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Abstract

Web spam pages use various techniques to achieve
higher-than-deserved rankings in a search en-
gine’s results. While human experts can identify
spam, it is too expensive to manually evaluate a
large number of pages. Instead, we propose tech-
nigues to semi-automatically separate reputable,
good pages from spam. We first select a small set
of seed pages to be evaluated by an expert. Once
we manually identify the reputable seed pages, we
use the link structure of the web to discover other
pages that are likely to be good. In this paper
we discuss possible ways to implement the seed
selection and the discovery of good pages. We
present results of experiments run on the World
Wide Web indexed by AltaVista and evaluate the
performance of our techniques. Our results show
that we can effectively filter out spam from a sig-
nificant fraction of the web, based on a good seed
set of less than 200 sites.
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creation of a large number of bogus web pages, all pointing
to a single target page. Since many search engines take into
account the number of incoming links in ranking pages, the
rank of the target page is likely to increase, and appear ear-
lier in query result sets.

Just as with email spam, determining if a page or group
of pages is spam is subjective. For instance, consider a
cluster of web sites that link to each other’s pages repeat-
edly. These links may represent useful relationships be-
tween the sites, or they may have been created with the ex-
press intention of boosting the rank of each other’s pages.
In general, it is hard to distinguish between these two sce-
narios.

However, just as with email spam, most people can eas-
ily identify the blatant and brazen instances of web spam.
For example, most would agree that if much of the text on
a page is made invisible to humans (as noted above), and is
irrelevant to the main topic of the page, then it was added
with the intention to mislead. Similarly, if one finds a page
with thousands of URLSs referring to hosts like

buy-canon-rebel-300d-lens-case.camerasx.com,
buy-nikon-d100-d70-lens-case.camerasx.com,

L

The termweb spanrefers to hyperlinked pages on the gnq notices that all host names map to the same IP address,
World Wide Web that are created with the intention of mis-then one would conclude that the page was created to mis-
leading search engines. For example, a pornography sif@aq search engines. (The motivation behind URL spam-
may spam the web by adding thousands of keywords tening is that many search engines pay special attention to

its home page, often making the text invisible to humansyords in host names and give these words a higher weight
through ingenious use of color schemes. A search enging,gn, if they had occurred in plain text.)

will then index the extra keywords, and return the pornog-

While most humans would agree on the blatant web

raphy page as an answer to queries that contain some gham cases, this does not mean that it is easy for a com-
the keywords. As the added keywords are typically not ofpyter to detect such instances. Search engine companies
strictly adult nature, people searching for other t‘?p'CS.W'”typically employ staff members who specialize in the de-
be led to the page. Another web spamming technique is thgyction of web spam, constantly scanning the web looking

for offenders. When a spam page is identified, a search en-

Permission to copy without fee all or part of this material is granted pro- gine stops crawling it, and its content is no longer indexed.

vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and

This spam detection process is very expensive and slow, but

its date appear, and notice is given that copying is by permission of thdS critical to the success of search engi_neS: without the re-
Very Large Data Base Endowment. To copy otherwise, or to republishmoval of the blatant offenders, the quality of search results
requires a fee and/or special permission from the Endowment.
Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004
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would degrade significantly.
Our research goal is to assist the human experts who de-
tect web spam. In particular, we want to identify pages



“ e‘a G of a pagep is itsindegrea (p), whereas the number of out-
links is its outdegreew(p). For instance, the indegree of
page 3 in Figure 1 is one, while its outdegree is two.
Figure 1: A simple web graph. Pages that have no inlinks are calledireferenced
pages Pages without outlinks are referred to asn-
. . ) referencing pages Pages that are both unreferenced and
and sites that are likely to be spam or that are likely tonon-referencing at the same time #selated pagesPage
be reputable. The methods that we present in this paper in Figure 1 is an unreferenced page, while page 4 is non-
could be used in two ways: (1) either as helpers in an iniyeferencing.
tial screening process, suggesting pages that should be ex- e introduce two matrix representations of a web graph,

amined more closely by an expert, or (2) as a counter-biaghich will have important roles in the following sections.
to be applied when results are ranked, in order to discountyne of them is théransition matrixT:

possible boosts achieved by spam.

Since the algorithmic identification of spam is very dif-
ficult, our schemes do not operate entirely without human T(p,q) = {1/w(q) if (q,p) € &
assistance. As we will see, the main algorithm we propose ’ '

receives human assistance as follows. The algorithm first o transition matrix corresponding to the graph in Fig-

selects a smafleedset of pages whose “spam status” needsu elis:
to be determined. A human expert then examines the seeo[ 00 O
pages, and tells the algorithm if they are spaadpages) 1 0% 0
or not (@oodpages). Finally, the algorithm identifies other T= 0 1 6 0
pages that are likely to be good based on their connectivity 001 o
with the good seed pages. 2
In summary, the contributions of this paper are: We also define thiverse transition matrixJ:
1. We formalize the problem of web spam and spam de- )0 if (p,q) ¢ &,
tection algorithms. U(p,q) = 11(q) if (p,q) € &.

