Stat 315c: Transposable Data Singular Value Decomposition (review)

Art B. Owen

Stanford Statistics

Singular value decomposition

- The SVD is a core technique in many matrix data analyses.
- It is used to do least squares computations in a most reliable way.
- It is also useful in theoretical analysis of matrices.
- We'll use it at first to understand some classical methods.
- Then we revisit it as an 'end in itself'

Definition

SVD

The matrix $A_{m \times n}$ can be written $A = U \Sigma V'$ where

- $U_{m \times m}$ is orthogonal
- $V_{n \times n}$ is orthogonal, and
- $\Sigma_{m imes n}$ is diagonal

with singular values $\Sigma_{jj} \equiv \sigma_j$ where

$$\sigma_1 \ge \sigma_2 \ge \cdots \sigma_r > \sigma_{r+1} = \sigma_{r+2} = \cdots \sigma_{\min(m,n)} = 0$$

Cols of U (resp V) are left (right) singular vectors

A matrix is what a matrix does (F. Gump)

$$Ax = U\Sigma V'x$$

Rotate then stretch then rotate

Properties

Skinny SVD

$$\begin{split} A &= \widetilde{U}\widetilde{\Sigma}\widetilde{V}'\\ \widetilde{U} &= \text{First r columns of U}\\ \widetilde{\Sigma} &= \text{Upper } r \times r \text{ submatrix of } \Sigma \end{split}$$

Outer product representation

$$A = \sum_{i=1}^{r} \sigma_{i} u_{i} v'_{i} \qquad \text{so } A \text{ has rank } r$$

$$u_{i} = \text{Column i of U}$$

$$v_{j} = \text{Column j of V}$$

-2

・ロン ・聞と ・ヨン ・ヨン

Reduced rank approximations

Best rank $k \leq r$ approx to A

$$\hat{A}_k = \sum_{i=1}^k \sigma_i u_i v_i'$$

$$\|A - \hat{A}_k\|_F^2$$

where

$$\|X\|_{F}^{2} = \sum_{i} \sum_{j} X_{ij}^{2}$$
$$\|\hat{A}_{k}\|_{F}^{2} = \sum_{i=1}^{k} \sigma_{i}^{2}$$
$$\min(n,m)$$

$$||A - \hat{A}_k||_F^2 = \sum_{i=k+1}^{k} \sigma_i^2$$

Art B. Owen (Stanford Statistics)

Norms and conditions

Matrix norms

$$\begin{split} \|A\|_2 &\equiv \max_{\|x\|=1} \|Ax\| = \sigma_1 \\ \|A\|_F &= \sum_{i=1}^r \sigma_r^2 \end{split}$$

Condition: numerical difficulties bounded in terms of $\boldsymbol{\kappa}$

$$\min_{\|x\|=1} \|Ax\| = \sigma_{\min(n,p)}$$

$$\kappa(A) = \frac{\max_{\|x\|=1} \|Ax\|}{\min_{\|x\|=1} \|Ax\|} = \frac{\sigma_1}{\sigma_{\min(m,n)}}$$

3

Sums of squares and eigendecomposition

Symmetric matrix A

 $A = P\Lambda P'$, Eigen vectors in cols of P, $\Lambda = diag(e vals)$

Matrix squaring $X = U\Sigma V'$ $X'X = V\Sigma'U'U\Sigma V'$ $= V\Sigma'\Sigma V'$ so $\Lambda(X'X) = \Sigma'\Sigma$ $XX' = U\Sigma\Sigma'U'$ so $\Lambda(XX') = \Sigma\Sigma'$ P(XX') = U

 $X_{n \times p} \ n \ge p$

$$\Sigma'\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2) \quad \Sigma\Sigma' = \mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2, 0, \dots, 0)$$

When $X = U\Sigma V'$

 $X' = V\Sigma'U'$ X and X' have same (nonzero) singular values Art B. Owen (Stanford Statistics) The SVD

7 / 10

Computing the SVD

Cost (WLOG $n \leq m$)

•
$$O(m^2n+mn^2+n^3)$$
 for U , Σ , V

• $O(mn^2 + n^3)$ for \widetilde{U} , $\widetilde{\Sigma}$, \widetilde{V}

Further savings if only Σ needed Big savings possible if only low rank approx needed

Computing a truncated SVD $k \ll \min(m, n)$

- Very roughly O(mnk)
- Exact cost seems unknown
- Can study empirically
- In R the cost is the same for all \boldsymbol{k}
- matlab does better

Applications

Fitting regressions

$$\hat{Y} = HY$$
 where $H = X(X'X)^{-1}X' = \widetilde{U}\widetilde{U}'$

Computing principal components

Apply to variance or correlation matrix

Correspondence Analysis

We'll see

Latent semantic indexing

Dimension reduction in information retrieval

Further references

Golub and van Loan "Matrix Computations"

3

• • = • • = •

< A