
ar
X

iv
:0

90
5.

15
46

v2
 [

cs
.I

T
]

 1
5

M
ay

 2
00

9

Fast and Near–Optimal Matrix Completion via

Randomized Basis Pursuit

Zhisu Zhu∗ Anthony Man–Cho So† Yinyu Ye‡

May 15, 2009

Abstract

Motivated by the philosophy and phenomenal success of compressed sensing, the prob-
lem of reconstructing a matrix from a sampling of its entries has attracted much atten-
tion recently. Such a problem can be viewed as an information–theoretic variant of the
well–studied matrix completion problem, and the main objective is to design an efficient

algorithm that can reconstruct a matrix by inspecting only a small number of its entries.
Although this is an impossible task in general, Candès and co–authors have recently shown
that under a so–called incoherence assumption, a rank r n×n matrix can be reconstructed
using semidefinite programming (SDP) after one inspects O(nr log6

n) of its entries. In
this paper we propose an alternative approach that is much more efficient and can recon-
struct a larger class of matrices by inspecting a significantly smaller number of the entries.
Specifically, we first introduce a class of so–called stable matrices and show that it includes
all those that satisfy the incoherence assumption. Then, we propose a randomized basis
pursuit (RBP) algorithm and show that it can reconstruct a stable rank r n×n matrix after
inspecting O(nr log n) of its entries. Our sampling bound is only a logarithmic factor away
from the information–theoretic limit and is essentially optimal. Moreover, the runtime of
the RBP algorithm is bounded by O(nr2 log n+n2r), which compares very favorably with
the Ω(n4r2 log12

n) runtime of the SDP–based algorithm. Perhaps more importantly, our
algorithm will provide an exact reconstruction of the input matrix in polynomial time. By
contrast, the SDP–based algorithm can only provide an approximate one in polynomial
time.

Keywords: Matrix Completion, Stable Matrices, Randomized Basis Pursuit, Randomized
Algorithms, Analysis of Algorithms

MSC2000 Subject Classification: 65F30, 68Q25, 68W20

∗Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305. E–
mail: zhuzhisu@stanford.edu

†Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong. E–mail: manchoso@se.cuhk.edu.hk. This research is supported by Hong Kong
Research Grants Council (RGC) General Research Fund (GRF) Project No. CUHK 2150603.

‡Department of Management Science and Engineering, Stanford University, Stanford, CA 94305. E–mail:
yinyu-ye@stanford.edu

1

http://arxiv.org/abs/0905.1546v2

1 Introduction

A fundamental problem that arises frequently in many disciplines is that of reconstructing a
matrix with certain properties from some partial information. Typically, such a problem is
motivated by the desire to deduce global structure from a (small) number of local observations.
For instance, consider the following applications:

• Covariance Estimation. In areas such as statistics, machine learning and wireless com-
munications, it is often of interest to find the maximum likelihood estimate of the covariance
matrix Σ ∈ Cm×m of a random vector v ∈ Cm. Such an estimate can be used to study
the relationship among the variables in v, or to give some indication on the performance
of certain systems. Usually, extra information is available to facilitate the estimation. For
instance, we may have a number of independent samples that are drawn according to the
distribution of v, as well as some structural constraints on Σ (e.g., certain entries of Σ−1

have prescribed values [9], the matrix Σ has a Toeplitz structure and some of its entries
have prescribed values [11], etc.). Thus, the estimation problem becomes that of complet-
ing a partially specified matrix so that the completion satisfies the structural constraints
and maximizes certain likelihood function.

• Graph Realization. It is a trivial matter to see that given the coordinates of n points in
Rk, the distance between any two points can be computed efficiently. However, the inverse
problem — given a subset of interpoint distances, find the coordinates of points (called a
realization) in R

k (where k ≥ 1 is fixed) that fit those distances — turns out to be anything
but trivial (see, e.g., [33, 35, 34]). Such a problem arises in many different contexts, such
as sensor network localization (see, e.g., [1, 36]) and molecular conformation (see, e.g,
[18, 8]), and is equivalent to the problem of completing a partially specified matrix to an
Euclidean distance matrix that has a certain rank (cf. [24, 25]).

• Recovering Structure from Motion. A fundamental problem in computer vision
is to reconstruct the structure of an object by analyzing its motion over time. This
problem, which is known as the Structure from Motion (SfM) Problem in the literature,
can be formulated as that of finding a low–rank approximation to certain measurement
matrix (see, e.g., [7]). However, due to the presence of occlusion or tracking failures,
the measurement matrix often has missing entries. When one takes into account such
difficulties, the reconstruction problem becomes that of completing a partially specified
matrix to one that has a certain rank (see, e.g., [7]).

