Stat 321: Matrix valued data Starting with ANOVA

Art B. Owen

Stanford Statistics

A B F A B F

Analysis of variance

- ANOVA is a very old subject. It has a few surprises for us. It anticipates many of the issues we face.
- Named vs anonymous entities are almost fixed vs random effects.
- There are complete and computationally elegant inference solutions, under Gaussian assumptions. No need for asymptotics or simulation.
- But ANOVA also breaks down for the kind of problems we study here. [Large scale and unbalanced.]
- So glm versions of ANOVA are not going to suffice.

Anova

- Predictor variables customarily called factors, corresponding parameters are effects
- Extensive vocabulary for meaning and interpretation of variables
 - Fixed vs random effects
 - Nested vs crossed factors
 - Interactions
 - Control vs noise factors
- We'll see why it matters later. If you ignore the nature of the variation you get wrong answers.
- We need the ideas · · · but can't use many of the methods.
- The ANOVA setting is pathologically good

(B)

Analysis of variance. Y is yield of potatoes

One way layout

- Model: $Y_{ij} \sim N(\mu_j, \sigma^2) \ j = 1, ..., d$, $i = 1, ..., n_j$
- EG: d fertilizers, n_j measurements on j'th one
- No connection between Y_{ij} and $Y_{ij'}$
- Does not fit course topic (Later we say: *i* is "nested" not "crossed")

Analysis of variance. Y is yield of potatoes

One way layout

- Model: $Y_{ij} \sim N(\mu_j, \sigma^2) \ j = 1, ..., d$, $i = 1, ..., n_j$
- EG: d fertilizers, n_j measurements on j'th one
- No connection between Y_{ij} and $Y_{ij'}$
- Does not fit course topic (Later we say: *i* is "nested" not "crossed")

Randomized blocks are closer

- Fertilizers $j = 1, \ldots, d$ on farms $i = 1, \ldots, n$
- Fertilizers are the variables, farms are the cases

Analysis of variance. Y is yield of potatoes

One way layout

- Model: $Y_{ij} \sim N(\mu_j, \sigma^2) \ j = 1, ..., d$, $i = 1, ..., n_j$
- EG: d fertilizers, n_j measurements on j'th one
- No connection between Y_{ij} and $Y_{ij'}$
- Does not fit course topic (Later we say: *i* is "nested" not "crossed")

Randomized blocks are closer

- Fertilizers $j = 1, \ldots, d$ on farms $i = 1, \ldots, n$
- Fertilizers are the variables, farms are the cases

Two way layout fits our theme

- Fertilizers $j = 1, \ldots, d$ and pesticides $i = 1, \ldots, n$
- Both are variables to study

3

イロト 不得 トイヨト イヨト

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those \boldsymbol{k} levels

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those k levels

Random effect

For a random effect, the k levels we got are a sample from a larger population. We want our inferences to apply to that larger population.

- 4 3 6 4 3 6

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those \boldsymbol{k} levels

Random effect

For a random effect, the k levels we got are a sample from a larger population. We want our inferences to apply to that larger population.

Examples

• A = 10 pain killers (aspirin, tylenol,...), and, B = 5 patients (Vera, Chuck, ..., Dave)

イロト イポト イヨト イヨト

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those k levels

Random effect

For a random effect, the k levels we got are a sample from a larger population. We want our inferences to apply to that larger population.

Examples

 A = 10 pain killers (aspirin, tylenol,...), and, B = 5 patients (Vera, Chuck, ..., Dave) A is fixed, B is random

イロト イポト イヨト イヨト

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those \boldsymbol{k} levels

Random effect

For a random effect, the k levels we got are a sample from a larger population. We want our inferences to apply to that larger population.

Examples

 A = 10 pain killers (aspirin, tylenol,...), and, B = 5 patients (Vera, Chuck, ..., Dave) A is fixed, B is random

• A = 10 batches of chlorpheniramine and B = 5 measurement labs

・ロン ・四 ・ ・ ヨン ・ ヨン

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those \boldsymbol{k} levels

Random effect

For a random effect, the k levels we got are a sample from a larger population. We want our inferences to apply to that larger population.

Examples

- A = 10 pain killers (aspirin, tylenol,...), and, B = 5 patients (Vera, Chuck, ..., Dave) A is fixed, B is random
- A = 10 batches of chlorpheniramine and B = 5 measurement labs A is random, B is random

イロト イポト イヨト イヨト

Nested and crossed effects

Nesting

- The levels of a nested effect are only defined with respect to the containing effect. Also called 'hierarchical'.
- Eg, ingots $j = 1, ..., J_i$ nested within 'heats' of steel i = 1, ..., I.