2. We define metrics for assessing the efficacy of detec-
tion algorithms. Note thatU # TT. For the example in Figure 1 the inverse

3. We present schemes for selecting seed sets of pagesfgnsition matrix is:

be manually evaluated. ol o 0
2
4. We introduce the TrustRank algorithm for determin- U— 0 010
ing the likelihood that pages are reputable. — 1o % 0o 1|
5. We discuss the results of an extensive evaluation, 0 00Q0

based on 31 million sites crawled by the AltaVista
search engine, and a manual examination of ove2.2 PageRank

tzﬁg%(/)pseltt(;?{ dvm‘\gqptzg\r/]f; sfo Q}i(')rgﬁtrgfghn%ztbatc'ztr']?:ncirbageRank_ isawell kr_10wn algorithm that uses link informa-
and we use our data for evaluating the proposed alggt_ion to assign global importance scores to all pages on the
fithms web. Because our proposed algorithms rely on PageRank,
' this section offers a short overview.
T The intuition behind PageRank is that a web page is
2 Preliminaries important if several other important web pages point to it.
2.1 Web Model Correspondingly, PageRank is based on a mutual reinforce-
ment between pages: the importance of a certain page
fluencesand isbeing influencedby the importance of some
other pages.

The PageRank scoré¢p) of a pagep is defined as:

We model the web as a gragh= (V, &) consisting of a
set’V of N pages (vertices) and a sétof directed links
(edges) that connect pages. In practice, a web pagay
have multiple HTML hyperlinks to some other pageln

this case we collapse these multiple hyperlinks into a single r(q) 1
link (p,q) € &. We also remove self hyperlinks. Figure 1 r(p=a- % @@ +(A-a) g
presents a very simple web graph of four pages and four a(@pee 9

links. (For our experiments in Section 6, we will deal with ) ) ) _
web sites, as opposed to individual web pages. Howevelherea is a decay factot. The equivalent matrix equation
our model and algorithms carry through to the case where—; . i
h vertices are entire sites) Note that there are a number of equivalent definitions of Page-
grap RO . Lo Rank [12] that might slightly differ in mathematical formulation and nu-
Each page h?-s some Incoming links, |Dhnk33 ?—nd merical properties, but yield the same relative ordering between any two
some outgoing links, ooutlinks The number of inlinks  web pages.
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To discover good pages without invoking the oracle
function on the entire web, we will rely on an important
empirical observation we call thepproximate isolatiorof
the good set: good pages seldom point to bad ones. This
notion is fairly intuitive—bad pages are built to mislead
search engines, not to provide useful information. There-
fore, people creating good pages have little reason to point

O good to bad pages.

® bad However, the creators of good pages can sometimes be
“tricked,” so we do find some good-to-bad links on the web.
Figure 2: A web of good (white) and bad (black) nodes. (In Figure 2 we show one such good-to-bad link, from page
4 to page 5, marked with an asterisk.) Consider the fol-
. lowing example. Given a good, but unmoderated message
form is: 1 board, spammers may include URLS to their spam pages as
r=a-T-r+(1-a) —-1y. part of the seemingly innocent messages they post. Con-
) N sequently, good pages of the message board would link to
Hence, the score of some pagées a sum of two compo- pad pages. Also, sometimes spam sites offer what is called
nents: one part of the score comes from pages that poinf honey pat a set of pages that provide some useful re-
to p, and the othergatiq) part of the score is equal for all source (e.g., copies of some Unix documentation pages),
web pages. but that also have hidden links to their spam pages. The
PageRank scores can be computed iteratively, for inhoney pot then attracts people to point to it, boosting the
stance, by applying the Jacobi method [3]. While in aranking of the spam pages.
strict mathematical sense, iterations should be run to con- ) . )
vergence, it is more common to use only a fixed number of Note that the converse to approximate isolation does not
M iterations in practice. necessarily hold: spam pages can, and in fact often do, _I|nk
It is important to note that while the regular PageRank.to good pages. For Instance, creators of spam pages point to
algorithm assigns the same static score to each pagje, a 'MPortant good pages either to create a honey pot, or hop-

ased PageRankersion may break this rule. In the matrix N9 that many good outlinks would boost their hub-score-
equation based ranking [10].

r=o-T-r+(l1-oa-d, To evaluate pages without relying @n we will estimate
the likelihood that a given pageis good. More formally,
we define drust functionT that yields a range of values
ecidftween 0 (bad) and 1 (good). Ideally, for any ppgé(p)
ould give us the probability thatis good:

vectord is a static score distribution vectoof arbitrary,
non-negative entries summing up to one. Vectaran be
used to assign a non-zero static score to a set of sp
pages only; the score of such special pages is then spre&
during the iterations to the pages they point to.

Ideal Trust Property

3 Assessing Trust
T(p) =PriO(p) =1].

3.1 Oracle and Trust Functions

As discussed in Section 1, determining if a page is spam TO illustrate, let us consider a set of 100 pages and say
is subjective and requires human evaluation. We formalizéhat the trust score of each of these pages happens t@be 0
the notion of a human checking a page for spam by a binary:€t us suppose that we also evaluate all the 100 pages with

oracle functionO over all pagep € V: the oracle function. Then, T works properly, for 70 of the
pages the oracle score should be 1, and for the remaining
0 if pisbad 30 pages the oracle score should be 0.
O(p) = o ’
(p) 1 if pisgood. In practice, it is very hard to come up with a function

T with the previous property. However, evenlifdoes not

Figure 2 represents a small seven-page web where goattcurately measure the likelihood that a page is good, it
pages are shown as white, and bad pages as black. For thi®uld still be useful if the function could at least help us
example, calling the oracle on pages 1 through 4 wouldbrder pages by their likelihood of being good. That is, if we
yield the return value of 1. are given a pair of paggsanddg, andp has a lower trust

Oracle invocations are expensive and time consumingscore tharg, then this should indicate thatis less likely
Thus, we obviously do not want to call the oracle functionto be good tham.. Such a function would at least be useful
for all pages. Instead, our objective is to be selective, i.e.in ordering search results, giving preference to pages more
to ask a human expert to evaluate only some of the welikely to be good. More formally, then, a desirable property
pages. for the trust function is:
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Ordered Trust Property Precision

