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Analysis of variance

ANOVA is a very old subject. It has a few surprises for us. It
anticipates many of the issues we face.

Named vs anonymous entities are almost fixed vs random effects.

There are complete and computationally elegant inference solutions,
under Gaussian assumptions. No need for asymptotics or simulation.

But ANOVA also breaks down for the kind of problems we study here.
[Large scale and unbalanced.]

So glm versions of ANOVA are not going to suffice.
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Anova

Predictor variables customarily called factors, corresponding
parameters are effects

Extensive vocabulary for meaning and interpretation of variables
I Fixed vs random effects
I Nested vs crossed factors
I Interactions
I Control vs noise factors

We’ll see why it matters later. If you ignore the nature of the
variation you get wrong answers.

We need the ideas · · · but can’t use many of the methods.

The ANOVA setting is pathologically good
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Analysis of variance. Y is yield of potatoes

One way layout

Model: Yij ∼ N(µj , σ
2) j = 1, . . . , d, i = 1, . . . , nj

EG: d fertilizers, nj measurements on j’th one

No connection between Yij and Yij′

Does not fit course topic (Later we say: i is “nested” not “crossed”)

Randomized blocks are closer

Fertilizers j = 1, . . . , d on farms i = 1, . . . , n

Fertilizers are the variables, farms are the cases

Two way layout fits our theme

Fertilizers j = 1, . . . , d and pesticides i = 1, . . . , n

Both are variables to study
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Random and Fixed Effects

Suppose that a predictor variable (effect) takes k levels

Fixed effect

For a fixed effect, we are interested in learning about those k levels

Random effect

For a random effect, the k levels we got are a sample from a larger
population. We want our inferences to apply to that larger population.

Examples

A = 10 pain killers (aspirin, tylenol,· · · ), and,
B = 5 patients (Vera, Chuck, · · · , Dave)
A is fixed, B is random

A = 10 batches of chlorpheniramine and B = 5 measurement labs
A is random, B is random
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Nested and crossed effects

Nesting

The levels of a nested effect are only defined with respect to the
containing effect. Also called ’hierarchical’.

Eg, ingots j = 1, . . . , Ji nested within ’heats’ of steel i = 1, . . . , I.

Crossing

Levels of a crossed factor retain their meanings at all levels of another
factor

Eg, flame retardants i = 1, . . . , I in fabrics j = 1, . . . , J

For this course: we need at least one crossed pair of factors

Factors A at I levels and B at J levels cross to form an “AB interaction”
A×B at IJ levels.
Factors can be nested and crossed in arbitrarily complex ways.
EG: A crossed with B, both nested within C ×D
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Puzzlers

1 Can we nest a random effect in a random effect?

Yes: students within classes within schools within · · ·
2 Can we nest a fixed effect in a fixed effect?

Yes: car models within manufacturers

3 Can we nest a random effect in a fixed effect?
Yes: movies within studios

4 Can we nest a fixed effect in a random one?
No. [3 out of 4 isn’t bad!]
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Head vs long tail

Uneven sampling

There are often just a few common levels and a great many rare levels.

This is roughly described by Zipf laws: i’th most popular has ∝ i−a
events a ∈ (1,∞).

The head has well known entities, the tail is a mishmash

E.g. at Amazon.com

Harry Potter might be a fixed level.

Most other books are random.

A book reseller who buys from Amazon might be a fixed level
customer

Most other customers might be random levels.

Similarly: queries, IP addresses, URLs, phone numbers · · ·
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More about factors

Control factor

A factor is a control factor if it corresponds to a decision we control

Ad on left/right of page, blinking vs not, etc.

Using steel or aluminum in auto part

Noise factor

A noise factor corresponds to a decision (ordinarily) out of our control

Customer using dialup vs high speed cable modem

Customer driving in Texas summer vs Alaska winter

Usually we can actually control the noise factor in experiments

Uses

Robust design: Make a good choice of control at all noise levels

Personalization: Study control × noise interaction
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Why factor types matter

Ignoring fixed vs random can lead to serious errors.

