTβ) for unknown β. Or maybe a logistic regression would be better. We
can place a prior on β and update it as data come in. Then we need a way
to sample a W with probability proportional to it being the best one. Some
details for this example are given in Scott (2010). These can be hard problems
but the way forward via Thompson sampling appears easier than generalizing
UCB. This setting has an interesting feature. Things we learn from one of the
1024 arms provide information on β and thereby update our prior on some of
the other arms.

For contextual bandits, we have a feature vector Xi that tells us something
about subject i before we pick a treatment. Now our model might be Pr(Y =
1 | X,W ;β) for parameters β. See Agrawal and Goyal (2013) for Thompson
sampling and contextual bandits.

In restless bandits, the distributions νj can be drifting over time. See Whittle
(1988). Clearly we have to explore more often in this case because some other
arm might have suddenly become much more favorable than the one we usually
choose. It also means that the very distant past observations might not be
relevant, and so the upper confidence limits or parameter distributions should
be based on recent data with past data downweighted or omitted.
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