T(p) < T(@) & PO(P) = 1] < PO(G) = 1] prec(7,0) = HPES P =Rl G =

T(p) =T(q) < Pr{O(p) = 1] = PO(q) = 1]. . . .
) . ) Similarly, we define recall as the ratio between the num-
Another way to relax the requirements fbiis to intro-  per of good pages with a trust score abévend the total
duce a threshold valu® number of good pages :

Threshold Trust Property

Recall

T(p) >3« 0(p) =1 rec(T,0) = [{p € X|T(p) >dandO(p) = 1}|
T l{a € X|O(q) = 1}|

4 Computing Trust

That s, if a page receives a score abodewe know that it

is good. Otherwise, we cannot tell anything abpuSuch a
functionT would at least be capable of telling us that some
subset of pages with a trust score abdiggood. Note that Let us begin our quest for a proper trust function by start-
a functionT with the threshold property does not necessaring with some simple approaches. We will then combine
ily provide an ordering of pages based on their likelihoodthe gathered observations and construct the TrustRank al-

of being good. gorithm in Section 4.3.
Given a limited budgett of O-invocations, it is straight-
3.2 Evaluation Metrics forward to select at randomszed se§ of L pages and call

e oracle on its elements. (In Section 5 we discuss how
0 select a better seed set.) We denote the subsets of good
and bad seed pages By and8—, respectively. Since the
remaining pages are not checked by the human expert, we
assign them a trust score of2.to signal our lack of infor-
mation. Therefore, we call this scheme igeoranttrust
function T, defined for anyp € V as follows:

This section introduces three metrics that help us evaluat
whether a particular functiom has some of the desired
properties.

We assume that we have a sampleé)sef web pages for
which we can invoke botf andO. Then, we can evaluate
how well a desired property is achieved for this set. In
Section 6 we discuss how a meaningful sampledsetn
be selected, but for now, we can simply assumeihsta  |gnorant Trust Function
set of random web pages.

Our first metric,pairwise orderednesss related to the O(p) if pes,
ordered trust property. We introduce a binary function To(p) =
I(T,0O,p,q) to signal if a bad page received an equal or
higher trust score than a good page (a violation of the or- For example, we can sétto 3 and apply our method

1/2  otherwise.

dered trust property): to the example in Figure 2. A randomly selected seed set
could then be8 = {1, 3,6}. Leto andty denote the vectors
1 if T(p) > T(q) andO(p) < O(a), of oracle and trust scores for each page, respectively. In
I(T,0,p,aq) = {1 if T(p)<T(q)andO(p) > O(q),  thiscase,
0 otherwise.
o =11 1 1, 1, 0, 0, 0,
Next, we generate from our samglea set? of ordered to = [1, %7 1, %7 %’ 0, %].

pairs of pagesp,q), p # g, and we compute the fraction of
the pairs for whichl did not make a mistake: To evaluate the performance of the ignorant trust function,
let us suppose that our sam@leconsists of all 7 pages, and

Pairwise Orderedness that we consider all possible 8 = 42 ordered pairs. Then,

_ |P| — Y (p.)eP I(T,0,p,q) the pairwise orderedness scoreTefis 17/21. Similarly,
pairord(T,0,P) = : 7] - for a threshold = 1/2, the precision is 1 while the recall
is 1/2.

Hence, ifpairord equals 1, there are no cases wHemis-
rated a pair. Conversely, phirord equals zero, them mis-
rated all the pairs. In Section 6 we discuss how to select
setP of sample page pairs for evaluation. As a next step in computing trust scores, we take advantage
Our next two metrics are related to the threshold trustof the approximate isolation of good pages. We still select

property. It is natural to think of the performance of func- at random the set of L pages that we invoke the oracle on.
tion T in terms of the commonly usgatecisionandrecall ~ Then, expecting that good pages point to other good pages
metrics [1] for a certain threshold valde We define preci- only, we assign a score of 1 to all pages that are reachable
sion as the fraction of good among all page&ithat have from a page inS* in M or fewer steps. The appropriate

a trust score abow trust functionTy, is defined as:

él.l Trust Propagation
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’ M ‘ pairord ‘ prec ‘ rec ‘
1| 19/21 1 3/4
2 1 1 1
3| 17/21 | 4/5 1

good seed

t(2)=p t(3)=p*

Table 1: Performance of tHd-step trust functionmy, for Figure 3: Trust dampening.
M e {1,2,3}.
M-Step Trust Function good seed 5
. t(1)=1
O(p) ifpes, ()
Tm(p) =<1 if p¢ Sand3ge 8t :gq~m P,

1/2  otherwise, t2)=1

whereq ~+\ p denotes the existence of a path of a maxi- good seed %

mum length oM from pageq to pagep. Such a path must
not include bad seed pages.
Using the example in Figure 2 and the seed &et Figure 4: Trust splitting.
{1,3,6}, we present the trust score assignments for three
different values oM:
We also need to decide how to assign trust to pages with

M=1: t = [1, 1, 1, 3 3, o0 13, multiple inlinks. For instance, in Figure 3, assume page 1
_ 5. _ 1 1 also links to page 3. We could assign page 3 the maximum
M=2:t, = [1, 1, 1, 1, 3 o0 13, Ppad e
1 trust score, in this cagdg or the average score, in this case
M=3: t3 = [1, 1, 1, 1, 1 0, 3] (B+B-B)/2.

