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Abstract

Web spam pages use various techniques to achieve
higher-than-deserved rankings in a search en-
gine’s results. While human experts can identify
spam, it is too expensive to manually evaluate a
large number of pages. Instead, we propose tech-
niques to semi-automatically separate reputable,
good pages from spam. We first select a small set
of seed pages to be evaluated by an expert. Once
we manually identify the reputable seed pages, we
use the link structure of the web to discover other
pages that are likely to be good. In this paper
we discuss possible ways to implement the seed
selection and the discovery of good pages. We
present results of experiments run on the World
Wide Web indexed by AltaVista and evaluate the
performance of our techniques. Our results show
that we can effectively filter out spam from a sig-
nificant fraction of the web, based on a good seed
set of less than 200 sites.

1 Introduction

The termweb spamrefers to hyperlinked pages on the
World Wide Web that are created with the intention of mis-
leading search engines. For example, a pornography site
may spam the web by adding thousands of keywords to
its home page, often making the text invisible to humans
through ingenious use of color schemes. A search engine
will then index the extra keywords, and return the pornog-
raphy page as an answer to queries that contain some of
the keywords. As the added keywords are typically not of
strictly adult nature, people searching for other topics will
be led to the page. Another web spamming technique is the

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

creation of a large number of bogus web pages, all pointing
to a single target page. Since many search engines take into
account the number of incoming links in ranking pages, the
rank of the target page is likely to increase, and appear ear-
lier in query result sets.

Just as with email spam, determining if a page or group
of pages is spam is subjective. For instance, consider a
cluster of web sites that link to each other’s pages repeat-
edly. These links may represent useful relationships be-
tween the sites, or they may have been created with the ex-
press intention of boosting the rank of each other’s pages.
In general, it is hard to distinguish between these two sce-
narios.

However, just as with email spam, most people can eas-
ily identify the blatant and brazen instances of web spam.
For example, most would agree that if much of the text on
a page is made invisible to humans (as noted above), and is
irrelevant to the main topic of the page, then it was added
with the intention to mislead. Similarly, if one finds a page
with thousands of URLs referring to hosts like

buy-canon-rebel-300d-lens-case.camerasx.com,
buy-nikon-d100-d70-lens-case.camerasx.com,
...,

and notices that all host names map to the same IP address,
then one would conclude that the page was created to mis-
lead search engines. (The motivation behind URL spam-
ming is that many search engines pay special attention to
words in host names and give these words a higher weight
than if they had occurred in plain text.)

While most humans would agree on the blatant web
spam cases, this does not mean that it is easy for a com-
puter to detect such instances. Search engine companies
typically employ staff members who specialize in the de-
tection of web spam, constantly scanning the web looking
for offenders. When a spam page is identified, a search en-
gine stops crawling it, and its content is no longer indexed.
This spam detection process is very expensive and slow, but
is critical to the success of search engines: without the re-
moval of the blatant offenders, the quality of search results
would degrade significantly.

Our research goal is to assist the human experts who de-
tect web spam. In particular, we want to identify pages
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Figure 1: A simple web graph.

and sites that are likely to be spam or that are likely to
be reputable. The methods that we present in this paper
could be used in two ways: (1) either as helpers in an ini-
tial screening process, suggesting pages that should be ex-
amined more closely by an expert, or (2) as a counter-bias
to be applied when results are ranked, in order to discount
possible boosts achieved by spam.

Since the algorithmic identification of spam is very dif-
ficult, our schemes do not operate entirely without human
assistance. As we will see, the main algorithm we propose
receives human assistance as follows. The algorithm first
selects a smallseedset of pages whose “spam status” needs
to be determined. A human expert then examines the seed
pages, and tells the algorithm if they are spam (badpages)
or not (goodpages). Finally, the algorithm identifies other
pages that are likely to be good based on their connectivity
with the good seed pages.

In summary, the contributions of this paper are:

1. We formalize the problem of web spam and spam de-
tection algorithms.

2. We define metrics for assessing the efficacy of detec-
tion algorithms.

3. We present schemes for selecting seed sets of pages to
be manually evaluated.

4. We introduce the TrustRank algorithm for determin-
ing the likelihood that pages are reputable.

5. We discuss the results of an extensive evaluation,
based on 31 million sites crawled by the AltaVista
search engine, and a manual examination of over
2,000 sites. We provide some interesting statistics on
the type and frequency of encountered web contents,
and we use our data for evaluating the proposed algo-
rithms.

2 Preliminaries
2.1 Web Model

We model the web as a graphG = (V,E) consisting of a
setV of N pages (vertices) and a setE of directed links
(edges) that connect pages. In practice, a web pagep may
have multiple HTML hyperlinks to some other pageq. In
this case we collapse these multiple hyperlinks into a single
link (p,q) ∈ E. We also remove self hyperlinks. Figure 1
presents a very simple web graph of four pages and four
links. (For our experiments in Section 6, we will deal with
web sites, as opposed to individual web pages. However,
our model and algorithms carry through to the case where
graph vertices are entire sites.)

Each page has some incoming links, orinlinks, and
some outgoing links, oroutlinks. The number of inlinks

of a pagep is its indegreeι(p), whereas the number of out-
links is its outdegreeω(p). For instance, the indegree of
page 3 in Figure 1 is one, while its outdegree is two.

Pages that have no inlinks are calledunreferenced
pages. Pages without outlinks are referred to asnon-
referencing pages. Pages that are both unreferenced and
non-referencing at the same time areisolated pages. Page
1 in Figure 1 is an unreferenced page, while page 4 is non-
referencing.

We introduce two matrix representations of a web graph,
which will have important roles in the following sections.
One of them is thetransition matrixT:

T(p,q) =

{
0 if (q, p) /∈ E,
1/ω(q) if (q, p) ∈ E.