You can underestimate the real sampling uncertainty.

Big errors come from treating random as fixed.

That is what most regression code does as default.
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Large unbalanced random effects

Setting (eg raters i and rated items j)

Yijk = µ+ ai + bj + (ab)ij + εijk

k = 1, . . . , nij

Goals

Compare σ2A, σ2B, σ2AB, σ2E
Estimate some specific ai’s or bj ’s or (ab)ij ’s

Sparsity

Most nij = 0

Most other nij = 1

So let’s just use εij ≡ (ab)ij + εij1 (roll interaction into error)
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Shrinkage estimates

Model and notation

Now Yij = µ+ ai + bj + εij

Let ni• =
∑

j nij = #obs for row i, n•j =
∑

i nij = #obs for col j

Shrinkage

Given µ, σ2A, σ2B, σ2E = Var(εij)

Put Ȳi• =
∑

j(i) Yij/ni•

Let âi = λi(Ȳi• − µ)

Pick λi to min E((ai − âi)2)

Ideally

Ȳi• ∼
(
ai,

σ2
B+σ2

E
ni•

)
given ai

Then take λi =
σ2
A

σ2
A+

σ2
B

+σ2
E

ni•

= 1

1+ 1
ni•

σ2
B

+σ2
E

σ2
A
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Estimating σ2
A, σ2

B, σ2
E

Eg Netflix data

100,000,000 ratings should be enough to pin down µ, σA, σB and σE

Almost an oracle (for those params)

Methods
1 Moments

2 Maximum likelihood

3 REML
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Method of moments

Outline

1 Work out E(
∑

i(Ȳi• − Ȳ••)2) as lin comb of σ2A, σ2B, σ2E
2 Get two more linear combinations, and solveSS1

SS2

SS3

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

σ2Aσ2B
σ2E


Issues

Sums of squares must be ’free of fixed effects’

Maybe use
∑

i ni•(Ȳi• − Ȳ••)2 instead

And/or replace Ȳ•• by I−1
∑

i Ȳi•

We could generate more equations than unknowns

Usual choice based on variance

But . . . lack of fit is more important
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For Netflix data

Estimates

µ̂ = 3.604

σ̂2movi = 0.272 âmovi =
Ȳmovi

1 + 5.01/nmovi

σ̂2cust = 0.185 b̂cust =
Ȳcust

1 + 7.83/ncust

σ̂2E = 1.178

But answer depends on

1 Moment method used

2 Data subset applied to

Note how large σ̂2E is. That’s partly because the model is so simple. Also:
should we account for selection bias?
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Maximum likelihood and REML
These are the most recommended methods, but they don’t scale

Model for y ∈ RN

y = Xβ + Zu+ e X fixed u random Z ’incidence’

= Xβ +
L∑
`=1

Z`u` + e eg L = n. rows + n. cols

= Xβ +

L∑
`=0

Z`u`, u` ∼ N(0, σ2` Id`)

For MLE, solve

X ′V̂ −1Xβ̂ = X ′V̂ −1y

tr(V̂ −1Z`Z
′
`) = (y −Xβ̂)′V̂ −1Z`Z

′
`V̂
−1(y −Xβ̂), where,

V̂ =

L∑
`=0

Z`Z
′
`σ̂

2
` is N ×N
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For more

Searle, Casella, McCulloch

consider 5 moment methods
I Yule I and II [Raw direct moments]
I Henderson I, II, and III [BLUE and BLUP]

REML is
I MLE based on K ′y ∼ N(0,K ′V K)
I where K ′Xβ = 0
I it fixes up (1− 1/m) like terms

ML and REML estimation is nasty for large unbalanced data
I Accounting for mixed effects is hard
I Even EM looks hard

These method won’t work on big unbalanced data. So it becomes a
research issue to get equally good results in a practical way.
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Bootstrap methods

Here’s what I’d do.