. The second technique for trust attenuation, which we
We would expect thaly performs better thafio with re- - -5 st splitting is based on the following observation:

spect to some of our metrics. Indeed, Table 1 shows thay g care with which people add links to their pages is often
for M =1 andM = 2, both pairwise orderedness and recalljnersely proportional to the number of links on the page.
increase, and precision remains 1. However, there is a dropy ¢ s 'if a good page has only a handful of outlinks, then
in performance when we go #d = 3. The reason is that j; s jikely that the pointed pages are also good. However,

page 5 receives a score of 1 due to the link from good pagg 5 400 page has hundreds of outlinks, it is more probable
4 to bad page 5 (marked with an asterisk on Figure 2). 2+ some of them will point to bad pages.

As we saw in the previous example, the problem with : : . .
X ' This observation leads us to splitting trust as it propa-
M-step trust is that we are not absolutely sure that pageg b g brop

. tes to other pages: if pagéas a trust score df(p) and

reachable from good seeds are indeed good. As a matter ? ; : ;
fact, the further gway we are from good geed pages, the le points toco(.p) pages, each of the(p) bages will receive

T : . g score fractiorm (p)/w(p) from p. In this case, the actual
certain we are that a page is good. For instance, in Figure ¢. . ¢ o page will be the sum of the score fractions re-
lt_helz(re are 2 fpagesh(namedly, padges 2 an(L4)t§har: a]rcer?t MOSt&ived through its inlinks. Intuitively, the more “credit” a
Inks away from the good seed pages. As both of them ar age accumulates from some other pages, the more prob-
good, the probability that we reach a good page in at mo

2 steps is 1. Similarly, the number of pages reachable fronaglreszgﬁagrlj r%?%% ¢(®Wﬁ ;:an normalize summed scores to

the good seed in at most 3 steps is 3. Only two of these Figure 4 illustrates trust splitting. Good seed page 1 has
(pages 2 and 4) are good, while page 5 is bad. Thus, tht(\a/vo outlinks, so it distributes half o.f its score of 1 to both
probability of finding a good page drops t¢g2 L —
pages it points to. Similarly, good seed page 2 has three

outlinks, so each page it points to receives one third of its
score. The score of page 3 will then b&%1/3=5/6.
These observations suggest that we reduce trust as we move Notice that we can also combine trust splitting with
further and further away from the good seed pages. Therdampening. In Figure 4, for instance, page 3 could receive
are many ways to achieve this attenuation of trust. Here wa score of3- (1/2+1/3).
describe two possible schemes. There are multiple ways of implementing trust dampen-

Figure 3 illustrates the first idea, which we ctdist  ing and/or splitting. In the next section we present one im-
dampening Since page 2 is one link away from the good plementation that shares the same mathematical formula-
seed page 1, we assign it a dampened trust sc@endfere  tion with a biased PageRank computatioMrsteps. This
B < 1. Since page 3 is reachable in one step from page feature means that we can rely on PageRank code (with mi-
with score, it gets a dampened score[®f[3. nor changes) to compute trust scores. The resulting advan-

4.2 Trust Attenuation
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get:

funcuonTrustRank oo [27 4 5 1 3 6 7] .
input
T transition matrix That s, page 2 is the most desirable seed page, followed by
N number of pages page 4, and_ So on. _ _
L limit of oracle invocations Step (3) invokes the oracle function on thenost desir-
ag  decay factor for biased PageRank able seed pages. The entries of the static score distribution

vectord that correspond to good seed pages are set to 1.

Mg number of biased PageRank iterations ! ! )
output Step (4) normalizes vectd so that its entries sum up
— . to 1. Assuming that = 3, the seed set i2,4,5}. Pages

t TrustRank scores ; .
begin 2 and 4 are the good seeds, and we get the following static

Il evaluate seed-desirability of pages

score distribution vector for our example:

(1)  s=SelectSeed(...) d= [0, %, 0, %, 0, 0, 0,
/I generate corresponding ordering
(2) o=Rank({1,...,N},s) Finally, step (5) evaluates TrustRank scores using a biased
/I select good seeds PageRank computation withreplacing the uniform distri-
(3) d=0y bution. Note that step (5) implements a particular version
fori=1tolL do of trust dampening and splitting: in each iteration, the trust
T ifE)(c(T)) ——1then score of a node is split among its neighbors and dampened
L d(o(i) 1 by a factorag. _
// normalize static score distribution vector Assuming thabig = 0.85 andMg = 20, the algorithm
@ d=d/[d| computes the following result:
© {/ COZ‘pUte TrustRank scores t'=[0, 018 012 015 013 005 005
fori=1toMgdo Notice that because of the way we iteratively propagate
t“=ag-T-t*+(1—0g)-d trust scores, the good seed pages (namely, 2 and 4) no
returnt* longer have a score of 1. However, they still have the
end highest scores. Also notice that good seed page 4 has a

Figure 5: The TrustRank algorithm.

lower score than good seed page 2. This is due to the link
structure in this example: page 2 has an inlink from a high
scoring page (page 3), while page 4 does not. Thus, our
TrustRank algorithm “refines” the original scores given by

tage is important since substantial effort has been spent ae oracle, determining that there is even more evidence

making PakeRank computations efficient with very largethat page 2 is good as compared to 4. If desired, one can
data sets (for instance, see [5, 8]).

4.3 The TrustRank Algorithm

normalize the resulting vector by dividing all scores by the
highest score (making the score of page 2 equal to one), but
this operation does not change the relative ordering of the
pages.