• Recommendation Systems. Although electronic commerce has offered great conve-
nience to customers and merchants alike, it has complicated the task of tracking and
predicting customers’ preferences. To cope with this problem, various recommendation
systems have been developed over the years (see, e.g., [15, 32, 10]). Roughly speaking,
those systems maintain a matrix of preferences, where the rows correspond to users and
columns correspond to items. When an user purchases or browses a subset of the items,
she can specify her preferences for those items, and those preferences will then be recorded

2

in the corresponding entries of the matrix. Naturally, if an user has not considered a par-
ticular item, then the corresponding entry of the matrix will remain unspecified. Now,
in order to predict users’ preferences for the unseen items, one will have to complete a
partially specified matrix so that the completion maximizes certain performance measure
(such as each individual’s utility [23]).

Note that in all the examples above, we are forced to take whatever information is given to us.
In particular, we cannot, for instance, specify which entries of the unknown matrix to examine.
As a result, the reconstruction problem can be ill–posed (e.g., there may not be a unique or even
any solution that satisfies the given criteria). This is indeed an important issue. However, we
shall not address it in this paper (see, e.g., [20, 24, 19, 25] for related work). Instead, we take a
different approach and consider the information–theoretic aspects of the reconstruction problem.
Specifically, let A ∈ Rm×n be the rank r matrix that we wish to reconstruct. For the sake of
simplicity, suppose that r is known. Initially, no information about A (other than its rank) is
available. However, we are allowed to inspect any entry of A and inspect as many entries as we
desire in order to complete the reconstruction. Of course, if we inspect all mn entries of A, then
we will be able to reconstruct A exactly. Thus, it is natural to ask whether we can inspect only a
small number of entries and still be able to reconstruct A in an efficient manner. Besides being
a theoretical curiosity, such a problem does arise in practical applications. For instance, in the
sensor network localization setting [36], the aforementioned problem is tantamount to asking
which of the pairwise distances are needed in order to guarantee a successful reconstruction of
the network topology. It turns out that if the number of required pairwise distances is small,
then we will be able to efficiently reconstruct the network topology by performing just a few
distance measurements and solving a small semidefinite program (SDP) [38].

To get an idea of what we should aim for, let us first determine the degrees of freedom
available in specifying the rank r matrix A ∈ Rm×n. This will give us a lower bound on the
number of entries of A we need to inspect in order to guarantee an exact reconstruction. Towards
that end, consider the singular value decomposition (SVD) A = UΣV T , where U ∈ Rm×r and
V ∈ Rn×r have orthonormal columns, and Σ ∈ Rr×r is a diagonal matrix. Clearly, there are
r degrees of freedom in specifying Σ. Now, observe that for i = 1, 2, . . . , r, the i–th column of
U must be orthogonal to all of the previous i − 1 columns, and that it must have unit length.
Thus, there are m− i degrees of freedom in specifying the i–th column of U , which implies that
there are

∑r
i=1(m − i) = r(2m − r − 1)/2 degrees of freedom in specifying U . By the same

argument, there are
∑r

i=1(n− i) = r(2n− r − 1)/2 degrees of freedom in specifying V . Hence,
we have:

∆ ≡ r +
r(2m− r − 1)

2
+

r(2n− r − 1)

2
= r(m + n− r)

degrees of freedom in specifying the matrix A. In particular, this implies that we need to inspect
at least ∆ entries of A, for otherwise there will be infinitely many matrices that are consistent
with the observations, and we will not be able to reconstruct A exactly.

Now, a natural question arises whether it is possible to reconstruct A by inspecting just
Θ(∆) of its entries. A moment of thought reveals that the answer is no, as the information
that is crucial to the reconstruction of A may concentrate in only a few entries. For instance,

3

consider the rank one n × n matrix A = e1e
T
1 , where e1 = (1, 0, . . . , 0) ∈ Rn. This is a matrix

with only one non–zero entry, and it is clear that if we do not inspect that entry, then there is
no way we can reconstruct A exactly.

From the above example, we see that our ability to reconstruct A depends not only on
the number of entries we inspect, but also on which entries we inspect and on the structure of
A. This motivates the following question: are there matrices for which exact reconstruction is
possible after inspecting only Θ(∆) of the entries? More generally, is there any tradeoff between
the “niceness” of the structure of A and the number of entries we need to inspect in order to
reconstruct A?