The transition matrix corresponding to the graph in Fig-
ure 1 is:

T =


0 0 0 0
1 0 1

2 0
0 1 0 0
0 0 1

2 0

 .

We also define theinverse transition matrixU:

U(p,q) =

{
0 if (p,q) /∈ E,
1/ι(q) if (p,q) ∈ E.

Note thatU 6= TT . For the example in Figure 1 the inverse
transition matrix is:

U =


0 1

2 0 0
0 0 1 0
0 1

2 0 1
0 0 0 0

 .

2.2 PageRank

PageRank is a well known algorithm that uses link informa-
tion to assign global importance scores to all pages on the
web. Because our proposed algorithms rely on PageRank,
this section offers a short overview.

The intuition behind PageRank is that a web page is
important if several other important web pages point to it.
Correspondingly, PageRank is based on a mutual reinforce-
ment between pages: the importance of a certain pagein-
fluencesand isbeing influencedby the importance of some
other pages.

The PageRank scorer(p) of a pagep is defined as:

r(p) = α · ∑
q:(q,p)∈E

r(q)
ω(q)

+(1−α) · 1
N

,

whereα is a decay factor.1 The equivalent matrix equation

1Note that there are a number of equivalent definitions of Page-
Rank [12] that might slightly differ in mathematical formulation and nu-
merical properties, but yield the same relative ordering between any two
web pages.
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Figure 2: A web of good (white) and bad (black) nodes.

form is:

r = α ·T · r +(1−α) · 1
N
·1N.

Hence, the score of some pagep is a sum of two compo-
nents: one part of the score comes from pages that point
to p, and the other (static) part of the score is equal for all
web pages.

PageRank scores can be computed iteratively, for in-
stance, by applying the Jacobi method [3]. While in a
strict mathematical sense, iterations should be run to con-
vergence, it is more common to use only a fixed number of
M iterations in practice.

It is important to note that while the regular PageRank
algorithm assigns the same static score to each page, abi-
ased PageRankversion may break this rule. In the matrix
equation

r = α ·T · r +(1−α) ·d,

vector d is a static score distribution vectorof arbitrary,
non-negative entries summing up to one. Vectord can be
used to assign a non-zero static score to a set of special
pages only; the score of such special pages is then spread
during the iterations to the pages they point to.

3 Assessing Trust

3.1 Oracle and Trust Functions

As discussed in Section 1, determining if a page is spam
is subjective and requires human evaluation. We formalize
the notion of a human checking a page for spam by a binary
oracle functionO over all pagesp∈ V:

O(p) =

{
0 if p is bad,
1 if p is good.

Figure 2 represents a small seven-page web where good
pages are shown as white, and bad pages as black. For this
example, calling the oracle on pages 1 through 4 would
yield the return value of 1.

Oracle invocations are expensive and time consuming.
Thus, we obviously do not want to call the oracle function
for all pages. Instead, our objective is to be selective, i.e.,
to ask a human expert to evaluate only some of the web
pages.

To discover good pages without invoking the oracle
function on the entire web, we will rely on an important
empirical observation we call theapproximate isolationof
the good set: good pages seldom point to bad ones. This
notion is fairly intuitive—bad pages are built to mislead
search engines, not to provide useful information. There-
fore, people creating good pages have little reason to point
to bad pages.

However, the creators of good pages can sometimes be
“tricked,” so we do find some good-to-bad links on the web.
(In Figure 2 we show one such good-to-bad link, from page
4 to page 5, marked with an asterisk.) Consider the fol-
lowing example. Given a good, but unmoderated message
board, spammers may include URLs to their spam pages as
part of the seemingly innocent messages they post. Con-
sequently, good pages of the message board would link to
bad pages. Also, sometimes spam sites offer what is called
a honey pot: a set of pages that provide some useful re-
source (e.g., copies of some Unix documentation pages),
but that also have hidden links to their spam pages. The
honey pot then attracts people to point to it, boosting the
ranking of the spam pages.

Note that the converse to approximate isolation does not
necessarily hold: spam pages can, and in fact often do, link
to good pages. For instance, creators of spam pages point to
important good pages either to create a honey pot, or hop-
ing that many good outlinks would boost their hub-score-
based ranking [10].

To evaluate pages without relying onO, we will estimate
the likelihood that a given pagep is good. More formally,
we define atrust functionT that yields a range of values
between 0 (bad) and 1 (good). Ideally, for any pagep, T(p)
should give us the probability thatp is good:

Ideal Trust Property

T(p) = Pr[O(p) = 1].

To illustrate, let us consider a set of 100 pages and say
that the trust score of each of these pages happens to be 0.7.
Let us suppose that we also evaluate all the 100 pages with
the oracle function. Then, ifT works properly, for 70 of the
pages the oracle score should be 1, and for the remaining
30 pages the oracle score should be 0.

In practice, it is very hard to come up with a function
T with the previous property. However, even ifT does not
accurately measure the likelihood that a page is good, it
would still be useful if the function could at least help us
order pages by their likelihood of being good. That is, if we
are given a pair of pagesp andq, andp has a lower trust
score thanq, then this should indicate thatp is less likely
to be good thanq. Such a function would at least be useful
in ordering search results, giving preference to pages more
likely to be good. More formally, then, a desirable property
for the trust function is:
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Ordered Trust Property

T(p) < T(q)⇔ Pr[O(p) = 1] < Pr[O(q) = 1],

T(p) = T(q)⇔ Pr[O(p) = 1] = Pr[O(q) = 1].

Another way to relax the requirements forT is to intro-
duce a threshold valueδ:

Threshold Trust Property

T(p) > δ ⇔ O(p) = 1.

That is, if a pagep receives a score aboveδ, we know that it
is good. Otherwise, we cannot tell anything aboutp. Such a
functionT would at least be capable of telling us that some
subset of pages with a trust score aboveδ is good. Note that
a functionT with the threshold property does not necessar-
ily provide an ordering of pages based on their likelihood
of being good.

