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Spectral clustering

Relatively new method.

Lots of promise.

Defined via NP-hard graph criteria.

Approximate solution via matrix theory and eigenvectors.

Applications to information retrieval and image segmentation and
network analysis.

Several competing flavors.

Good news = bad news = we still have to think about our data
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Spectral clustering

Main reference

I mostly follow the excellent exposition of Ulrike von Luxborg

Graphs

G = (V,E)

Vertices vi i = 1, . . . , n. vi ∈ V
Edges are vertex pairs from V × V
Undirected and weighted

Represent by wij = wji ≥ 0.

wij > 0 iff G has an ij edge

Graph clustering

Partition the vertices

With large weights within and small weights between
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Graph Cut

Binary split

A ⊂ V and Ac = V −A

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

wij

Pick A to minimize Cut

, often get singleton A

Penalize small groups via group size |A| to favor balance

RatioCut(A,Ac) =
∑
i∈A

∑
j∈Ac

wij

( 1

|A|
+

1

|Ac|

)
Best split hard to find
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Lets relax

Define f ∈ Rn

fi =

{ √
|Ac|/|A|, i ∈ A

−
√
|A|/|Ac|, i ∈ Ac

NB:
∑
i

fi = 0, and
∑
i

f2i = |V |

Now ∑
ij

wij(fi − fj)2 =
∑
i∈A

∑
j∈Ac

(wij + wji)

(√
|A|
|Ac|

+

√
|Ac|
|A|

)2

= 2Cut(A,Ac)

(
|Ac|
|A|

+
|A|
|Ac|

+ 2

)
= 2Cut(A,Ac)

(
|Ac|+ |A|
|A|

+
|A|+ |Ac|
|Ac|

)
= 2|V |RatioCut(A,Ac)
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Relaxed problem

Minimize∑
ij wij(fi − fj)2 subject to

1
∑

i fi = 0

2
∑

i f
2
i = |V |

But forgetting about the combinatorial constraint

Solution

Via an eigen vector algorithm. The smallest eigen value is 0 fi is the eigen
vector for the second smallest eigen value
Then take A = {i | fi ≥ 0}

Variants

How to pick wij

Alternatives to RatioCut

Binary splits other than the sign and k fold splits
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Size of sets

di =
∑

j wij generalizes degree of i
For A ⊆ V

|A| = cardinality of A

vol(A) =
∑

i∈A di

From points to vertices

We will represent points xi as vertices vi
‖xi − xj‖ small will imply wij large.
Splitting the graph clusters the points.

Similarity measures for vi ≡ xi ∈ Rd

ε neighborhood wij = 1‖xi−xj‖≤ε

k-NN graph wij = 1 if i is one of j’s k NNs (or conversely)

wij = exp(−‖xi − xj‖2/2σ2)
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Graph Laplacian(s)

Graph Laplacian matrix (unweighted)

L = D −W
D = diag(d1, . . . , dn) degree matrix

Properties

L is symmetric and positive semidefinite

f ′Lf =
1

2

∑
ij

wij(fi − fj)2

Smallest eigenvalue is 0, corresponding eigenvector is (1, . . . , 1) ∈ Rn

We’re interested in smallest eigenvalues of L (largest of W −D)
0 ≤ λ1 ≤ · · · ≤ λn
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Graph Laplacian

Components

G has k connected components =⇒ L has k eigenvalues of 0
Sort edges into groups, then

L = diag(L1 L2 . . . Lk)

Each Lj has an eigen value of 0

Normalizations

Symmetric normalization

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Random walk normalization

Lrw = D−1L = I −D−1W

Lij gives probability of graph walking to j from i
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Properties of Lsym and Lrw

von Luxborg

f ′Lsymf = 1
2

∑
ij wij

(
fi√
di
− fj√

dj

)2
Lrwv = λv ⇐⇒ Lsymw = λw, for w = D1/2v

Lrw has eigval 0 for eig vec of 1s

Both pos semidef

# 0 eigvals is # connected components

Art B. Owen (Stanford Statistics) Spectral clustering 10 / 19



Spectral clustering

Unnormalized

Construct similarity graph W

Get L = D −W
Find smallest k eigenvalue/vector pairs

Let V be the n× k eigvector matrix

Represent point i by yi i’th row of V

Run k means on the yi
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Spectral clustering

Normalized (per Shi and Malik (2000))

Construct similarity graph W

Get L = D −W
Find smallest k eigenvalue/vector pairs in generalized eigenvalue
problem Lv = λDv

Or · · · just use Lrwv = λv

Let V be the n× k eigvector matrix

Represent point i by yi i’th row of V

Run k means on the yi
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Spectral clustering

Normalized (per Ng, Jordan and Weiss (2002))

Construct similarity graph W

Get Lsym = I −D−1/2WD−1/2

Find smallest k eigenvalue/vector pairs of L

Let V be the n× k eigvector matrix

Get U by normalizing rows of V to unit length

Represent point i by yi i’th row of U

Run k means on the yi

Actually they run a clever k means that expects the cluster means to be
mutually orthogonal
The extra normalization step helps when cluster sizes are very unequal.

Art B. Owen (Stanford Statistics) Spectral clustering 13 / 19



k-group graph cuts

Seeking ’light’ edges between ’heavy’ edges within

Cut(A1, . . . , Ak) =

k∑
i=1

Cut(Ai, A
c
i )

RatioCut(A1, . . . , Ak) =

k∑
i=1

Cut(Ai, A
c
i )

1

|Ai|
Hagen Kahng 1992

NCut(A1, . . . , Ak) =

k∑
i=1

Cut(Ai, A
c
i )

1

volAi
Shi Malik 2000

We relaxed RatioCut to get unnormalized spectral clustering
Relaxing NCut gets normalized spectral clustering (Shi Malik version)
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More

Guattery and Miller: cockroach graphs lead spectral clustering astray

Random walks

Ncut(A,Ac) = Pr(Ac | A) + Pr(A | Ac). Expected traffic between groups.
1st eigenvector describes stationary distribution. 2nd eigenvector describes
correction: extra probability for i→ j transitions after (large) m steps
governed by z2z

′
2. Going i→ j slightly more likely if sign(z2i) = sign(z2j).

Commute distance

Expected time to go from i to j and back
Almost but not quite the dist in spectral clustering

Perturbation theory

Stable eigenvectors . . .

Come from well separated eigenvalues
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Where to cut

k means using r eigenvectors

k means with r = k

k means with r = k − 1 (eg k = 2 only needs r = 1 eigenvector)

If r eigenvectors → k = 2r clusters . . . take r = dlog2(k)e

Other

For k = 2, we can use direct cut-style measures instead of k-means

Recursive bisection with or without k-means
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Alternatives

Alternative dist

Wij = exp(−β‖xi − xj‖)

Instead of exp(−β‖xi − xj‖2).
Gets ’path weight’ x1 → x2 → · · · → xn of exp(−β

∑
i ‖xi+1 − xi‖).

Kannan Vempala Vetta

Use Cheeger conductance

φ(A,Ac) =
Cut(A,Ac)

min(vol(A), vol(Ac))

Directed graphs

Cut(A,B) =
∑
i∈A

∑
j∈B

wij

is symmetric in W . So are size penalties based on Cut(A,A).
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Clustering examples

Examples

Show figure from Ng, Jordan and Weiss

Notes

Spectral clustering soundly beats k-means on straggly arbitrary
shaped clusters

It even beats single linkage in such examples

The reason is that having 5 connections at distance d+ ε counts for
more than having just one at d

We might expect ’reverse counter-examples’ for the other methods.
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