1.1 Related Work

In a recent work [5], Candès and Recht studied the above questions and proposed a solution
that is based on ideas from compressed sensing and convex optimization. They first defined a
notion called coherence, which can be viewed as a measure of the niceness of a matrix and is
motivated by a similar notion in the compressed sensing literature [3]. Informally, a matrix has
low coherence if the information that is crucial to its reconstruction is well–spread (cf. the case
where A = e1e

T
1). Then, they proposed the following algorithm for reconstructing any m × n

matrix A:

The Candès–Recht Algorithm

1. Let Γ be a uniformly random subset of {1, . . . , m} × {1, . . . , n} with given cardinality
|Γ| ≥ 1. Inspect the (i, j)–th entry of A if (i, j) ∈ Γ, thus obtaining a set of values
{Aij : (i, j) ∈ Γ}.

2. Output an optimal solution to the following optimization problem:

minimize ‖X‖∗
subject to Xij = Aij for (i, j) ∈ Γ

X ∈ Rm×n

(1)

Here, ‖X‖∗ is the so–called nuclear norm of X and is defined as the sum of all the singular
values of X.

Candès and Recht showed that if A has low coherence, then whenever |Γ| = Ω(N5/4r log N),
where N = max{m, n} and r = rank(A), the solution to problem (1) will be unique and equal
to A with high probability. In other words, by inspecting O(N5/4r log N) randomly chosen
entries of A and then solving the optimization problem (1), one can reconstruct A exactly with
high probability. Note that problem (1) can be formulated as a SDP; see, e.g., [13, Chapter
5]. As such, it can be solved to any desired accuracy in polynomial time (see, e.g., [16, 37]).
However, if one uses standard SDP solvers, then the runtime of the Candès–Recht algorithm is
at least on the order of max{N9/2r2 log2 N, N15/4r3 log3 N} (see, e.g., [37, 26]), which severely
limits its use in practice. Although specialized algorithms are being developed to solve the SDP

4

associated with problem (1) more efficiently (see, e.g., [2, 17, 26, 38]), they either do not have
any theoretical time bound, or their runtimes can still be prohibitively high when N is large (at
least on the order of N9/2r2 log2 N).

Subsequent to the work of Candès and Recht, improvements have been made by various
researchers on both the sampling and runtime bounds for the problem. In [22], Keshavan
et al. proposed a reconstruction algorithm that is based on the SVD and a certain manifold
optimization procedure. They showed that if the input matrix A has low coherence and low
rank, then by sampling |Γ| = Ω(Nr max{log N, r}) entries of A uniformly at random, their
algorithm will produce a sequence of iterates that converges to A with high probability. Note
that the sampling complexity of Keshavan et al.’s algorithm is just a polylogarithmic factor away
from the information–theoretic minimum ∆ and hence is almost optimal. However, their result
applies only when the rank of A is bounded above by N1/2, and the ratio between the largest
and smallest singular values is bounded. Moreover, there is no theoretical time bound for their
algorithm. Around the same time, Candès and Tao [6] refined the analysis in [5] and showed that
the sampling complexity of the Candès–Recht algorithm can be reduced to |Γ| = Ω(Nr log6 N)
when the input matrix A has low coherence (but not necessarily low rank). Again, this is just a
polylogarithmic factor away from the information–theoretic minimum ∆. However, the runtime
of the algorithm remains high (at least on the order of N4r2 log12 N).

1.2 Our Contribution

From the above discussion, we see that it is desirable to design a reconstruction algorithm
that can work for a large class of matrices and yet still has low sampling and computational
complexities. In this paper we make a step towards that goal. Specifically, our contribution is
twofold. First, we introduce the notion of k–stability, which again can be viewed as a measure of
the niceness of a matrix. Roughly speaking, an m×n rank r matrix is k–stable if every m×(n−k)
sub–matrix of A has rank r, but some m×(n−k−1) sub–matrix of A has rank r−1. Intuitively,
if a low–rank matrix has high stability (i.e. when k is large), then the information that is crucial
to its reconstruction is present in many small subsets of the columns, and hence the matrix
should be more amenable to exact reconstruction. As it turns out, the notion of k–stability is
related to the so–called Maximum Distance Separable (MDS) codes in coding theory [27, Chapter
11]. Moreover, from the above informal definition, we see that k–stability is a combinatorial
property of matrices, which should be contrasted with the more analytic nature of the notion of
coherence as defined in [5]. Nevertheless, there is a strong connection between those two notions.
More precisely, we show that if a matrix has low coherence, then it must have high stability.
Such a connection opens up the possibility of comparing our results to those in [5, 22, 6].

Secondly, we propose a randomized basis pursuit (RBP) algorithm for the reconstruction
problem. Our algorithm differs from that of Candès and Recht [5] and Keshavan et al. [22] in
two major aspects:

1. We do not sample the matrix entries in a uniform fashion. Instead, we sample the columns
(or rows) of the matrix uniformly. We note that such a sampling strategy is reminiscent
of that used for constructing low–rank approximations to a given matrix [14, 12, 31].