3.2 Evaluation Metrics

This section introduces three metrics that help us evaluate
whether a particular functionT has some of the desired
properties.

We assume that we have a sample setX of web pages for
which we can invoke bothT andO. Then, we can evaluate
how well a desired property is achieved for this set. In
Section 6 we discuss how a meaningful sample setX can
be selected, but for now, we can simply assume thatX is a
set of random web pages.

Our first metric,pairwise orderedness, is related to the
ordered trust property. We introduce a binary function
I(T,O, p,q) to signal if a bad page received an equal or
higher trust score than a good page (a violation of the or-
dered trust property):

I(T,O, p,q) =


1 if T(p)≥ T(q) andO(p) < O(q),
1 if T(p)≤ T(q) andO(p) > O(q),
0 otherwise.

Next, we generate from our sampleX a setP of ordered
pairs of pages(p,q), p 6= q, and we compute the fraction of
the pairs for whichT did not make a mistake:

Pairwise Orderedness

pairord(T,O,P) =
|P|−∑(p,q)∈P I(T,O, p,q)

|P|
.

Hence, ifpairord equals 1, there are no cases whenT mis-
rated a pair. Conversely, ifpairord equals zero, thenT mis-
rated all the pairs. In Section 6 we discuss how to select a
setP of sample page pairs for evaluation.

Our next two metrics are related to the threshold trust
property. It is natural to think of the performance of func-
tion T in terms of the commonly usedprecisionandrecall
metrics [1] for a certain threshold valueδ. We define preci-
sion as the fraction of good among all pages inX that have
a trust score aboveδ:

Precision

prec(T,O) =
|{p∈ X|T(p) > δ andO(p) = 1}|

|{q∈ X|T(q) > δ}|
.

Similarly, we define recall as the ratio between the num-
ber of good pages with a trust score aboveδ and the total
number of good pages inX:

Recall

rec(T,O) =
|{p∈ X|T(p) > δ andO(p) = 1}|

|{q∈ X|O(q) = 1}|
.

4 Computing Trust

Let us begin our quest for a proper trust function by start-
ing with some simple approaches. We will then combine
the gathered observations and construct the TrustRank al-
gorithm in Section 4.3.

Given a limited budgetL of O-invocations, it is straight-
forward to select at random aseed setS of L pages and call
the oracle on its elements. (In Section 5 we discuss how
to select a better seed set.) We denote the subsets of good
and bad seed pages byS+ andS−, respectively. Since the
remaining pages are not checked by the human expert, we
assign them a trust score of 1/2 to signal our lack of infor-
mation. Therefore, we call this scheme theignorant trust
functionT0, defined for anyp∈ V as follows:

Ignorant Trust Function

T0(p) =

{
O(p) if p∈ S,

1/2 otherwise.

For example, we can setL to 3 and apply our method
to the example in Figure 2. A randomly selected seed set
could then beS = {1,3,6}. Let o andt0 denote the vectors
of oracle and trust scores for each page, respectively. In
this case,

o = [1, 1, 1, 1, 0, 0, 0],

t0 = [1, 1
2, 1, 1

2, 1
2, 0, 1

2].

To evaluate the performance of the ignorant trust function,
let us suppose that our sampleX consists of all 7 pages, and
that we consider all possible 7·6= 42 ordered pairs. Then,
the pairwise orderedness score ofT0 is 17/21. Similarly,
for a thresholdδ = 1/2, the precision is 1 while the recall
is 1/2.

4.1 Trust Propagation

As a next step in computing trust scores, we take advantage
of the approximate isolation of good pages. We still select
at random the setS of L pages that we invoke the oracle on.
Then, expecting that good pages point to other good pages
only, we assign a score of 1 to all pages that are reachable
from a page inS+ in M or fewer steps. The appropriate
trust functionTM is defined as:
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M pairord prec rec

1 19/21 1 3/4

2 1 1 1

3 17/21 4/5 1

Table 1: Performance of theM-step trust functionTM for
M ∈ {1,2,3}.

M-Step Trust Function

TM(p) =


O(p) if p∈ S,

1 if p /∈ S and∃q∈ S+ : q M p,

1/2 otherwise,

whereq M p denotes the existence of a path of a maxi-
mum length ofM from pageq to pagep. Such a path must
not include bad seed pages.

Using the example in Figure 2 and the seed setS =
{1,3,6}, we present the trust score assignments for three
different values ofM:

M = 1 : t1 = [1, 1, 1, 1
2, 1

2, 0, 1
2],

M = 2 : t2 = [1, 1, 1, 1, 1
2, 0, 1

2],

M = 3 : t3 = [1, 1, 1, 1, 1, 0, 1
2].

We would expect thatTM performs better thanT0 with re-
spect to some of our metrics. Indeed, Table 1 shows that
for M = 1 andM = 2, both pairwise orderedness and recall
increase, and precision remains 1. However, there is a drop
in performance when we go toM = 3. The reason is that
page 5 receives a score of 1 due to the link from good page
4 to bad page 5 (marked with an asterisk on Figure 2).

As we saw in the previous example, the problem with
M-step trust is that we are not absolutely sure that pages
reachable from good seeds are indeed good. As a matter of
fact, the further away we are from good seed pages, the less
certain we are that a page is good. For instance, in Figure 2
there are 2 pages (namely, pages 2 and 4) that are at most 2
links away from the good seed pages. As both of them are
good, the probability that we reach a good page in at most
2 steps is 1. Similarly, the number of pages reachable from
the good seed in at most 3 steps is 3. Only two of these
(pages 2 and 4) are good, while page 5 is bad. Thus, the
probability of finding a good page drops to 2/3.