Function TrustRank, shown in Figure 5, computes trust We see in this example that the TrustRank algorithm
scores for a web graph. We explain the algorithm by walk-usually gives good pages a higher score. In particular, three
ing through its execution on Figure 2. of the four good pages (namely, pages 2, 3, and 4) got high
The input to the algorithm is the graph (the transition Scores and two of the three bad pages (pages 6 and 7) got
matrix T and the numbeN of web pages) and parameters low scores. However, the algorithm failed to assign pages
that control executionl( Mg, o, see below). 1 and 5 adequate scores. Page 1 was not among the seeds,
As a first step, the algorithm calls functiGelectSeed, ~ @nd it did not have any inlinks through which to accumu-
which returns a vectas: The entrys(p) in this vector gives late score, so its score remained at 0. All good unreferenced
the “desirability” of pagep as a seed page. (Please refer toWeb pages receive a similar treatment, unless they are se-
Section 5 for details.) As we will see in Section 5.1, onelécted as seeds. Bad page 5 received a high score because

version ofSelectSeed returns the following vector on the it i the direct target of one of the rare good-to-bad links.
example of Figure 2: As we will see in Section 6, in spite of errors like these,

on a real web graph the TrustRank algorithm is still able to

s=[0.08 013 0.08 010, 009 006 0.02. correctly identify a significant number of good pages.

In step(2) function Rank(x,s) generates a permutatioh 5 Selecting Seeds
of the vectorx, with elements<(i) in decreasing order of

s(X'(i)). In other wordsRank reorders the elements &  The goal of functionSelectSeed is to identify desirable

in decreasing order of thesscores. For our example, we pages for the seed set. That is, we would like to find pages
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function SelectSeed

i @
= 550

U inverse transition matrix
N number of pages
a decay factor a e e
M, number of iterations
output Figure 7: A graph for which inverse PageRank does not
s inverse PageRank scores yield maximum coverage.
begin
s=1n (already shown in Section 4.3):
fori=1toM do
s=a-U-s+(1-a) %1y s=[0.08 0.13 0.08 010, 009 006 0.02.
returns :
end For a value ofL = 3, the seed set i8 = {2,4,5}. Corre-

spondingly, the good seed set§$ = {2,4}, so pages 2
and 4 are used as starting points for score distribution.
Figure 6: The inverse PageRank algorithm. It is important to note that inverse PageRank is a heuris-
tic (that works well in practice, as we will see in Section 6).
that will be the most useful in identifying additional good First, inverse PageRank does not guarantee maximum cov-
pages. At the same time, we want to keep the seed set regrage. For instance, in the example in Figure 7 and for
sonably small to limit the number of oracle invocations. InL = 2, maximum coverage is achieved through the seed set
this section we discuss two strategiesSelectSeed, inad-  {1,3} or {2,3}. However, the inverse PageRank computa-
dition to the random selection strategy that was mentionedon yields the score vector:
earlier.

s=[0.05 0.05 0.04 002 002 002 0.02,

.1 Inverse PageRank which leads to the seed set= {1,2}.

Since trust flows out of the good seed pages, one approach Nevertheless, inverse PageRank is appealing because its
is to give preference to pages from which we can reacigxecutiontime is p0|Yh0mla| inthe numberof pages, while
many other pages. In particular, we could select seed pagé’@term'gmg the maximum coverage is AfrP-complete
based on the number of outlinks. For instance, considerin§roblems

our example in Figure 2, the appropriate seed sétef2 A second reason why inverse PageRank is a heuristic
pages would b& = {2,5}, since pages 2 and 5 have the is that maximizing coverage may not always be the best
largest number of outlinks (namely two). strategy. To illustrate, let us propagate trust via splitting,

Following a similar reasoning, the coverage can be im-Withoutany dampening. Returning to Figure 7, say we only
proved even further. We can build the seed set from thos&€lect page 2 as seed and it turns out to be good. Then pages
pages that point to many pages that in turn point to many* 5. and 6 each receive a score ¢81 Now, assume we
pages and so on. Interestingly, this approach leads us toQly select page 3 as seed and it also happens to be good.
scheme closely related PageRank—the difference is that ihh€n page 7 gets a score of 1. Depending on our ultimate
our case the importance of a page depends on its outlink§02al, it may be preferable to use page 3, since we can be
not its inlinks. Therefore, to compute the desirability of a More certain about the page it identifies, even if the set is

page, we perform a PageRank computation on the graphmaller. However, if we are only using trusts scores for
g = (V,&'), where comparing against other trust scores, it may still be better to

learn about more pages, even if with less absolute accuracy.
(pa) €& < (a,p €E.

Since we inverted the links, we call our algorithinverse _ o
PageRank So far we have assumed that the value of identifying a page

Figure 6 shows SelectSeed algorithm that performs the @S 9ood or bad is the same for all web pages. Yet, it may be

inverse PageRank Co.mpUt.atlon' Note that the decay factor 2The general problem of identifying the minimal set of pages that
oy and the number of iterationd, can be different from the yields maximum coverage is equivalent to the independent set problem [7]
valuesag andMg used by the TrustRank algorithm. The on directed graphs as shown next. The web graph can be transformed in
computation is identical to that in the traditional PageRanka directed grapt§” = (V,£"), where an edgép,q) € £” signals that
algorithm (Section 2.2), except that the inverse transitiorP2ged can be reached from page We argue that such transformation

matrix U is used instead of the regular transition maffix does not_change the complexity cIas; of the algont_hm, since it |_nv9|ves
breadth-first search that has polynomial execution time. Then, finding a

Fo_r our example from Figur_e 2, the inVerS_e PageRankninimal set that provides maximum coverage is the same as finding the
algorithm @, = 0.85,M; = 20) yields the following scores maximum independent set f&', which is anA{P-complete problem.