5

However, there is one crucial difference, namely, our sampling strategy does not require
any knowledge of the input matrix. By contrast, the strategy used in [14, 12, 31] assumes
that the norm of each column of the input matrix is known.

2. Our algorithm does not involve any optimization procedure and will produce an exact
solution in polynomial time. This should be contrasted with the SDP–based algorithm of
Candès and Recht, which can only return an approximate solution in polynomial time (see
[30] for discussions on the complexity of solving SDPs); and with the spectral method of
Keshavan et al., which is known to converge to an exact solution but has no theoretical
time bound.

Regarding the performance of our algorithm, we show that if the input matrix A has high
stability (in particular, this includes the case where A has low coherence), then by sampling
O(Nr log N) entries of A using our column sampling procedure, we can reconstruct A exactly
with high probability. Furthermore, we show that the runtime of our algorithm is bounded
above by O(Nr2 log N + N2r). Thus, on both the sampling and computational complexities,
our bounds yield substantial improvement over those in [22, 6]. Moreover, our sampling bound
is essentially optimal, as the extra log N factor can be attributed to the coupon collecting
phenomenon [28, Chapter 3] (see [5, 22, 6] for related discussions).

1.3 Outline of the Paper

In Section 2 we first introduce the notion of a k–stable matrix and derive some of its properties.
Then, we study the relationship between the notion of k–stability and the notion of coherence
defined in [5]. Afterwards, we study some constructions of k–stable matrices and show that
they are in fact quite ubiquitous. In Section 3 we propose a randomized basis pursuit (RBP)
algorithm for the matrix reconstruction problem and analyze its sampling and computational
complexities. Although the RBP algorithm assumes that the rank of the input matrix is known,
we show how such an assumption can be removed in Section 3.3. Finally, we summarize our
results and discuss some possible future directions in Section 4.

2 The Class of k–Stable Matrices

As mentioned in the Introduction, our ability to reconstruct a matrix depends in part on its
structure. In this paper we shall focus on the class of k–stable matrices, which is defined as
follows:

Definition 1 A rank r matrix A ∈ Rm×n is said to be k–stable for some k ∈ {0, 1, . . . , n− r}
if

1. every m× (n− k) sub–matrix of A has rank r; and

2. there exists an m× (n− k − 1) sub–matrix of A with rank equal to r − 1.

6

In other words, the rank of a k–stable matrix A remains unchanged under the removal of any
of its k columns. We use Mm×n(k, r) ⊂ Rm×n to denote the set of all k–stable rank r m × n
matrices, and use Mm×n(k) ⊂ Rm×n to denote the set of all k–stable m× n matrices.

Note that the notion of k–stability is defined with respect to the columns of a matrix. Of course,
we may also define it with respect to the rows. However, unlike the notions of row rank and
column rank — which are equivalent — a column k–stable matrix may not be row k–stable.
Unless otherwise stated, we shall refer to a column k–stable matrix simply as a k–stable matrix
in the sequel.

As we shall see, the notion of k–stability has many nice properties. For instance, it generalizes
the notions of coherence defined in [5, 6]. Moreover, a matrix with high stability (i.e. k = Θ(n))
can be reconstructed by a simple and efficient randomized algorithm with high probability.
Before we give the details of these results, let us first take a look at some (deterministic)
constructions of k–stable matrices.

Example 1 Let a = (a1, . . . , an) ∈ Rn be any vector with no zero component. Consider the
m × n matrix A whose first row is equal to aT and all other entries are zeroes. Then, A is an
(n− 1)–stable rank one matrix.

Example 2 Let n ≥ 1 be an odd integer. Let e ∈ Rn be the vector of all ones, and let

u =

(

−n− 1

2
,−n− 1

2
+ 1,−n− 1

2
+ 2, . . . ,

n− 1

2

)

∈ R
n

Consider the n×n matrix A whose first row is equal to eT and the i–th row is equal to uT , where
i = 2, . . . , n. It is then easy to verify that A is an (n− 2)–stable rank two matrix.

Example 3 Let m, n be integers with n ≥ m ≥ 1. Suppose that u = (u1, . . . , um) ∈ Rm and
v = (v1, . . . , vn) ∈ Rn are given. Consider the m × n matrix A defined by Aij = (ui + vj)

−1,
where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The matrix A is known as a Cauchy matrix. It is well–
known that if the ui’s are distinct, the vj’s are distinct, and ui + vj 6= 0 for all 1 ≤ i ≤ m and
1 ≤ j ≤ n, then every square sub–matrix of A is non–singular. In particular, this implies that
A is an (n−m)–stable rank m matrix.