4.2 Trust Attenuation

These observations suggest that we reduce trust as we move
further and further away from the good seed pages. There
are many ways to achieve this attenuation of trust. Here we
describe two possible schemes.

Figure 3 illustrates the first idea, which we calltrust
dampening. Since page 2 is one link away from the good
seed page 1, we assign it a dampened trust score ofβ, where
β < 1. Since page 3 is reachable in one step from page 2
with scoreβ, it gets a dampened score ofβ ·β.
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Figure 3: Trust dampening.
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Figure 4: Trust splitting.

We also need to decide how to assign trust to pages with
multiple inlinks. For instance, in Figure 3, assume page 1
also links to page 3. We could assign page 3 the maximum
trust score, in this caseβ, or the average score, in this case
(β+β ·β)/2.

The second technique for trust attenuation, which we
call trust splitting, is based on the following observation:
the care with which people add links to their pages is often
inversely proportional to the number of links on the page.
That is, if a good page has only a handful of outlinks, then
it is likely that the pointed pages are also good. However,
if a good page has hundreds of outlinks, it is more probable
that some of them will point to bad pages.

This observation leads us to splitting trust as it propa-
gates to other pages: if pagep has a trust score ofT(p) and
it points toω(p) pages, each of theω(p) pages will receive
a score fractionT(p)/ω(p) from p. In this case, the actual
score of a page will be the sum of the score fractions re-
ceived through its inlinks. Intuitively, the more “credit” a
page accumulates from some other pages, the more prob-
able that it is good. (We can normalize summed scores to
our standard range of[0,1].)

Figure 4 illustrates trust splitting. Good seed page 1 has
two outlinks, so it distributes half of its score of 1 to both
pages it points to. Similarly, good seed page 2 has three
outlinks, so each page it points to receives one third of its
score. The score of page 3 will then be 1/2+1/3 = 5/6.

Notice that we can also combine trust splitting with
dampening. In Figure 4, for instance, page 3 could receive
a score ofβ · (1/2+1/3).

There are multiple ways of implementing trust dampen-
ing and/or splitting. In the next section we present one im-
plementation that shares the same mathematical formula-
tion with a biased PageRank computation inM steps. This
feature means that we can rely on PageRank code (with mi-
nor changes) to compute trust scores. The resulting advan-
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functionTrustRank
input

T transition matrix
N number of pages
L limit of oracle invocations
αB decay factor for biased PageRank
MB number of biased PageRank iterations

output
t∗ TrustRank scores

begin
// evaluate seed-desirability of pages

(1) s= SelectSeed(. . .)
// generate corresponding ordering

(2) σ = Rank({1, . . . ,N},s)
// select good seeds

(3) d = 0N

for i = 1 toL do
if O(σ(i)) == 1 then

d(σ(i)) = 1
// normalize static score distribution vector

(4) d = d/|d|
// compute TrustRank scores

(5) t∗ = d
for i = 1 toMB do

t∗ = αB ·T · t∗ +(1−αB) ·d
returnt∗

end

Figure 5: The TrustRank algorithm.

tage is important since substantial effort has been spent on
making PakeRank computations efficient with very large
data sets (for instance, see [5, 8]).

4.3 The TrustRank Algorithm

FunctionTrustRank, shown in Figure 5, computes trust
scores for a web graph. We explain the algorithm by walk-
ing through its execution on Figure 2.

The input to the algorithm is the graph (the transition
matrix T and the numberN of web pages) and parameters
that control execution (L, MB, αB, see below).

As a first step, the algorithm calls functionSelectSeed,
which returns a vectors. The entrys(p) in this vector gives
the “desirability” of pagep as a seed page. (Please refer to
Section 5 for details.) As we will see in Section 5.1, one
version ofSelectSeed returns the following vector on the
example of Figure 2:

s=
[
0.08, 0.13, 0.08, 0.10, 0.09, 0.06, 0.02

]
.

In step(2) functionRank(x,s) generates a permutationx′

of the vectorx, with elementsx′(i) in decreasing order of
s(x′(i)). In other words,Rank reorders the elements ofx
in decreasing order of theirs-scores. For our example, we

get:
σ =

[
2, 4, 5, 1, 3, 6, 7

]
.

That is, page 2 is the most desirable seed page, followed by
page 4, and so on.

Step (3) invokes the oracle function on theL most desir-
able seed pages. The entries of the static score distribution
vectord that correspond to good seed pages are set to 1.

Step (4) normalizes vectord so that its entries sum up
to 1. Assuming thatL = 3, the seed set is{2,4,5}. Pages
2 and 4 are the good seeds, and we get the following static
score distribution vector for our example:

d =
[
0, 1

2, 0, 1
2, 0, 0, 0

]
,

Finally, step (5) evaluates TrustRank scores using a biased
PageRank computation withd replacing the uniform distri-
bution. Note that step (5) implements a particular version
of trust dampening and splitting: in each iteration, the trust
score of a node is split among its neighbors and dampened
by a factorαB.

Assuming thatαB = 0.85 andMB = 20, the algorithm
computes the following result:

t∗ =
[
0, 0.18, 0.12, 0.15, 0.13, 0.05, 0.05

]
.

Notice that because of the way we iteratively propagate
trust scores, the good seed pages (namely, 2 and 4) no
longer have a score of 1. However, they still have the
highest scores. Also notice that good seed page 4 has a
lower score than good seed page 2. This is due to the link
structure in this example: page 2 has an inlink from a high
scoring page (page 3), while page 4 does not. Thus, our
TrustRank algorithm “refines” the original scores given by
the oracle, determining that there is even more evidence
that page 2 is good as compared to 4. If desired, one can
normalize the resulting vector by dividing all scores by the
highest score (making the score of page 2 equal to one), but
this operation does not change the relative ordering of the
pages.