- A I I I A I I I I

Nested and crossed effects

Nesting

- The levels of a nested effect are only defined with respect to the containing effect. Also called 'hierarchical'.
- Eg, ingots $j = 1, ..., J_i$ nested within 'heats' of steel i = 1, ..., I.

Crossing

- Levels of a crossed factor retain their meanings at all levels of another factor
- Eg, flame retardants i = 1, ..., I in fabrics j = 1, ..., J
- For this course: we need at least one crossed pair of factors

• • = • • = •

Nested and crossed effects

Nesting

- The levels of a nested effect are only defined with respect to the containing effect. Also called 'hierarchical'.
- Eg, ingots $j = 1, ..., J_i$ nested within 'heats' of steel i = 1, ..., I.

Crossing

- Levels of a crossed factor retain their meanings at all levels of another factor
- Eg, flame retardants $i = 1, \dots, I$ in fabrics $j = 1, \dots, J$
- For this course: we need at least one crossed pair of factors

Factors A at I levels and B at J levels cross to form an "AB interaction" $A\times B$ at IJ levels.

Factors can be nested and crossed in arbitrarily complex ways.

EG: A crossed with B, both nested within $C \times D$

イロト 不得 トイヨト イヨト 二日

Can we nest a random effect in a random effect?

э

イロト 不得下 イヨト イヨト

Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···

3

イロト イヨト イヨト イヨト

- Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···
- ② Can we nest a fixed effect in a fixed effect?

- Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···
- Can we nest a fixed effect in a fixed effect? Yes: car models within manufacturers

A B F A B F

- Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···
- Can we nest a fixed effect in a fixed effect? Yes: car models within manufacturers
- San we nest a random effect in a fixed effect?

▲ 臣 ▶ | ▲ 臣 ▶

- Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···
- Can we nest a fixed effect in a fixed effect? Yes: car models within manufacturers
- S Can we nest a random effect in a fixed effect? Yes: movies within studios

4 1 1 4 1 1 4

- Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···
- Can we nest a fixed effect in a fixed effect? Yes: car models within manufacturers
- S Can we nest a random effect in a fixed effect? Yes: movies within studios
- Gan we nest a fixed effect in a random one?

- Can we nest a random effect in a random effect?
 Yes: students within classes within schools within ···
- Can we nest a fixed effect in a fixed effect? Yes: car models within manufacturers
- S Can we nest a random effect in a fixed effect? Yes: movies within studios
- Can we nest a fixed effect in a random one?
 No. [3 out of 4 isn't bad!]

Head vs long tail

Uneven sampling

- There are often just a few common levels and a great many rare levels.
- This is roughly described by Zipf laws: *i*'th most popular has $\propto i^{-a}$ events $a \in (1, \infty)$.
- The head has well known entities, the tail is a mishmash

Head vs long tail

Uneven sampling

- There are often just a few common levels and a great many rare levels.
- This is roughly described by Zipf laws: *i*'th most popular has $\propto i^{-a}$ events $a \in (1, \infty)$.
- The head has well known entities, the tail is a mishmash

E.g. at Amazon.com

- Harry Potter might be a fixed level.
- Most other books are random.
- A book reseller who buys from Amazon might be a fixed level customer
- Most other customers might be random levels.

A B < A B </p>

Head vs long tail

Uneven sampling

- There are often just a few common levels and a great many rare levels.
- This is roughly described by Zipf laws: *i*'th most popular has $\propto i^{-a}$ events $a \in (1, \infty)$.
- The head has well known entities, the tail is a mishmash

E.g. at Amazon.com

- Harry Potter might be a fixed level.
- Most other books are random.
- A book reseller who buys from Amazon might be a fixed level customer
- Most other customers might be random levels.