2.1 Relation to the Notion of Coherence

In all previous work on the matrix reconstruction problem [5, 22, 6], the notion of coherence
is used to measure the niceness of a matrix. This immediately raises the question of whether
k–stability and coherence are comparable notions. It turns out that the former can be viewed as
a generalization of the latter. Before we formalize this statement, let us first recall the definition
of coherence [5]:

Definition 2 Let U ⊂ Rn be a subspace of dimension r ≥ 1, and let PU be the orthogonal
projection onto U . Then, the coherence of U is defined as:

µ(U) ≡ n

r
max
1≤i≤n

‖PUei‖22

7

where ei ∈ Rn is the i–th standard basis vector, for i = 1, . . . , n.

A simple consequence of this definition is the following:

Proposition 1 Let U ∈ Rn×r be a matrix with orthonormal columns. When viewed as a sub-
space of Rn (i.e. the subspace spanned by the columns of U), the coherence of U is given by:

µ(U) =
n

r
max
1≤i≤n

‖ui‖22

where ui is the i–th row of U , for i = 1, . . . , n.

Proof Let v1, . . . , vr ∈ Rn be the columns of U . Since U has orthonormal columns, we have:

PUei =
r
∑

j=1

(eT
i vj)vj for i = 1, . . . , n

whence:

‖PUei‖22 =
r
∑

j=1

(eT
i vj)

2 = ‖ui‖22

as desired. ⊔⊓
The following invariance property of k–stable matrices will be useful for establishing the rela-
tionship between k–stability and coherence:

Proposition 2 Let A ∈ Rm×n be an arbitrary matrix, and let U ∈ Rp×m be a matrix with
linearly independent columns (in particular, we have p ≥ m). Then, for any k ∈ {0, 1, . . . , n−r},
A is a k–stable rank r matrix iff UA is so.

Proof Let a1, . . . , an ∈ Rm be the columns of A. Then, the columns of UA are given by
Ua1, . . . , Uan ∈ Rp. Now, for any l = 1, . . . , n, the number of linearly independent vectors in
the collection {ai1 , . . . , ail} is the same as that in the collection {Uai1 , . . . , Uail}, since U has
full column rank. This completes the proof. ⊔⊓
We are now ready to state our first main result:

Theorem 1 Let A ∈ R
m×n be a rank r matrix whose SVD is given by A = UΣV T , where

U ∈ Rm×r, V ∈ Rn×r and Σ ∈ Rr×r. For any non–negative integer k ≤ n− r, if the coherence
of V satisfies µ(V) ≤ µ0 for some µ0 ∈ (0, n

kr
), then A is column s–stable for some s ≥ k.

Similarly, for any non–negative integer k′ ≤ m− r, if µ(U) ≤ µ0 for some µ0 ∈ (0, m
k′r

), then A
is row s–stable for some s ≥ k′.

Proof By Proposition 2, it suffices to show that V T is a column k–stable rank r matrix, since
UΣ ∈ Rm×r is a matrix with linearly independent columns. Now, consider the following cases:

Case 1: r = 1

8

Let V = (v1, . . . , vn) ∈ Rn. Then, by Proposition 1 and the fact that µ(V) ≤ µ0, we have:

µ(V) = n max
1≤i≤n

v2
i ≤ µ0 <

n

k

It follows that v2
i < 1/k for i = 1, . . . , n. Since

∑n
i=1 v2

i = 1, we conclude that V must have at
least k + 1 non–zero entries. It follows that V T is a column s–stable rank one matrix for some
s ≥ k, since the removal of any k columns from V T does not change its rank.

Case 2: r ≥ 2

Suppose that V T is only an l–stable rank r matrix for some 0 ≤ l ≤ k − 1. Then, by definition,
there exist l + 1 columns whose removal will result in a rank r − 1 sub–matrix of V T . Without
loss of generality, suppose that those l + 1 columns are the last l + 1 columns of V T . Then,
we may write V T = [RQ N], where R ∈ Rr×(r−1), Q ∈ R(r−1)×(n−l−1), N ∈ Rr×(l+1), and Q has
orthonormal rows. Since V T has orthonormal rows, we have:

Ir = V T V = RRT + NNT = [R N][R N]T

which means that the matrix [R N] ∈ R
r×(r+l) also has orthonormal rows. In particular, we

have ‖R‖2F ≤ r − 1 (here, ‖ · ‖F is the Frobenius norm). Moreover, since ‖[R N]‖2F = r, we
have:

‖N‖2F = ‖[R N]‖2F − ‖R‖2F ≥ 1 (2)

On the other hand, observe that:

‖N‖2F ≤
lrµ0

n
<

l

k
< 1

which contradicts (2). Thus, we conclude that V T (and hence A) is a column s–stable rank r
matrix for some s ≥ k.