We see in this example that the TrustRank algorithm
usually gives good pages a higher score. In particular, three
of the four good pages (namely, pages 2, 3, and 4) got high
scores and two of the three bad pages (pages 6 and 7) got
low scores. However, the algorithm failed to assign pages
1 and 5 adequate scores. Page 1 was not among the seeds,
and it did not have any inlinks through which to accumu-
late score, so its score remained at 0. All good unreferenced
web pages receive a similar treatment, unless they are se-
lected as seeds. Bad page 5 received a high score because
it is the direct target of one of the rare good-to-bad links.
As we will see in Section 6, in spite of errors like these,
on a real web graph the TrustRank algorithm is still able to
correctly identify a significant number of good pages.

5 Selecting Seeds

The goal of functionSelectSeed is to identify desirable
pages for the seed set. That is, we would like to find pages
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functionSelectSeed
input

U inverse transition matrix
N number of pages
αI decay factor
MI number of iterations

output
s inverse PageRank scores

begin
s= 1N

for i = 1 toM do
s= α ·U ·s+(1−α) · 1

N ·1N

returns
end

Figure 6: The inverse PageRank algorithm.

that will be the most useful in identifying additional good
pages. At the same time, we want to keep the seed set rea-
sonably small to limit the number of oracle invocations. In
this section we discuss two strategies forSelectSeed, in ad-
dition to the random selection strategy that was mentioned
earlier.

5.1 Inverse PageRank

Since trust flows out of the good seed pages, one approach
is to give preference to pages from which we can reach
many other pages. In particular, we could select seed pages
based on the number of outlinks. For instance, considering
our example in Figure 2, the appropriate seed set ofL = 2
pages would beS = {2,5}, since pages 2 and 5 have the
largest number of outlinks (namely two).

Following a similar reasoning, the coverage can be im-
proved even further. We can build the seed set from those
pages that point to many pages that in turn point to many
pages and so on. Interestingly, this approach leads us to a
scheme closely related PageRank—the difference is that in
our case the importance of a page depends on its outlinks,
not its inlinks. Therefore, to compute the desirability of a
page, we perform a PageRank computation on the graph
G′ = (V,E′), where

(p,q) ∈ E′ ⇔ (q, p) ∈ E.

Since we inverted the links, we call our algorithminverse
PageRank.

Figure 6 shows aSelectSeed algorithm that performs the
inverse PageRank computation. Note that the decay factor
αI and the number of iterationsMI can be different from the
valuesαB andMB used by the TrustRank algorithm. The
computation is identical to that in the traditional PageRank
algorithm (Section 2.2), except that the inverse transition
matrixU is used instead of the regular transition matrixT.

For our example from Figure 2, the inverse PageRank
algorithm (αI = 0.85,MI = 20) yields the following scores
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Figure 7: A graph for which inverse PageRank does not
yield maximum coverage.

(already shown in Section 4.3):

s=
[
0.08, 0.13, 0.08, 0.10, 0.09, 0.06, 0.02

]
.

For a value ofL = 3, the seed set isS = {2,4,5}. Corre-
spondingly, the good seed set isS+ = {2,4}, so pages 2
and 4 are used as starting points for score distribution.

It is important to note that inverse PageRank is a heuris-
tic (that works well in practice, as we will see in Section 6).
First, inverse PageRank does not guarantee maximum cov-
erage. For instance, in the example in Figure 7 and for
L = 2, maximum coverage is achieved through the seed set
{1,3} or {2,3}. However, the inverse PageRank computa-
tion yields the score vector:

s=
[
0.05, 0.05, 0.04, 0.02, 0.02, 0.02, 0.02

]
,

which leads to the seed setS = {1,2}.
Nevertheless, inverse PageRank is appealing because its

execution time is polynomial in the number of pages, while
determining the maximum coverage is anN P -complete
problem.2

A second reason why inverse PageRank is a heuristic
is that maximizing coverage may not always be the best
strategy. To illustrate, let us propagate trust via splitting,
without any dampening. Returning to Figure 7, say we only
select page 2 as seed and it turns out to be good. Then pages
4, 5, and 6 each receive a score of 1/3. Now, assume we
only select page 3 as seed and it also happens to be good.
Then page 7 gets a score of 1. Depending on our ultimate
goal, it may be preferable to use page 3, since we can be
more certain about the page it identifies, even if the set is
smaller. However, if we are only using trusts scores for
comparing against other trust scores, it may still be better to
learn about more pages, even if with less absolute accuracy.

5.2 High PageRank

So far we have assumed that the value of identifying a page
as good or bad is the same for all web pages. Yet, it may be

2The general problem of identifying the minimal set of pages that
yields maximum coverage is equivalent to the independent set problem [7]
on directed graphs as shown next. The web graph can be transformed in
a directed graphG′′ = (V,E′′), where an edge(p,q) ∈ E′′ signals that
pageq can be reached from pagep. We argue that such transformation
does not change the complexity class of the algorithm, since it involves
breadth-first search that has polynomial execution time. Then, finding a
minimal set that provides maximum coverage is the same as finding the
maximum independent set forG′′, which is anN P -complete problem.
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more important to ascertain the goodness of pages that will
appear high in query result sets. For example, say we have
four pagesp, q, r, ands, whose contents match a given
set of query terms equally well. If the search engine uses
PageRank to order the results, the page with highest rank,
say p, will be displayed first, followed by the page with
next highest rank, sayq, and so on. Since it is more likely
the user will be interested in pagesp and q, as opposed
to pagesr ands (pagesr ands may even appear on later
result pages and may not even be seen by the user), it seems
more useful to obtain accurate trust scores for pagesp and
q rather than forr ands. For instance, if pagep turns out
to be spam, the user may rather visit pageq instead.