Similarly: queries, IP addresses, URLs, phone numbers ····

- 4 週 ト - 4 三 ト - 4 三 ト

More about factors

Control factor

A factor is a control factor if it corresponds to a decision we control

- Ad on left/right of page, blinking vs not, etc.
- Using steel or aluminum in auto part

More about factors

Control factor

A factor is a control factor if it corresponds to a decision we control

- Ad on left/right of page, blinking vs not, etc.
- Using steel or aluminum in auto part

Noise factor

A noise factor corresponds to a decision (ordinarily) out of our control

- Customer using dialup vs high speed cable modem
- Customer driving in Texas summer vs Alaska winter

Usually we can actually control the noise factor in experiments

More about factors

Control factor

A factor is a control factor if it corresponds to a decision we control

- Ad on left/right of page, blinking vs not, etc.
- Using steel or aluminum in auto part

Noise factor

A noise factor corresponds to a decision (ordinarily) out of our control

- Customer using dialup vs high speed cable modem
- Customer driving in Texas summer vs Alaska winter

Usually we can actually control the noise factor in experiments

Uses

- Robust design: Make a good choice of control at all noise levels
- \bullet Personalization: Study control \times noise interaction

Why factor types matter

- Ignoring fixed vs random can lead to serious errors.
- You can underestimate the real sampling uncertainty.
- Big errors come from treating random as fixed.
- That is what most regression code does as default.

Large unbalanced random effects

Setting (eg raters i and rated items j)

$$Y_{ijk} = \mu + a_i + b_j + (ab)_{ij} + \varepsilon_{ijk}$$

$$k = 1, \dots, n_{ij}$$

Goals

• Compare
$$\sigma_A^2$$
, σ_B^2 , σ_{AB}^2 , σ_E^2

• Estimate some specific a_i 's or b_j 's or $(ab)_{ij}$'s

Sparsity

- Most $n_{ij} = 0$
- Most other $n_{ij} = 1$
- So let's just use $\varepsilon_{ij} \equiv (ab)_{ij} + \varepsilon_{ij1}$ (roll interaction into error)

Shrinkage estimates

Model and notation

• Now
$$Y_{ij} = \mu + a_i + b_j + \varepsilon_{ij}$$

• Let
$$n_{iullet}=\sum_j n_{ij}=\#$$
obs for row i, $n_{ullet j}=\sum_i n_{ij}=\#$ obs for col j

Shrinkage

• Given
$$\mu$$
, σ_A^2 , σ_B^2 , $\sigma_E^2 = \text{Var}(\varepsilon_{ij})$

• Put
$$\bar{Y}_{i\bullet} = \sum_{j(i)} Y_{ij}/n_{i\bullet}$$

• Let
$$\hat{a}_i = \lambda_i (\bar{Y}_{i \bullet} - \mu)$$

• Pick
$$\lambda_i$$
 to min $E((a_i - \hat{a}_i)^2)$

Ideally

•
$$\bar{Y}_{i\bullet} \sim \left(a_i, \frac{\sigma_B^2 + \sigma_E^2}{n_{i\bullet}}\right)$$
 given a_i

• Then take
$$\lambda_i = \frac{\sigma_A^2}{\sigma_A^2 + \frac{\sigma_B^2 + \sigma_E^2}{n_i \bullet}} = \frac{1}{1 + \frac{1}{n_i \bullet} \frac{\sigma_B^2 + \sigma_E^2}{\sigma_A^2}}$$

Estimating σ_A^2 , σ_B^2 , σ_E^2

Eg Netflix data

- 100,000,000 ratings should be enough to pin down $\mu,~\sigma_A,~\sigma_B$ and σ_E
- Almost an oracle (for those params)

Methods

- Moments
- Maximum likelihood
- 8 REML

Method of moments

Outline

• Work out
$$E(\sum_i (ar{Y}_{iullet} - ar{Y}_{ulletullet})^2)$$
 as lin comb of σ_A^2 , σ_B^2 , σ_E^2

2 Get two more linear combinations, and solve

$$\begin{pmatrix} \mathsf{SS}_1 \\ \mathsf{SS}_2 \\ \mathsf{SS}_3 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} \begin{pmatrix} \sigma_A^2 \\ \sigma_B^2 \\ \sigma_E^2 \end{pmatrix}$$

Issues

- Sums of squares must be 'free of fixed effects'
- Maybe use $\sum_i n_{i\bullet} (\bar{Y}_{i\bullet} \bar{Y}_{\bullet\bullet})^2$ instead
- And/or replace $\bar{Y}_{\bullet\bullet}$ by $I^{-1}\sum_i \bar{Y}_{i\bullet}$
- We could generate more equations than unknowns
- Usual choice based on variance
- But ... lack of fit is more important

For Netflix data

Estimates

$$\begin{aligned} \hat{\mu} &= 3.604 \\ \hat{\sigma}_{\text{movi}}^2 &= 0.272 \qquad \hat{a}_{\text{movi}} = \frac{\bar{Y}_{\text{movi}}}{1 + 5.01/n_{\text{movi}}} \\ \hat{\sigma}_{\text{cust}}^2 &= 0.185 \qquad \hat{b}_{\text{cust}} = \frac{\bar{Y}_{\text{cust}}}{1 + 7.83/n_{\text{cust}}} \\ \hat{\sigma}_E^2 &= 1.178 \end{aligned}$$

But answer depends on

- Moment method used
- 2 Data subset applied to

Note how large $\hat{\sigma}_E^2$ is. That's partly because the model is so simple. Also: should we account for selection bias?