The statement about the row stability of A can be established by considering AT = V ΣUT

and following the above argument. ⊔⊓
One of the consequences of Theorem 1 is that if both the factors U and V in the SVD of A have
small coherence relative to min{m, n}/r (which is the case of interest in the work [5, 22, 6]),
then A has high row and column stability. Now, a natural question arises whether the converse
also holds. Curiously, as the following proposition shows, the answer is no.

Proposition 3 Let k ∈ {1, . . . , n− 1} be arbitrary. Then, there exist n× n rank one matrices
A that are both row and column k–stable, and yet the corresponding SVDs A = σuvT satisfy
min{µ(u), µ(v)} = Θ(n).

Proof Let ǫ ∈ (0, 1/2) be fixed. Define u ∈ Rn as follows:

ui =











√
1− ǫ if i = 1
√

ǫ/k if 2 ≤ i ≤ k + 1

0 otherwise

9

By construction, we have ‖u‖22 = 1. Now, consider the rank one matrix A = uuT . Since uT has
k + 1 non–zero entries, it is column k–stable. Thus, by Proposition 2 and the symmetry of A,
we conclude that A is both row and column k–stable. On the other hand, using Proposition 1,
we compute:

µ(u) = n max
1≤i≤n

u2
i = (1− ǫ)n

This completes the proof. ⊔⊓
As can be seen in the proof of Proposition 3, the coherence of a matrix can be very sensitive
to the actual values in its entries. This can be partly attributed to the fact that coherence is
an analytic notion. By contrast, the notion of k–stability is more combinatorial in nature and
hence is not as sensitive to those values.

Theorem 1 and Proposition 3 together show that the notion of k–stability can be regarded as
a generalization of the notions of coherence defined in [5, 6]. In particular, various constructions
of low–coherence matrices proposed in [5, 6] can be transferred to the high–stable case. However,
it would be nice to have some more direct constructions of high–stable matrices. In the next
section, we will show that matrices with high stability are actually quite ubiquitous.

2.2 Ubiquity of k–Stable Matrices

Let A ∈ Rr×n be a matrix with full row rank (in particular, we have r ≤ n). Then, it is clear
that the maximum stability of A is n− r, and that the maximum can be attained. It turns out
that such a situation is typical. More precisely, we have the following:

Theorem 2 Let r, n be integers with n ≥ r ≥ 1. Then, the set S ≡ Rr×n\Mr×n(n − r, r) has
Lebesgue measure zero when considered as a subset of Rrn.

The proof of Theorem 2 relies on the following well–known result:

Proposition 4 Let f : Rl → R be a polynomial function that is not identically equal to zero.
Then, the solution set:

f−1(0) ≡ {x ∈ R
l : f(x) = 0}

has Lebesgue measure zero.

A proof of Proposition 4 can be found in [29].

Proof of Theorem 2 Suppose that A ∈ Rr×n is not (n−r)–stable. Then, one of the r×r sub–
matrices of A must be singular, or equivalently, has determinant zero. Since the determinant of
a square matrix is a polynomial function of its entries, and since there are only finitely many
r × r sub–matrices of A, it follows from Proposition 4 that S has Lebesgue measure zero. ⊔⊓
Thus, by taking a generic r × n matrix R and an arbitrary m × r matrix Q whose columns
are linearly independent, we may conclude from Proposition 2 and Theorem 2 that the m × n
matrix A = QR has rank r and is column (n− r)–stable.

In [5] the authors considered an alternative construction of rank r matrices using the so–called
random orthogonal model. In that model, one constructs an m × n matrix A via A = UΣV T ,

10

where V ∈ Rn×n is a random orthogonal matrix drawn according to the Haar measure on the
orthogonal group O(n), U ∈ Rm×m is an arbitrary orthogonal matrix, and Σ ∈ Rm×n is an
arbitrary matrix with the partition:

Σ =

[

Σr 0

0 0

]

: Σr ∈ R
r×r diagonal, (Σr)ii 6= 0 for i = 1, . . . , r

By construction, the matrix A has rank r. Now, we claim that A is column (n − r)–stable
with probability one (with respect to the Haar measure on O(n)). To see this, observe that
A = UrΣrV

T
r , where:

U =
[

Ur Ūr

]

, V =
[

Vr V̄r

]

and Ur ∈ Rm×r, Vr ∈ Rn×r. Since UrΣr has linearly independent columns, by Proposition
2, it suffices to show that V T

r is column (n − r)–stable with probability one. Towards that
end, it suffices to show that with probability one, every r × r sub–matrix of V T

r has non–zero
determinant. It turns out that the last statement is well–known; see, e.g., [21, Lemma 2.2].
Thus, we have proven the following:

Theorem 3 Let A be a rank r m × n matrix generated according to the random orthogonal
model. Then, A is column (n− r)–stable with probability one (with respect to the Haar measure
on O(n)).