Thus, a second heuristic for selecting a seed set is to
give preference to pages with high PageRank. Since high-
PageRank pages are likely to point to other high-PageRank
pages, then good trust scores will also be propagated to
pages that are likely to be at the top of result sets. Thus,
with PageRank selection of seeds, we may identify the
goodness of fewer pages (as compared to inverse Page-
Rank), but they may be more important pages to know
about.

6 Experiments
6.1 Data Set

To evaluate our algorithms, we performed experiments us-
ing the complete set of pages crawled and indexed by the
AltaVista search engine as of August 2003.

In order to reduce computational demands, we decided
to work at the level of web sites instead of individual pages.
(Note that all presented methods work equally well for ei-
ther pages or sites.) We grouped the several billion pages
into 31,003,946 sites, using a proprietary algorithm that is
part of the AltaVista engine. Although the algorithm re-
lies on several heuristics to fine-tune its decisions, roughly
speaking, all individual pages that share a common fully
qualified host name3 become part of the same site. Once
we decided on the sites, we added a single link from sitea
to siteb if in the original web graph there were one or more
links from pages of sitea pointing to pages of siteb.

One interesting fact that we have noticed from the
very beginning was that more than one third of the sites
(13,197,046) were unreferenced. Trust propagation algo-
rithms rely on inlink information, so are unable to differ-
entiate among these sites without inlinks. Fortunately, the
unreferenced sites are ranked low in query results (receive
an identical, minimal static PageRank score), so it is not
critical to separate good and bad sites among them.

For our evaluations, the first author of this paper played
the role of the oracle, examining pages of various sites, de-
termining if they are spam, and performing additional clas-

3The fully qualified host nameis the portion of the URL between
the http:// prefix, called thescheme, and the first slash character that
usually follows the top level domain, such as.com, or the server’s
TCP port number. For instance, the fully qualified host name for
the URL http://www-db.stanford.edu/db pages/members.html

is www-db.stanford.edu.

sification, as we will see. Of course, using an author as
an evaluator raises the issue of bias in the results. How-
ever, this was our only choice. Our manual evaluations
took weeks: checking a site involves looking at many of
its pages and also the linked sites to determine if there is
an intention to deceive search engines. Finding an expert
working at one of the very competitive search engine com-
panies who was knowledgeable enough and had time for
this work was next to impossible. Instead, the first author
spent time looking over the shoulder of the experts, learn-
ing how they identified spam sites. Then, he made every
effort to be unbiased and to apply the experts’ spam detec-
tion techniques.

6.2 Seed Set

As a first step, we conducted experiments to compare the
inverse PageRank and the high PageRank seed selection
schemes described in Sections 5.1 and 5.2, respectively. In
order to be able to perform the comparison quickly, we ran
our experiments on synthetic web graphs that capture the
essential spam-related features of the web. We describe
these experiments in [4]. Due to space limitations, here we
just note that inverse PageRank turned out to be slightly
better at identifying useful seed sets. Thus, for the rest of
our experiments on the full, real web, we relied on the in-
verse PageRank method.

In implementing seed selection using inverse PageRank,
we fine-tuned the process in order to streamline the oracle
evaluations. First, we performed a full inverse PageRank
computation on the site-level web graph, using parameters
αI = 0.85 andMI = 20. (The decay factor of 0.85 was
first reported in [12] and has been regarded as the standard
in PageRank literature ever since. Our tests showed that
20 iterations were enough to achieve convergence on the
relative ordering of the sites.)

After ordering the sites based on their inverse PageRank
scores (step (2) in Figure 5), we focused our attention on
the top 25,000. Instead of a full oracle evaluation of these
sites, we first did a cursory evaluation to eliminate some
problematic ones. In particular, we noticed that sites with
highest inverse PageRank scores showed a heavy bias to-
ward spam, due to the presence ofOpen Directory clones:
some spammers duplicate the entire content of the DMOZ
Open Directory either in the hope of increasing their hub
score [10] or with the intention of creating honey pots, as
discussed in Section 3.1. In order to get rid of the spam
quickly, we removed from our list of 25,000 sites all that
were not listed in any of the major web directories, reduc-
ing the initial set to roughly 7,900. By sampling the sites
that were filtered out, we found that insignificantly few rep-
utable ones were removed by the process.

Out of the remaining 7,900 sites, we manually evaluated
the top 1,250 (seed setS) and selected 178 sites to be used
as good seeds. This procedure corresponded to step (3) in
Figure 5. The relatively small size of the good seed setS+

is due to the extremely rigorous selection criteria that we
adopted: not only did we make sure that the sites were not
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Figure 8: Composition of the evaluation sample.

spam, but we also applied a second filter—we only selected
sites with a clearly identifiable authority (such as a gov-
ernmental or educational institution or company) that con-
trolled the contents of the site. The extra filter was added
to guarantee the longevity of the good seed set, since the
presence of physical authorities decreases the chance that
the sites would degrade in the short run.

6.3 Evaluation Sample

In order to evaluate the metrics presented in Section 3.2, we
needed a setX of sample sites with known oracle scores.
(Note that this is different from the seed set and it is only
used for assessing the performance of our algorithms.) We
settled on a sample of 1000 sites, a number that gave us
enough data points, and was still manageable in terms of
oracle evaluation time.

We decidednot to select the 1000 sample sites ofX at
random. With a random sample, a great number of the sites
would be very small (with few pages) and/or have very low
PageRank. (Both size and PageRank follow power-law dis-
tributions, with many sites at the tail end of the distribu-
tion.) As we discussed in Section 5.2, it is more important
for us to correctly detect spam in high PageRank sites, since
they will more often appear high in query result sets. Fur-
thermore, it is hard for the oracle to evaluate small sites due
to the reduced body of evidence, so it also does not make
sense to consider many small sites in our sample.