イロト イポト イヨト イヨト

Maximum likelihood and REML

These are the most recommended methods, but they don't scale

Model for $y \in \mathbb{R}^N$

$$\begin{split} y &= X\beta + Zu + e \qquad \text{X fixed u random Z 'incidence} \\ &= X\beta + \sum_{\ell=1}^{L} Z_{\ell} u_{\ell} + e \qquad \text{eg L} = \text{n. rows} + \text{n. cols} \\ &= X\beta + \sum_{\ell=0}^{L} Z_{\ell} u_{\ell}, \qquad u_{\ell} \sim N(0, \sigma_{\ell}^2 I_{d_{\ell}}) \end{split}$$

For MLE, solve

$$\begin{split} X'\hat{V}^{-1}X\hat{\beta} &= X'\hat{V}^{-1}y\\ \mathrm{tr}(\hat{V}^{-1}Z_{\ell}Z'_{\ell}) &= (y - X\hat{\beta})'\hat{V}^{-1}Z_{\ell}Z'_{\ell}\hat{V}^{-1}(y - X\hat{\beta}), \qquad \text{where,}\\ \hat{V} &= \sum_{\ell=0}^{L} Z_{\ell}Z'_{\ell}\hat{\sigma}_{\ell}^2 \qquad \text{is } N \times N \end{split}$$

Art B. Owen (Stanford Statistics)

For more

Searle, Casella, McCulloch

- consider 5 moment methods
 - Yule I and II [Raw direct moments]
 - Henderson I, II, and III [BLUE and BLUP]

REML is

- MLE based on $K'y \sim N(0, K'VK)$
- where $K'X\beta = 0$
- it fixes up (1-1/m) like terms
- ML and REML estimation is nasty for large unbalanced data
 - Accounting for mixed effects is hard
 - Even EM looks hard

These method won't work on big unbalanced data. So it becomes a research issue to get equally good results in a practical way.

• • = • • = •

Bootstrap methods

Here's what I'd do.

$\mathsf{Fixed}\,\times\,\mathsf{fixed}$

- Treat as regression and resample residuals
- or use 'wild bootstrap' [Essentially $\pm \hat{arepsilon}_{ij}$]
- out of luck for saturated model
- might then resample unbalancedly (only for saturated where we're desperate)
- Desperate \cap null model $\cdots\,$ permute rows and/or columns

$\mathsf{Random}\,\times\,\mathsf{fixed}$

- Resample the random factor
- Problematic if random factor has only few levels
- (We're stuck then anyhow)

Bootstrap methods ctd

Random \times random, McCullagh (2000)

- No consistent bootstrap variance exists for $\hat{\mu} = \frac{1}{IJ} \sum_{i} \sum_{j} Y_{ij}$
- But ... see Section 4.6

Pigeonhole bootstrap

- resample rows
- resample cols
- retain intersected cells

Model based bootstrap

• fit
$$a_i \sim \hat{F}_A$$
 and $b_j \sim \hat{F}_B$ and $arepsilon_{ij} \sim \hat{F}_E$

• Take
$$\hat{Y}_{ij}^{*b} = \hat{\mu} + a_i^{*b} + b_j^{*b} + \varepsilon_{ij}^{*b}$$

イロト 不得下 イヨト イヨト

Near accuracy

Actual variance of $\hat{\mu}$ is

$$\frac{\sigma_A^2}{m} + \frac{\sigma_B^2}{n} + \frac{\sigma_E^2}{mn}$$

Expected bootstrap variance (for pigeon boot or model boot)

$$\sigma_A^2 \left(\frac{m-1}{m^2}\right) + \sigma_B^2 \left(\frac{n-1}{n^2}\right) + \sigma_E^2 \left(\frac{3}{mn} - \frac{2}{mn^2} - \frac{2}{m^2n} + \frac{1}{m^2n^2}\right)$$

Upshot

• Trouble if
$$\sigma_A^2 = \sigma_B^2 = 0$$

• Pretty good if m and n are both large and σ_E^2 not relatively enormous

• This case was balanced

A B M A B M

Naive bootstrap

McCullagh's Boot-I

- We have N triples $(i, j, Y_{ij}) \in \mathcal{I} \times \mathcal{J} \times \mathbb{R}$
- Resample them with replacment