In [5] it is shown that the coherence of a rank r n×n matrix generated according to the random
orthogonal model is bounded by O(r̄/r) with probability 1 − o(1), where r̄ = max{r, log n}.
Using Theorem 1, we see that such a matrix is column (n/r̄)–stable with probability 1− o(1).
This should be contrasted with the conclusion of Theorem 3, which is much stronger.

3 The Randomized Basis Pursuit (RBP) Algorithm

Let us now consider the algorithmic aspects of matrix reconstruction, particularly those that
are related to the reconstruction of low–rank high–stable matrices. As briefly discussed in the
Introduction, if a reconstruction algorithm can only inspect a small number of entries, then
it should somehow inspect those that contain the most information. Of course, since there
is no a priori information on the input matrix, every algorithm must at some point make a
guess at which entries are important. Currently, the best algorithms for the reconstruction
problem all pursue an entry–wise uniform sampling strategy [5, 22, 6]. Specifically, they all
begin by sampling a uniformly random subset of the entries and inspecting the values in those
entries. Such a strategy will certainly perform well when the information that is crucial to the
reconstruction is well–spread, but could also fail miserably when those information is highly
concentrated. As an illustration, consider the rank one m× n matrix A from Example 1, which
has the form:

A =

[

aT

0

]

(3)

11

where a ∈ Rn has no zero component. Clearly, there is no hope of reconstructing A if we do not
inspect all the entries in its first row. However, if the entry–wise uniform sampling strategy is
used, then the probability that l randomly sampled entries of A will include all the entries in
the first row is bounded above by:

(

mn− n
l − n

)

(

mn
l

) =
l(l − 1) · · · (l − n + 1)

mn(mn− 1) · · · (mn− n + 1)
≤
(

l

mn

)n

In particular, no algorithm that uses the entry–wise uniform sampling strategy will be able to
reconstruct A with probability larger than e−1 even after sampling l = mn−m = Θ(mn) of its
entries!

The above example shows that the entry–wise uniform sampling strategy may miss the
critical structure of a matrix if that structure is localized. On the other hand, observe that the
matrix A in the above example can be exactly reconstructed once we inspect its first row and
any of its columns. In general, one may think of a low–rank matrix as being largely determined
by a small number of its rows and columns. Such an intuition motivates the following matrix
reconstruction algorithm. Note that the algorithm requires the knowledge of the rank of the
input matrix. However, as we shall see in Section 3.3, such an assumption can be removed if we
can bound the stability of the input matrix.

Randomized Basis Pursuit (RBP) Algorithm

Input: A rank r m× n matrix A, where r is known.

1. Initialization: Initialize S ← ∅ and T ← {1, . . . , n}. The set S will be used to store the
column indices that correspond to the recovered basis columns of A.

2. Basis Pursuit Step:

(a) If T = ∅, then stop. All the columns of A have been examined, and hence A can be
reconstructed directly.

(b) Otherwise, let j be drawn from T uniformly at random, and let uj ∈ Rm be the
corresponding column of A. Examine all the entries in uj. If uj is spanned by the
columns whose indices belong to S, then repeat Step 2b. Otherwise, update:

S ← S ∪ {j}, T ← T\{j}

since uj is a new basis column. Now, if |S| = r, then proceed to Step 3. Otherwise,
repeat Step 2.

3. Row Identification: Let AS be the m×r sub–matrix of A whose columns are those indexed
by S. Find r linearly independent rows in AS. Let S̄ be the corresponding set of row
indices, and let AS̄,S be the corresponding r × r matrix.

12

4. Reconstruction: Examine all the entries in the i–th row of A for all i ∈ S̄. Now, the j–th
column of A (where j 6∈ S) can be expressed as a linear combination of the basis columns
indexed by S, where the coefficients are obtained by expressing the vector (aij)i∈S̄ ∈ R|S̄|

as a linear combination of the columns of AS̄,S.