In order to assure diversity, we adopted the following
sampling method. We generated the list of sites in decreas-
ing order of their PageRank scores, and we segmented it
into 20 buckets. Each of the buckets contained a different
number of sites, with scores summing up to 5 percent of the
total PageRank score. Therefore, the first bucket contained
the 86 sites with the highest PageRank scores, bucket 2 the
next 665, while the 20th bucket contained 5 million sites
that were assigned the lowest PageRank scores.

We constructed our sample set of 1000 sites by selecting
50 sites at random from each bucket. Then, we performed a
manual (oracle) evaluation of the sample sites, determining
if they were spam or not. The outcome of the evaluation
process is presented in Figure 8, a pie-chart that shows the

way our sample breaks down to various types of sites. We
found that we could use 748 of the sample sites to evaluate
TrustRank:

• Reputable. 563 sites featured quality contents with
zero or a statistically insignificant number of links
pointing to spam sites.

• Web organization.37 sites belonged to organizations
that either have a role in the maintenance of the World
Wide Web or perform business related to Internet ser-
vices. While all of them were good sites, most of their
links were automatic (e.g., “Site hosted by Provider
X”). Therefore, we decided to give them a distinct la-
bel to be able to follow their features separately.

• Advertisement.13 of the sites were ones acting as
targets for banner ads. These sites lack real useful
content and their high PageRank scores are due ex-
clusively to the large number of automatic links that
they receive. Nevertheless, they still qualify as good
sites without any sign of spamming activity.

• Spam.135 sites featured various forms of spam. We
considered these sites as bad ones.

These 748 sites formed our sample setX. The remaining
252 sites were deemed unusable for the evaluation of Trust-
Rank for various reasons:

• Personal page host.22 of the sites hosted personal
web pages. The large, uncontrolled body of editors
contributing to the wide variety of contents for each
of these sites made it impossible to categorize them
as either bad or good. Note that this issue would not
appear in a page-level evaluation.

• Alias. 35 sites were simple aliases of sites better
known under a different name. We decided to drop
these aliases because the importance of the alias could
not reflect the importance of the original site appropri-
ately.

• Empty. 56 sites were empty, consisting of a single
page that provided no useful information.

• Non-existent.96 sites were non-existent—either the
DNS lookup failed, or our systems were not able to
establish a TCP/IP connection with the corresponding
computers.

• Unknown. We were unable to properly evaluate 43
sites based on the available information. These sites
were mainly East Asian ones, which represented a
challenge because of the lack of English translation.

6.4 Results

In Section 4 we described a number of strategies for propa-
gating trust from a set of good seeds. In this section we fo-
cus on three of the alternatives, TrustRank and two baseline
strategies, and evaluate their performance using our sample
X:
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Figure 9: Good sites in PageRank and TrustRank buckets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-20
Bucket

10

20

30

40

50

% Bad PageRank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-20
Bucket

10

20

30

40

50
% Bad TrustRank

Figure 10: Bad sites in PageRank and TrustRank buckets.

1. TrustRank.We used the algorithm in Figure 5 (MB =
20 iterations and decay factor ofαB = 0.85) and our
selected 178 good seeds.

2. PageRank. PageRank was originally considered
highly resilient to spamming because it measures
global importance (limited, local changes to the link
structure have low impact on the scores). Thus, it is
natural to ask how well PageRank can cope with spam
in today’s world. Thus, for this alternative we simply
used the PageRank of sitea as the value ofT(a). We
again performedM = 20 iterations, with a decay fac-
tor of α = 0.85.

3. Ignorant Trust.As another baseline, we generated the
ignorant trust scores of sites. All sites were assigned
an ignorant trust score of 1/2, except for the 1250
seeds, which received scores of 0 or 1.

6.4.1 PageRank versus TrustRank

Let us discuss the difference between PageRank and Trust-
Rank first. Remember, the PageRank algorithm does not
incorporate any knowledge about the quality of a site, nor
does it explicitly penalize badness. In fact, we will see that
it is not very uncommon that some site created by a skilled
spammer receives high PageRank score. In contrast, our
TrustRank is meant to differentiate good and bad sites: we
expect that spam sites were not assigned high TrustRank
scores.

Figures 9 and 10 provide a side-by-side comparison of
PageRank and TrustRank with respect to the ratio of good

and bad sites in each bucket. PageRank buckets were in-
troduced in Section 6.3; we defined TrustRank buckets as
containing the same number of sites as PageRank buckets.
Note that we merged buckets 17 through 20 both for Page-
Rank and TrustRank. (These last 4 buckets contained the
more than 13 million sites that were unreferenced. All such
sites received the same minimal static PageRank score and
a zero TrustRank score, making it impossible to set up an
ordering among them.)

The horizontal axes of Figures 9 and 10 mark the Page-
Rank and TrustRank bucket numbers, respectively. The
vertical axis of the first figure corresponds to the percentage
of good within a specific bucket, i.e., the number of good
sample sites divided by the total number of sample sites in
that bucket. Note that reputable, advertisement, and web
organization sites all qualify as good ones; their relative
contributions are shown by white, middle gray, and dark
gray segments, respectively. The vertical axis of the sec-
ond figure corresponds to the percentage of bad within a
specific bucket. For instance, we can derive from Figure 10
that 31% of the usable sample sites in TrustRank bucket 11
are bad ones.

From these figures we see that TrustRank is a reasonable
spam detection tool. In particular, note that there is virtu-
ally no spam in the top 5 TrustRank buckets, while there is
a marked increase in spam concentration in the lower buck-
ets. At the same time, it is surprising that almost 20% of
the second PageRank bucket is bad. For PageRank, the pro-
portion of bad sites peaks in buckets 9 and 10 (50% spam),
indicating that probably this is as high as average spammers
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could push their sites.
Figure 11 offers another view on the relationship be-

tween PageRank and TrustRank. It introduces the notion of
demotion, the phenomenon that a certain site from a higher
PageRank bucket appears in a lower TrustRank bucket.
Negative demotion ispromotion, the case when a site from
a lower PageRank bucket shows up in a higher TrustRank
bucket. The average demotion of bad sites is an important
way to evaluate TrustRank as it shows its success (or lack
thereof) to cut the importance of bad sites.