5.2 High PageRank
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more important to ascertain the goodness of pages that willification, as we will see. Of course, using an author as
appear high in query result sets. For example, say we haven evaluator raises the issue of bias in the results. How-
four pagesp, q, r, ands, whose contents match a given ever, this was our only choice. Our manual evaluations
set of query terms equally well. If the search engine usesook weeks: checking a site involves looking at many of
PageRank to order the results, the page with highest rankits pages and also the linked sites to determine if there is
say p, will be displayed first, followed by the page with an intention to deceive search engines. Finding an expert
next highest rank, say, and so on. Since it is more likely working at one of the very competitive search engine com-
the user will be interested in pagesand g, as opposed panies who was knowledgeable enough and had time for
to pages ands (pagesr ands may even appear on later this work was next to impossible. Instead, the first author
result pages and may not even be seen by the user), it seesent time looking over the shoulder of the experts, learn-
more useful to obtain accurate trust scores for pgo@sd  ing how they identified spam sites. Then, he made every
g rather than for ands. For instance, if page turns out  effort to be unbiased and to apply the experts’ spam detec-
to be spam, the user may rather visit pggestead. tion techniques.

Thus, a second heuristic for selecting a seed set is to
give preference to pages with high PageRank. Since highg 2 seed Set
PageRank pages are likely to point to other high-PageRank
pages, then good trust scores will also be propagated t8s @ first step, we conducted experiments to compare the
pages that are likely to be at the top of result sets. Thugdnverse PageRank and the high PageRank seed selection
with PageRank selection of seeds, we may identify théSChemeS described in Sections 5.1 and 5.2, respectively. In
goodness of fewer pages (as Compared to inverse Pag@[der to be able to perform the Comparison C]UiCk|y, we ran
Rank), but they may be more important pages to knowour experiments on synthetic web graphs that capture the

about. essential spam-related features of the web. We describe
these experiments in [4]. Due to space limitations, here we

6 Experiments just note that inverse PageRank turned out to be slightly
better at identifying useful seed sets. Thus, for the rest of

6.1 Data Set our experiments on the full, real web, we relied on the in-

To evaluate our algorithms, we performed experiments usVerse PageRank method. _ o
ing the complete set of pages crawled and indexed by the In_ implementing seed se_Iectlon using inverse PageRank,
AltaVista search engine as of August 2003. we flne_-tuned t_he process in order to str_eamlme the oracle
In order to reduce computational demands, we decidegvaluations. First, we performed a full inverse PageRank
to work at the level of web sites instead of individual pages COmputation on the site-level web graph, using parameters
(Note that all presented methods work equally well for ei-&1 = 0-85 andM, =20. (The decay factor of .85 was
ther pages or sites.) We grouped the several billion page@St reported in [12] and has bgen regarded as the standard
into 31,003 946 sites, using a proprietary algorithm that is I F_’ageRank literature ever since. Our tests showed that
part of the AltaVista engine. Although the algorithm re- 20 iterations were enou_gh to achieve convergence on the
lies on several heuristics to fine-tune its decisions, roughly€lative ordering of the sites.) o
speaking, all individual pages that share a common fully After ordering _the sites based on their inverse Pag_eRank
qualified host namebecome part of the same site. Once SCOres (step (2) in Figure 5), we focused our attention on
we decided on the sites, we added a single link fromasite the top 25000. Instead of a full oracle evaluation of these
to siteb if in the original web graph there were one or more Sites, we first did a cursory evaluation to eliminate some
links from pages of sita pointing to pages of sitb. problem_aﬂc ones. In particular, we noticed that sites ywth
One interesting fact that we have noticed from thehighest inverse PageRank scores showed a heavy bias to-
very beginning was that more than one third of the sitegvard spam, due to the presenceQyfen Directory clones
(13,197,046) were unreferenced. Trust propagation algo-S0me spammers duplicate the entire content of the DMOZ
rithms rely on inlink information, so are unable to differ- OPen Directory either in the hope of increasing their hub
entiate among these sites without inlinks. Fortunately, thécore [10] or with the intention of creating honey pots, as
unreferenced sites are ranked low in query results (receivéiscussed in Section 3.1. In order to get rid of the spam
an identical, minimal static PageRank score), so it is nofluickly, we removed from our list of 2800 sites all that
critical to separate good and bad sites among them. were not listed in any of the major web directories, reduc-
For our evaluations, the first author of this paper playednd the initial set to roughly ;800. By sampling the sites
the role of the oracle, examining pages of various sites, ddhat were filtered out, we found that insignificantly few rep-

termining if they are spam, and performing additional clas-utable ones were removed by the process.

Out of the remaining ,R00 sites, we manually evaluated
*The fully qualified host namés the portion of the URL between the top 1250 (seed sef) and selected 178 sites to be used
thehttp:// prefix, called theschemgand the first slash character that as good seeds. This procedure corresponded to step (3) in

usually follows the top level domain, such asom, or the server’'s Ei 5. Th lativel Il si fth d Bset
TCP port number. For instance, the fully qualified host name for igure 5. e relauvely S,ma Size 0 ggoo_ Se,e e
the URL http://www-db.stanford.edu/db_pages/members.html is due to the eXtremer rgorous selection criteria that we

is www-db. stanford . edu. adopted: not only did we make sure that the sites were not
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non-existent 9.6%

empty 5.6% way our sample breaks down to various types of sites. We
unknown 4.3% found that we could use 748 of the sample sites to evaluate

unusable

usable alias 3.5% TrustRank:
personal page
host 2.2% e Reputable. 563 sites featured quality contents with
zero or a statistically insignificant number of links
pointing to spam sites.
spam 13.5% e Web organization37 sites belonged to organizations
advertlsement that either have a role in the maintenance of the World
1.3% Wide Web or perform business related to Internet ser-
reputable web organization \(ices. While all of th_em were g_ood sites, most of their
56.3% 3.7% links were automatic (e.g., “Site hosted by Provider
X"). Therefore, we decided to give them a distinct la-
Figure 8: Composition of the evaluation sample. bel to be able to follow their features separately.

