
SVD per se

Sometimes the SVD is presented as an end in itself. The most famous example
is latent semantic indexing (LSI) which represents the term document matrix
via X =

∑
k σkukv′k. The k’th term in this sum can be interpreted as the k’th

topic in the corpus.
A query is represented by a vector q shaped like a column of X. In the

vector space model, the documents get ranked by the value of X ′q. If we
approximate X by X̂, truncating the SVD, we then rank documents by X̂ ′q. In
the approximation X̂ some of the uk will pool together terms that tend to co-
occur frequently. When things go well, synonyms get pooled. This is helpful for
a sparse query. To take an example of Kolda and O’Leary, a query with “Mark
Twain” could then pull up documents containing “Samuel Clemens” (Twain’s
real name) even if those documents did not contain the term (or terms) in “Mark
Twain”.

Notice that the topics are represented by orthogonal vectors. That is not
necessarily natural. If we have two different topics, then they might plausibly
overlap somehow. It could be hard to draw the line between two overlapping
topics, and orthogonality is one way to force a choice. We’ll see others later.

LSI typically gets used with modestly large numbers of singular vectors, say
100 to 150. Then X̂ can be stored in much less space than X. Note that X̂ is
typically dense.

In bake-offs LSI has mixed results. Manning and Shutze say it does well
in high recall searches. It can have poor precision, attributed to noise. The
meaning of the word ’noise’ in information retrieval may be slightly different
than what statisticians have in mind. There one sometimes sees X̂ described
as adding noise to X (filling in 0s for example). The statistical view is usually
that X might be a noisy version of some latent quantity close to X̂.

A big problem with LSI is that new documents keep arriving. These may
bring new terms, and may affect the inverse document frequencies too. Even if
the only change is adding more columns to X, it is expensive to keep redoing
the SVD. There are approximate ‘folding in’ methods to keep X̂ up to date.

Crop Science

Models of the SVD type have long been used in crop science. Back in 1923,
Fisher and MacKenzie had employed a model for potato yield of the form

Yij
.= µ + αi + βj + λγiδj

which is a two way anova plus one term of an SVD. Here i represents a plant
variety and j represents a manurial treatment. Subsequent authors modeled
genome by environment interactions in general.

This aspect of Fisher and MacKenzie’s work seems to have been overlooked.
In the intervening decades log or square root transformations have been more
popular.
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Another famous example from the ANOVA literature is Tukey’s one degree
of freedom for non-additivity. Tukey fits a model of the form

Yij
.= µ + αi + βj + λαiβj .

By reusing the main effects, only one more degree of freedom must be fit.
More modern models are in the linear-bilinear framework of Gabriel (1978).

Let Y be an n×m matrix of responses, representing for example, one row per
variety and one column per treatment. The linear-bilinear model has the form

Y
.= Xβ + H

where X is an n× k matrix of predictors and H has rank r. We may write this
model as

Y
.= Xβ + Zγ

where Z is n× r and γ is r×m. The factors Z and γ in Zγ are not identifiable
because Zγ = ZAA−1γ for any invertible r × r matrix A.
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