The horizontal axis of Figure 11 stands for PageRank
buckets. The vertical axis shows the number of buckets
by which sites from a specific PageRank bucket got de-
moted in TrustRank on average. White bars represent the
reputable sites, while black ones denote spam. (Note that
we do not show advertisement and web organization sites
in the figure.)

As an illustration, we can derive from Figure 11 that
spam sites in PageRank bucket 2 got demoted seven buck-
ets on average, thus landing somewhere around TrustRank
bucket 9. An example of promotion can be seen in Page-
Rank bucket 16, where good sites appear on average one
bucket higher in the TrustRank ordering.

This figure again shows well that TrustRank effectively
removes most of the spam from among the top-scored sites.
Furthermore, it also reveals that good sites retain their orig-
inal bucket position in most of the cases. Consequently,
we argue that (opposed to PageRank) TrustRank guaran-
tees that top-scored sites are good ones. We also assert
that TrustRank is unable to effectively separate low-scored
good sites from bad ones, due to the lack of distinguishing
features (inlinks) of the sites.

6.4.2 Pairwise Orderedness

We used the pairwise orderedness metric presented in Sec-
tion 3.2 to evaluate TrustRank with respect to the ordered
trust property. For this experiment, we built the setP of
all possible pairs of sites for several subsets of our evalua-
tion sampleX. We started by using the subset ofX of the
100 sites with highest PageRank scores, in order to check
TrustRank for the most important sites. Then, we gradually
added more and more sites to our subset, in their decreasing
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Figure 12: Pairwise orderedness.

order of PageRank scores. Finally, we used all pairs of all
the 748 sample sites to compute the pairwise orderedness
score.

Figure 12 displays the results of this experiment. The
horizontal axis shows the number of sample sites used for
evaluation, while the vertical axis represents the pairwise
orderedness scores for the specific sample sizes. For in-
stance, we can conclude that for the 500 top-PageRank
sample sites TrustRank receives a pairwise orderedness
score of about 0.95.

Figure 12 also shows the pairwise orderedness scores
for the ignorant trust function and PageRank. The overlap
between our seed setS and sample setX is of 5 good sites,
so all but five sample sites received a score of 1/2 from
the ignorant trust function. Hence, the pairwise ordered-
ness scores for the ignorant function represent the case
when we have almost no information about the quality of
the sites. Similarly, pairwise orderedness scores for Page-
Rank illustrate how much the knowledge of importance
can help in distinguishing good and bad. As we can see,
TrustRank constantly outperforms both the ignorant func-
tion and PageRank.

6.4.3 Precision and Recall

Our last set of experimental results, shown in Figure 13,
present the performance of TrustRank with respect to the
metrics of precision and recall. We used as threshold val-
uesδ the borderline TrustRank scores that separated the 17
TrustRank buckets, discussed in Section 6.4.1. The low-
est buckets corresponding to each threshold value are pre-
sented on the horizontal axis of the figure; we display the
precision and recall scores on the vertical. For instance,
if the thresholdδ is set so that all and only sample sites in
TrustRank buckets 1 through 10 are above it, then precision
is 0.86 and recall is 0.55.

TrustRank assigned the highest scores to good sites, and
the proportion of bad increases gradually as we move to
lower scores. Hence, precision and recall manifest an al-
most linear decrease and increase, respectively. Note the
high (0.82) precision score for the whole sample set: such
a value would be very uncommon for traditional informa-
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Figure 13: Precision and recall.

tion retrieval problems, where it is usual to have a large
corpus of documents, with only a few of those documents
being relevant for a specific query. In contrast, our sam-
ple set consists most of good documents, all of which are
“relevant.” This is why the baseline precision score for the
sampleX is 613/(613+135) = 0.82.

7 Related Work
Our work builds on existing PageRank research. The
idea of biasing PageRank to combat spam was introduced
in [12]. The use of custom static score distribution vec-
tors has been studied in the context of topic-sensitive Page-
Rank [6]. Recent analyses of (biased) PageRank are pro-
vided by [2, 11].

The problem of trust has also been addressed in the con-
text of peer-to-peer systems. For instance, [9] presents an
algorithm similar to PageRank for computing the reputa-
tion or dependability of a node in a peer-to-peer network.

The data mining and machine learning communities also
explored the topic of web and email spam detection (for in-
stance, see [13]). However, this research is oriented toward
the analysis of individual documents. The analysis typi-
cally looks for telltale signs of spamming techniques based
on statistics derived from examples.

8 Conclusions
As the web grows in size and value, search engines play an
increasingly critical role, allowing users to find information
of interest. However, today’s search engines are seriously
threatened by malicious web spam that attempts to subvert
the unbiased searching and ranking services provided by
the engines. Search engines are today combating web spam
with a variety of ad hoc, often proprietary techniques. We
believe that our work is a first attempt at formalizing the
problem and at introducing a comprehensive solution to as-
sist in the detection of web spam. Our experimental results
show that we can effectively identify a significant number
of strongly reputable (non-spam) pages. In a search engine,
TrustRank can be used either separately to filter the index,
or in combination with PageRank and other metrics to rank
search results.

We believe that there are still a number of interesting ex-
periments that need to be carried out. For instance, it would
be desirable to further explore the interplay between damp-
ening and splitting for trust propagation. In addition, there
are a number of ways to refine our methods. For example,
instead of selecting the entire seed set at once, one could
think of an iterative process: after the oracle has evaluated
some pages, we could reconsider what pages it should eval-
uate next, based on the previous outcome. Such issues are
a challenge for future research.
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