
Spectral bi-clustering

Here’s a summary of spectral bi-clustering.
The focal point was a paper by Inderjit Dhillon. There are two versions of

that paper on the web. A short one was published in KDD. A long one is a UT
technical report. I worked from the long one.

Dhillon illustrated the problem with term document matrices. You could also
use market baskets (customers, items purchased) or genes and experiments.

Reducing words to word clusters could help you cluster documents. For
example if the cluster corresponds to synonyms then you can judge similarity
between two documents through synonyms in common which might be more
powerful than mere words in common. Conversely, clusters of documents help
you find the word clusters in the first place.

It sounds circular and we might anticipate an alternating algorithm. If so, we
anticipated wrong. It gets solved via an SVD. Then again maybe the iterations
inside the SVD computation look like alternations.

The bipartite graph is G = (D,W, E), respectively documents, words and
edges. Suppose that word i appears tij ≥ 0 times in document j. Then the
edge weight is eij = tij × log(|D|/|Di|) where |D| is the number of documents in
the set and |Di| =

∑
j 1tij>0 is the number of those documents containing word

i. This is one of many variants on ’term frequency inverse document frequency’
scoring.

Letting A be the matrix with Aij = eij the weight matrix for the bipartite
graph is

M =

(
0 A
AT 0

)
.

This is the matrix we usually call W but here W stands for words. The diagonal
zero blocks arise because the graph is bipartite: no word-word or doc-doc edges
appear.

If we cut the graph into sets V1, . . . ,Vk then of course we can split each Vr
into Dr ∪Wr.

The graph incidence matrix is IG with a row per vertex and a column per
edge. The column for the edge from word i to document j has the value

√
eij in

row i and −√eij in row j. (These could be reversed without changing anything
important.)

The graph Laplacian is L = D − M as usual where D is diagonal with
word elements di =

∑
j eij and document elements dj =

∑
i eij . We bun-

dle up the word part in into D1 and the document part into D2. So D =
diag(diag(D1),diag(D2)).

Now

L =

(
D1 −A
−AT D2

)
.

L = IGI
T
G.

We looked at the cutting of the graph and ended up with the idea that we
want the second smallest generalized eigenvector z = z2 satisfying Lz = λMz.

1



The algorithm can be done in terms of the matrix A which is smaller than
L. Long story short, the recipe is:

1. Put An = D
−1/2
1 AD

−1/2
2 .

2. Get the second singular vectors u2 from the left and v2 from the right. Use
the second largest singular value of An which corresponds to the second
smallest singular value of L. That is handy because a truncated SVD is
easier to compute.

3. Put

z2 =

(
D

−1/2
1 u2

D
−1/2
2 v2

)
.

4. Run k-means with k = 2 on z2.

When the k-means finishes up, there are two clusters of z2 points and they
split both the terms and documents into two clusters.

You can recursively bisect or do a k way split. For the k-way split, take
` = dlog2(k)e of the left singular values into U and ` of the right hand ones into
V . Then run k-means on (

D
−1/2
1 U

D
−1/2
2 V

)
.

It seems that one could reasonably use a larger ` instead.
The article includes some worked examples. It is very successful at telling

apart abstracts from different corpora. Those examples have nearly equally
sized contributions from the corpora. There are also some examples splitting
Reuters news stories into sports, health, technology and so on. Those results
are less satisfactory. Part of the problem might be that the groups vary a lot in
size.

k-means has trouble when some of the clusters are much smaller than others.
It might prefer to split one of the big clusters. That’s built into the criterion,
not an artifact of the algorithm.

What is the importance?

The 2012 class raised an interesting question as to whether there is more going on
here than just ordinary spectral clustering with a bipartite graph. For example
the computational savings of reducing an (m+ n)× (m+ n) SVD to an M × n
SVD might be minor given software that handles sparse SVDs.

It is intriguing that a clustering algorithm can be used to do biclustering.
The heavy lifting seems to be in forming the adjacency particular matrix used.
That already puts words and documents on the same footing allowing them to
be clustered.

Another issue that was raised was how many singular vectors to use when
seeking k groups. k perfectly separated groups will lead to k singular values
equal to zero and a k − 1 dimensional space in which they’re separated. Real
data could be messier. Left unsaid is how to choose k or even a criterion for k.
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Spectral learning

A related area is spectral learning. There the goal is to figure out the value of θ
in a parameterized similarity measure W (xi, xj ; θ) using a known clustering of
some of the observations.

Some refs:
Bach and Jordan (2004) NIPS “learning spectral clustering”.
Meila and Shi (2000)
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