e Advertisement.13 of the sites were ones acting as
targets for banner ads. These sites lack real useful
content and their high PageRank scores are due ex-
clusively to the large number of automatic links that
they receive. Nevertheless, they still qualify as good
sites without any sign of spamming activity.

spam, but we also applied a second filter—we only selected
sites with a clearly identifiable authority (such as a gov-
ernmental or educational institution or company) that con-
trolled the contents of the site. The extra filter was added
to guarantee the longevity of the good seed set, since the i )
presence of physical authorities decreases the chance that® Spam.135 sites featured various forms of spam. We
the sites would degrade in the short run. considered these sites as bad ones.

These 748 sites formed our sample ¥etThe remaining
252 sites were deemed unusable for the evaluation of Trust-
In order to evaluate the metrics presented in Section 3.2, WRank for various reasons:
needed a seX of sample sites with known oracle scores.
(Note that this is different from the seed set and it is only e Personal page host22 of the sites hosted personal
used for assessing the performance of our algorithms.) We  web pages. The large, uncontrolled body of editors
settled on a sample of 1000 sites, a number that gave us contributing to the wide variety of contents for each
enough data points, and was still manageable in terms of  of these sites made it impossible to categorize them
oracle evaluation time. as either bad or good. Note that this issue would not
We decidedhot to select the 1000 sample sitesXfat appear in a page-level evaluation.
random. With a random sample, a great number of the sites
would be very small (with few pages) and/or have very low
PageRank. (Both size and PageRank follow power-law dis-
tributions, with many sites at the tail end of the distribu-
tion.) As we discussed in Section 5.2, it is more important
for us to correctly detect spam in high PageRank sites, since ) o )
they will more often appear high in query result sets. Fur- ® Empty. 56 sites were empty, consisting of a single
thermore, it is hard for the oracle to evaluate small sites due ~ Page that provided no useful information.
to the reduced body of evidence, so it also does not make e Non-existent.96 sites were non-existent—either the
sense to consider many small sites in our sample. DNS lookup failed, or our systems were not able to
In order to assure diversity, we adopted the following  establish a TCP/IP connection with the corresponding
sampling method. We generated the list of sites in decreas-  computers.
ing order of their PageRank scores, and we segmented it
into 20 buckets. Each of the buckets contained a different
number of sites, with scores summing up to 5 percent of the
total PageRank score. Therefore, the first bucket contained
the 86 sites with the highest PageRank scores, bucket 2 the
next 665, while the 20th bucket contained 5 million sites6 4 Results
that were assigned the lowest PageRank scores. '
We constructed our sample set of 1000 sites by selectinth Section 4 we described a number of strategies for propa-
50 sites at random from each bucket. Then, we performed gating trust from a set of good seeds. In this section we fo-
manual (oracle) evaluation of the sample sites, determiningus on three of the alternatives, TrustRank and two baseline
if they were spam or not. The outcome of the evaluationstrategies, and evaluate their performance using our sample
process is presented in Figure 8, a pie-chart that shows tHg:

6.3 Evaluation Sample

Alias. 35 sites were simple aliases of sites better
known under a different name. We decided to drop
these aliases because the importance of the alias could
not reflect the importance of the original site appropri-
ately.

e Unknown. We were unable to properly evaluate 43
sites based on the available information. These sites
were mainly East Asian ones, which represented a
challenge because of the lack of English translation.
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Figure 9: Good sites in PageRank and TrustRank buckets.
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Figure 10: Bad sites in PageRank and TrustRank buckets.

1. TrustRankWe used the algorithm in Figure Mg = and bad sites in each bucket. PageRank buckets were in-
20 iterations and decay factor ag = 0.85) and our troduced in Section 6.3; we defined TrustRank buckets as
selected 178 good seeds. containing the same number of sites as PageRank buckets.

2. PageRank. PageRank was originally considered Note that we merged buckets 17 through 20 both fqr Page-
highly resilient to spamming because it measurediank and TrustRank. (These last 4 buckets contained the

global importance (limited, local changes to the link More than 13 million sites that were unreferenced. All such
structure have low impact on the scores). Thus, it issites received the same minimal static PageRank score and

natural to ask how well PageRank can cope with spanft 2610 TrustRank score, making it impossible to set up an
in today’s world. Thus, for this alternative we simply rdering among them.)

used the PageRank of sieas the value of (). We The horizontal axes of Figures 9 and 10 mark the Page-
again performed = 20 iterations, with a decay fac- Rank and TrustRank bucket numbers, respectively. The
tor of o — 0.85. vertical axis of the first figure corresponds to the percentage

of good within a specific bucket, i.e., the number of good
ample sites divided by the total number of sample sites in
hat bucket. Note that reputable, advertisement, and web
organization sites all qualify as good ones; their relative
contributions are shown by white, middle gray, and dark
gray segments, respectively. The vertical axis of the sec-
ond figure corresponds to the percentage of bad within a
Let us discuss the difference between PageRank and Trusipecific bucket. For instance, we can derive from Figure 10
Rank first. Remember, the PageRank algorithm does ndhat 31% of the usable sample sites in TrustRank bucket 11
incorporate any knowledge about the quality of a site, norare bad ones.
does it explicitly penalize badness. In fact, we will see that From these figures we see that TrustRank is a reasonable
it is not very uncommon that some site created by a skilledspam detection tool. In particular, note that there is virtu-
spammer receives high PageRank score. In contrast, oatly no spam in the top 5 TrustRank buckets, while there is
TrustRank is meant to differentiate good and bad sites: wa marked increase in spam concentration in the lower buck-
expect that spam sites were not assigned high TrustRardts. At the same time, it is surprising that almost 20% of
scores. the second PageRank bucket is bad. For PageRank, the pro-
Figures 9 and 10 provide a side-by-side comparison oportion of bad sites peaks in buckets 9 and 10 (50% spam),
PageRank and TrustRank with respect to the ratio of goodéhdicating that probably this is as high as average spammers