Fixed × fixed

Treat as regression and resample residuals

or use ’wild bootstrap’ [Essentially ±ε̂ij ]
out of luck for saturated model

might then resample unbalancedly (only for saturated where we’re
desperate)

Desperate ∩ null model · · · permute rows and/or columns

Random × fixed

Resample the random factor

Problematic if random factor has only few levels

(We’re stuck then anyhow)

Art B. Owen (Stanford Statistics) Start with Anova 18 / 25



Bootstrap methods ctd

Random × random, McCullagh (2000)

No consistent bootstrap variance exists for µ̂ = 1
IJ

∑
i

∑
j Yij

But ... see Section 4.6

Pigeonhole bootstrap

resample rows

resample cols

retain intersected cells

Model based bootstrap

fit ai ∼ F̂A and bj ∼ F̂B and εij ∼ F̂E
Take Ŷ ∗bij = µ̂+ a∗bi + b∗bj + ε∗bij
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Near accuracy

Actual variance of µ̂ is

σ2A
m

+
σ2B
n

+
σ2E
mn

Expected bootstrap variance (for pigeon boot or model boot)

σ2A

(m− 1

m2

)
+ σ2B

(n− 1

n2

)
+ σ2E

( 3

mn
− 2

mn2
− 2

m2n
+

1

m2n2

)
Upshot

Trouble if σ2A = σ2B = 0

Pretty good if m and n are both large and σ2E not relatively enormous

This case was balanced
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Naive bootstrap

McCullagh’s Boot-I

We have N triples (i, j, Yij) ∈ I × J × R
Resample them with replacment

Recall Actual variance of µ̂:

σ2A
m

+
σ2B
n

+
σ2E
mn

Expected naive bootstrap variance of µ̂ is

σ2A

(m− 1

m2n

)
+ σ2B

(n− 1

n2m

)
+ σ2E

mn− 1

m2n2

Upshot .. it’s way too small

Here we’d need σ2A = σ2B = 0

What if we’re after more than just µ̂?
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Sparsely sampled data

Naive bootstrap

Actual variance of µ̂ = (1/N)
∑

ij Yij

σ2A
1

N2

∑
i

n2i + σ2B
1

N2

∑
j

n2j + σ2E
1

N
≥ 1

N

(
σ2A + σ2B + σ2E

)
Expected N/(N − 1)× bootstrap variance of µ̂ = (1/N)

∑
ij Yij

1

N

(
σ2A+σ2B+σ2E

)
−

σ2A
N(N − 1)

∑
i

ni(ni−1)−
σ2B

N(N − 1)

∑
j

nj(nj−1).

Trouble in proportion to lumpiness:

Ok when maxi ni = maxj nj = 1

Bad when some ni or nj are huge

Balanced case not necessarily the worst!
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Sparsely sampled data

Pigeonhole bootstrap

Sample sizes too random on unbalanced data

Possible fixes: weighted sampling, oversampling

Properties of PBS

Will sometimes give too little data (left out Harry Potter)

Sometimes too much (saw HP 3 times)

Random n∗i , IE not conditional on sample pattern

Treats 2 resampled Harry Potters as two different books

Model based bootstrap

Keeps ni and nj fixed

Requires estimates F̂A, F̂B, F̂E

Makes strong independence assumptions e.g. ni ⊥ V (Yij | i)
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ANOVA References

1 Box, Hunter and Hunter “Statistics for Experimenters”
Intuitive intro DOE text

2 D.C. Montgomery “Design and Analysis of Experiments”
Comprehensive intro DOE text

3 Searle, Casella and McCulloch “Variance Components”
Extensive coverage of balanced Gaussian random effects

4 Cornfield and Tukey (Article in course web site)
Presents the pigeonhole model.

5 McCullagh (Article in course web site)
Perhaps the only one to bootstrap crossed random effects
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Structured interaction models

Plain unstructured model

has I × J parameters (αβ)ij

for what may be least interesting term

and no generalizing structure

Outer product models

Tukey (1949) 1 df for non-additivity

E(Yij) = µ+ αi + βj + λαiβj

adds parameter λ ∈ R
Fisher and MacKenzie (1923) bilinear term

E(Yij) = µ+ αi + βj + λ γiδj

adds parameters λ ∈ R γi and δj

much more later
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