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Spectral clustering

o Relatively new method.
@ Lots of promise.

@ Defined via NP-hard graph criteria.
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Spectral clustering

o Relatively new method.

@ Lots of promise.

@ Defined via NP-hard graph criteria.

@ Approximate solution via matrix theory and eigenvectors.

@ Applications to information retrieval and image segmentation and
network analysis.

@ Several competing flavors.

@ Good news = bad news = we still have to think about our data
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Spectral clustering

Main reference

| mostly follow the excellent exposition of Ulrike von Luxborg
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Spectral clustering

Main reference
| mostly follow the excellent exposition of Ulrike von Luxborg

Graphs
o G=(V,E)
o Verticesv; 1 =1,...,n. v; €V
o Edges are vertex pairs from V x V
@ Undirected and weighted
@ Represent by w;; = wj; > 0.
@ w;; > 0 iff G has an ij edge
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Spectral clustering

Main reference
| mostly follow the excellent exposition of Ulrike von Luxborg

Graphs
e G=(V,E)
o Verticesv; 1 =1,...,n. v; €V
o Edges are vertex pairs from V x V
@ Undirected and weighted
@ Represent by w;; = wj; > 0.
@ w;; > 0 iff G has an ij edge

Graph clustering
@ Partition the vertices

o With large weights within and small weights between
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Graph Cut

Binary split

e ACVand A=V - A
°

Cut(A, A°) = Z Z Wij

i€EA jeAC
@ Pick A to minimize Cut
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Graph Cut

Binary split
e ACVand A=V - A

Cut(A, A°) = Z Z Wij

i€A jeAe

@ Pick A to minimize Cut, often get singleton A
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Graph Cut

Binary split
e ACVand A=V - A

°
Cut(A, A) —ZZwU

i€A jEA®
@ Pick A to minimize Cut, often get singleton A

@ Penalize small groups via group size |A| to favor balance
RatioCut(4, 4°) = 3= > wyj (5 L +L>
IAJAl T A
1€EA jEAC

@ Best split hard to find
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Lets relax

Define f € R”

e { VIA/IA], i€ A

— A, ie A

; Zfz'=0> and Zf¢2=|V|
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Lets relax

Define f € R

VIA/IA], ie A ;
fi= ) NB: fi=0, and > fZ=1V|
{—\/IAI/IACI, i€ A° Z -
Now

Wi 4 i — '2= Wi s Wi ﬂ @ ?
St 5 St )

A° A
= 2Cut(A,AC)(||A|| + ||AC|] + 2)

Fo R 2 IAH\ACI)
|A] A€
= 2|V|RatioCut(A4, A°)

v

= 2Cut(4, Ac)(
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Relaxed problem

Minimize

> wij(fi = f7)? subject to
o Zz fz =0
@ >, ff=1V|

But forgetting about the combinatorial constraint
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Relaxed problem

Minimize

> wij(fi = f7)? subject to
Q> fi=0
@, =1V

But forgetting about the combinatorial constraint

Solution

Via an eigen vector algorithm. The smallest eigen value is 0 f; is the eigen
vector for the second smallest eigen value

Then take A= {i | f; > 0}
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Relaxed problem

Minimize

> wij(fi = f7)? subject to
o Zz fz =0
@ >, ff=1V|

But forgetting about the combinatorial constraint

Solution

Via an eigen vector algorithm. The smallest eigen value is 0 f; is the eigen
vector for the second smallest eigen value
Then take A= {i | f; > 0}

Variants
@ How to pick w;;
@ Alternatives to RatioCut

@ Binary splits other than the sign and £ fold splits
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Size of sets

d; = Zj w;; generalizes degree of 4
For ACV

o |A| = cardinality of A
o vol(A) =3 icadi
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Size of sets
d; = Zj w;; generalizes degree of ¢
ForACV

o |A| = cardinality of A

° vol(A) =>4 d;

From points to vertices

We will represent points x; as vertices v;
|zi — ;|| small will imply w;; large.
Splitting the graph clusters the points.
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Size of sets

d; = Zj w;; generalizes degree of ¢
ForACV

o |A| = cardinality of A
o vol(A) =3 icadi

From points to vertices

We will represent points x; as vertices v;
|zi — ;|| small will imply w;; large.
Splitting the graph clusters the points.

Similarity measures for v; = z; € R?
@ ¢ neighborhood wi; = 1)z, 4 |<c
@ k-NN graph w;; =1 if i is one of j's k NNs (or conversely)

o wij = exp(—|lz; — z;|*/207)
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Graph Laplacian(s)

Graph Laplacian matrix (unweighted)
L=D-W

D = diag(dy,...,dn)

degree matrix
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Graph Laplacian(s)

Graph Laplacian matrix (unweighted)
L=D-W
D = diag(dy,...,d,) degree matrix

Properties

L is symmetric and positive semidefinite

fLf= %Zwij(fi — i
j

Smallest eigenvalue is 0, corresponding eigenvector is (1,...,1) € R"
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Graph Laplacian(s)

Graph Laplacian matrix (unweighted)
L=D-W
D = diag(dy,...,d,) degree matrix

Properties

L is symmetric and positive semidefinite

fLf= %Zwij(fi — i
j

Smallest eigenvalue is 0, corresponding eigenvector is (1, ..