3. Ignorant Trust.As another baseline, we generated the
ignorant trust scores of sites. All sites were assigne
an ignorant trust score of/2, except for the 1250
seeds, which received scores of 0 or 1.

6.4.1 PageRank versus TrustRank
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Figure 11: Bucket-level demotion in TrustRank. Figure 12: Pairwise orderedness.
could push their sites. order of PageRank scores. Finally, we used all pairs of all

Figure 11 offers another view on the relationship be-ihe 748 sample sites to compute the pairwise orderedness
tween PageRank and TrustRank. Itintroduces the notion af;re.

demotion the phenomenon th_atacertain site from a higher Figure 12 displays the results of this experiment. The
PageRank bucket appears in a lower TrustRank buckef,qri;ontal axis shows the number of sample sites used for
Negative demotion ipromotion the case when asite from g5)yation, while the vertical axis represents the pairwise
a lower PageRank bucket shows up in a higher TrustRankjeredness scores for the specific sample sizes. For in-
bucket. The average demotion of bad sites is an mportar?ance, we can conclude that for the 500 top-PageRank

way to evaluate TrustRank as it shows its success (or lackymple sites TrustRank receives a pairwise orderedness
thereof) to cut the importance of bad sites. score of about ®5.

b Tkhet hotll_iontal ?X'Sl Of.F'gLﬁre llthstands gor P?%elentk Figure 12 also shows the pairwise orderedness scores
UCkets. € vertical axis Snows theé number of DUCKElg, o ignorant trust function and PageRank. The overlap

by which sites from a specific PageRank bucket got debetween our seed s&@and sample seX is of 5 good sites
moted in TrustRank on average. White bars represent thg:0 all but five sample sites received a score (2 from '

replétabletsnhes, Wz'le ?Iack ontes c(ijenott;a spam. ({\_lote T%e ignorant trust function. Hence, the pairwise ordered-
We do not show advertisement and Web organization Sit€geqg” scores for the ignorant function represent the case

in tXe flgu_r"e.)t i derive f Fi 11 th twhen we have almost no information about the quality of
S an lilustration, we can derive from Figure A the sites. Similarly, pairwise orderedness scores for Page-

spam sites in PageRank bucket 2 got demoted seven bucke  jjystrate how much the knowledge of importance

ets on average, thus landing som_ewhere around 'I'_rustRa%n help in distinguishing good and bad. As we can see
bucket 9. An example of promotion can be seen in Page '

X TrustRank constantly outperforms both the ignorant func-

Rank bucket 16, where good sites appear on average o8 and PageRank

bucket higher in the TrustRank ordering. '
This figure again shows well that TrustRank effectively

removes most of the spam from among the top-scored site§:4-3  Precision and Recall

Furthermore, it also reveals that good sites retain their origy r |ast set of experimental results, shown in Figure 13,
inal bucket position in most of the cases. Consequentlyyresent the performance of TrustRank with respect to the
we argue that (opposed to PageRank) TrustRank guaraietrics of precision and recall. We used as threshold val-
tees that top-scored sites are good ones. We also assgfls the horderline TrustRank scores that separated the 17
that TrustRank is unable to effectively separate low-scoredr ,stRank buckets, discussed in Section 6.4.1. The low-
good sites from bad ones, due to the lack of distinguishingg; pckets corresponding to each threshold value are pre-
features (inlinks) of the sites. sented on the horizontal axis of the figure; we display the
precision and recall scores on the vertical. For instance,
if the threshold® is set so that all and only sample sites in
We used the pairwise orderedness metric presented in Se€rustRank buckets 1 through 10 are above it, then precision
tion 3.2 to evaluate TrustRank with respect to the ordereds 0.86 and recall is 55.

trust property. For this experiment, we built the $ebf TrustRank assigned the highest scores to good sites, and
all possible pairs of sites for several subsets of our evaluathe proportion of bad increases gradually as we move to
tion sampleX. We started by using the subsetXfof the  lower scores. Hence, precision and recall manifest an al-
100 sites with highest PageRank scores, in order to cheakost linear decrease and increase, respectively. Note the
TrustRank for the most important sites. Then, we graduallyhigh (0.82) precision score for the whole sample set: such
added more and more sites to our subset, in their decreasirsgvalue would be very uncommon for traditional informa-

6.4.2 Pairwise Orderedness
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Precision 'm We believe that there are still a number of interesting ex-
08 , periments that need to be carried out. For instance, it would
A be desirable to further explore the interplay between damp-
0.6 o ening and splitting for trust propagation. In addition, there
A are a number of ways to refine our methods. For example,
0.4 e instead of selecting the entire seed set at once, one could
A think of an iterative process: after the oracle has evaluated
A some pages, we could reconsider what pages it should eval-
uate next, based on the previous outcome. Such issues are
A a challenge for future research.
123456 7 8 91011121314151617-20
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