Recall Actual variance of $\hat{\mu}$:

$$\frac{\sigma_A^2}{m} + \frac{\sigma_B^2}{n} + \frac{\sigma_E^2}{mn}$$

Expected naive bootstrap variance of $\hat{\mu}$ is

$$\sigma_A^2\left(\frac{m-1}{m^2n}\right) + \sigma_B^2\left(\frac{n-1}{n^2m}\right) + \sigma_E^2\frac{mn-1}{m^2n^2}$$

Upshot .. it's way too small

- $\bullet\,$ Here we'd need $\sigma_A^2=\sigma_B^2=0$
- What if we're after more than just $\hat{\mu}$?

Sparsely sampled data

Naive bootstrap

• Actual variance of $\hat{\mu} = (1/N) \sum_{ij} Y_{ij}$

$$\sigma_A^2 \frac{1}{N^2} \sum_i n_i^2 + \sigma_B^2 \frac{1}{N^2} \sum_j n_j^2 + \sigma_E^2 \frac{1}{N} \ge \frac{1}{N} \left(\sigma_A^2 + \sigma_B^2 + \sigma_E^2 \right)$$

• Expected $N/(N-1) \times$ bootstrap variance of $\hat{\mu} = (1/N) \sum_{ij} Y_{ij}$

$$\frac{1}{N} \left(\sigma_A^2 + \sigma_B^2 + \sigma_E^2 \right) - \frac{\sigma_A^2}{N(N-1)} \sum_i n_i (n_i - 1) - \frac{\sigma_B^2}{N(N-1)} \sum_j n_j (n_j - 1) \cdot \frac{\sigma_B^2}$$

Trouble in proportion to lumpiness:

- Ok when $\max_i n_i = \max_j n_j = 1$
- Bad when some n_i or n_j are huge
- Balanced case not necessarily the worst!

Sparsely sampled data

Pigeonhole bootstrap

- Sample sizes too random on unbalanced data
- Possible fixes: weighted sampling, oversampling

Properties of PBS

- Will sometimes give too little data (left out Harry Potter)
- Sometimes too much (saw HP 3 times)
- Random n_i^* , IE not conditional on sample pattern
- Treats 2 resampled Harry Potters as two different books

Model based bootstrap

- Keeps n_i and n_j fixed
- Requires estimates \hat{F}_A , \hat{F}_B , \hat{F}_E
- Makes strong independence assumptions e.g. $n_i \perp V(Y_{ij} \mid i)$

ANOVA References

- Box, Hunter and Hunter "Statistics for Experimenters" Intuitive intro DOE text
- O.C. Montgomery "Design and Analysis of Experiments" Comprehensive intro DOE text
- Searle, Casella and McCulloch "Variance Components" Extensive coverage of balanced Gaussian random effects
- Cornfield and Tukey (Article in course web site)
 Presents the pigeonhole model.
- McCullagh (Article in course web site)
 Perhaps the only one to bootstrap crossed random effects

Structured interaction models

Plain unstructured model

- has $I \times J$ parameters $(\alpha \beta)_{ij}$
- for what may be least interesting term
- and no generalizing structure

Outer product models

• Tukey (1949) 1 df for non-additivity

$$E(Y_{ij}) = \mu + \alpha_i + \beta_j + \lambda \alpha_i \beta_j$$

adds parameter $\lambda \in \mathbb{R}$

• Fisher and MacKenzie (1923) bilinear term

$$E(Y_{ij}) = \mu + \alpha_i + \beta_j + \lambda \gamma_i \delta_j$$

adds parameters $\lambda \in \mathbb{R} \ \gamma_i$ and δ_j

Structured interaction models

Plain unstructured model

- has $I \times J$ parameters $(\alpha \beta)_{ij}$
- for what may be least interesting term
- and no generalizing structure

Outer product models

• Tukey (1949) 1 df for non-additivity

$$E(Y_{ij}) = \mu + \alpha_i + \beta_j + \lambda \alpha_i \beta_j$$

adds parameter $\lambda \in \mathbb{R}$

• Fisher and MacKenzie (1923) bilinear term

$$E(Y_{ij}) = \mu + \alpha_i + \beta_j + \lambda \gamma_i \delta_j$$

adds parameters $\lambda \in \mathbb{R}$ γ_i and δ_j much more later