., 1) eR”

We're interested in smallest eigenvalues of L (largest of W — D)

0< A <-- <\
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Graph Laplacian

Components
G has k connected components = L has k eigenvalues of 0
Sort edges into groups, then

L= diag(L1 L2 . Lk)

Each L; has an eigen value of 0
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Graph Laplacian

Components

G has k connected components = L has k eigenvalues of 0
Sort edges into groups, then

L= diag(L1 L2 . Lk)

Each L; has an eigen value of 0

Normalizations

Symmetric normalization
Leym=D7Y2LD7Y2 = [ — p~\/2Wp~1/2
Random walk normalization
Lw=D'L=1-D"'W

L;; gives probability of graph walking to j from 4
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Properties of Leym and Ly,

von Luxborg

Pt =4 (45

Ly has eigval 0 for eig vec of 1s
Both pos semidef

# 0 eigvals is # connected components

Ly =M < Lgnw = Aw, for w = DY/2y
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Spectral clustering

Unnormalized
o Construct similarity graph W
@ Get L=D-W
e Find smallest k eigenvalue/vector pairs
o Let V be the n x k eigvector matrix
o
o

Represent point 4 by y; i'th row of V

Run k& means on the y;
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Spectral clustering

Normalized (per Shi and Malik (2000))
o Construct similarity graph W
0 Get L=D-W

e Find smallest k eigenvalue/vector pairs in generalized eigenvalue
problem Lv = ADv

Or -+ just use Lv = A\v
Let V be the n x k eigvector matrix
Represent point ¢ by y; i'th row of V'

Run k& means on the y;
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Spectral clustering

Normalized (per Ng, Jordan and Weiss (2002))
@ Construct similarity graph W
o Get Loym = I — D™1/2WD~1/2
o Find smallest k eigenvalue/vector pairs of L
Let V be the n x k eigvector matrix
Get U by normalizing rows of V' to unit length
Represent point % by y; i'th row of U

Run k& means on the y;

Actually they run a clever k£ means that expects the cluster means to be
mutually orthogonal
The extra normalization step helps when cluster sizes are very unequal.
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k-group graph cuts

Seeking 'light’ edges between 'heavy’ edges within

k
Cut(Ay,..., Ap) =Y Cut(4;, A9

i=1
k
RatioCut(Ay, ..., Ag) = ZCut(Ai,Af) |j | Hagen Kahng 1992
i=1 :
k
NCut(Ar, .., Ag) = 3 Cut(A;, A ——  Shi Malik 2000
Y Y vol A;

i=1

We relaxed RatioCut to get unnormalized spectral clustering
Relaxing NCut gets normalized spectral clustering (Shi Malik version)
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More

Guattery and Miller: cockroach graphs lead spectral clustering astray

J
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More

Guattery and Miller: cockroach graphs lead spectral clustering astray

)

Random walks

Ncut(A, A¢) = Pr(A°| A) + Pr(A | A°). Expected traffic between groups.
1st eigenvector describes stationary distribution. 2nd eigenvector describes
correction: extra probability for ¢ — j transitions after (large) m steps

governed by z025. Going i — j slightly more likely if sign(z2;) = sign(z2;).
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Guattery and Miller: cockroach graphs lead spectral clustering astray J

Random walks
Ncut(A, A¢) = Pr(A°| A) + Pr(A | A°). Expected traffic between groups.
1st eigenvector describes stationary distribution. 2nd eigenvector describes
correction: extra probability for ¢ — j transitions after (large) m steps

governed by z025. Going i — j slightly more likely if sign(z2;) = sign(z2;)

v

Commute distance

Expected time to go from ¢ to j and back
Almost but not quite the dist in spectral clustering
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@ Stable eigenvectors ...
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More

Guattery and Miller: cockroach graphs lead spectral clustering astray J

Random walks
Ncut(A, A¢) = Pr(A°| A) + Pr(A | A°). Expected traffic between groups.
1st eigenvector describes stationary distribution. 2nd eigenvector describes
correction: extra probability for ¢ — j transitions after (large) m steps

governed by z025. Going i — j slightly more likely if sign(z2;) = sign(z2;)

v

Commute distance

Expected time to go from ¢ to j and back
Almost but not quite the dist in spectral clustering

Perturbation theory

@ Stable eigenvectors ...

@ Come from well separated eigenvalues
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Where to cut

k means using 7 eigenvectors
@ k means with r =k
@ k means with r =k — 1 (eg k = 2 only needs r = 1 eigenvector)
o If r eigenvectors — k = 2" clusters ... take r = [logy(k)]
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Where to cut

k means using 7 eigenvectors
@ k means with r =k
@ k means with r =k — 1 (eg k = 2 only needs r = 1 eigenvector)
o If r eigenvectors — k = 2" clusters ... take r = [logy(k)]

v

Other

@ For k = 2, we can use direct cut-style measures instead of k-means

@ Recursive bisection with or without k-means
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Alternatives
Alternative dist
Wij = exp(—B||z; — z;]))

Instead of exp(—f|z; — z;|?).
Gets 'path weight’ z1 — 22 — -+ = xp, of exp(—B 3, [[it1 — i)

Kannan Vempala Vetta
Use Cheeger conductance

Cut(A, A°)

¢(4, A%) = min(vol(A), vol(A€))

Directed graphs

Cut(A, B) ZZw”

i€A jEB

is symmetric in . So are size penalties based on Cut(A, A).

4
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Clustering examples

Examples
Show figure from Ng, Jordan and Weiss

Notes

@ Spectral clustering soundly beats k-means on straggly arbitrary
shaped clusters

o It even beats single linkage in such examples

@ The reason is that having 5 connections at distance d + € counts for
more than having just one at d

@ We might expect 'reverse counter-examples’ for the other methods.

v
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