It is not hard to show that when the above algorithm terminates, it will produce an exact
reconstruction of the input matrix. To illustrate the flow of the algorithm, let us consider again
the rank one matrix A from Example 1 (see (3)). Since the first row of A has no zero component,
any column selected in Step 2b of the algorithm can be the basis column. Now, suppose that
j is the index of the selected column. After inspecting all the entries in the j–th column, the
algorithm will identify the 1× 1 sub–matrix A1j in Step 3, since A1j is the only non–zero entry
in the j–th column. Consequently, the algorithm will examine all the entries in the first row
of A in Step 4, thus obtaining all the information that is necessary for the reconstruction of A.
Note that in this example, the total number of entries inspected by the algorithm is m + n− 1,
which is exactly equal to the information–theoretic minimum.

From the description of the RBP algorithm, we see that if the input matrix is of low rank but
has many candidate basis columns, then the basis pursuit step will terminate sooner, and hence
the number of entries inspected by the algorithm will also be lower. This is indeed the case when
the input matrix has high stability (recall that the matrix from Example 1 is (n − 1)–stable).
Before we proceed with a formal analysis, let us remark that some additional speed up of the
above algorithm is possible. For instance, in Step 2b, once we determine that a column lies
in the span of those indexed by S, then we do not need to consider it anymore and hence its
index can be removed from T . However, in order to facilitate the analysis, we shall focus on the
version presented above.

3.1 Sampling Complexity of the RBP Algorithm

In this section we analyze the sampling complexity of the RBP algorithm. Specifically, our goal
is to prove the following:

Theorem 4 Suppose that the input rank r m×n matrix A to the RBP algorithm is k–stable for
some k ∈ {0, 1, . . . , n− r}, i.e. A ∈Mm×n(k, r). Let δ ∈ (0, 1) be given. Then, with probability
at least 1−rδ, the RBP algorithm will terminate with an exact reconstruction of A, and the total
number of entries inspected by the algorithm is bounded above by nr+(k+1)−1mnr(1+ln(1/δ)).

The following simple estimate will be used in the proof of Theorem 4:

Proposition 5 Let X be a geometric random variable with parameter p ∈ (0, 1). Then, for any
δ > 0, we have:

Pr

(

X >
1 + δ

p

)

≤ e−δ

13

Proof We compute:

Pr

(

X >
1 + δ

p

)

≤
∞
∑

j=⌈(1+δ)/p⌉

p(1− p)j−1

= p · (1− p)⌈(1+δ)/p⌉−1 ·
∞
∑

j=0

(1− p)j

≤ (1− p)δ/p

≤ e−δ

This completes the proof. ⊔⊓
Proof of Theorem 4 Observe that Step 2 of the RBP algorithm is the only place where
randomization is used, and that once Step 2 is completed, the algorithm will always terminate
with an exact reconstruction of A. Thus, it suffices to obtain a high probability bound on
the number of times Step 2b is being executed throughout the entire course of the algorithm.
Towards that end, let us divide the execution of Step 2 into epochs, where the i–th epoch (for
i = 0, 1, . . . , r−1) begins at the iteration where |S| = i for the first time and ends at the iteration
just before the one where |S| = i + 1. Let pi be the probability that the column selected in an
iteration of the i–th epoch is a basis column. Note that pi is a random variable that depends
on which i basis columns are selected in the previous i epochs. However, since the input matrix
is assumed to be k–stable, we have:

pi ≥
k + 1

n− i
for i = 0, 1, . . . , r − 1

Now, let Yi be the number of times Step 2b is being executed in the i–th epoch. Then, Yi

is a geometric random variable with parameter pi, and the number of times Step 2b is being
executed throughout the entire course of the algorithm is given by:

Y =
r−1
∑

i=0

Yi

By Proposition 5, we have:

Pr

(

Y >
r−1
∑

i=0

1 + ln(1/δ)

pi

)

≤
r−1
∑

i=0

Pr

(

Yi >
1 + ln(1/δ)

pi

)

≤ rδ

14

It follows that with probability at least 1 − rδ, the total number of times Step 2b is being
executed is bounded above by:

r−1
∑

i=0

1 + ln(1/δ)

pi
≤

(

1 + ln
1

δ

) r−1
∑

i=0

n− i

k + 1

=
r(2n− r + 1)

2(k + 1)

(

1 + ln
1

δ

)

≤ nr

k + 1

(

1 + ln
1

δ

)

Note that the above quantity is also an upper bound on the number of distinct columns examined
by the algorithm. Thus, we see that with probability at least 1− rδ, the total number of entries
inspected by the algorithm is bounded above by:

nr +
mnr

k + 1

(

1 + ln
1

δ

)

and the proof is completed. ⊔⊓
Upon combining the results of Theorem 3 and Theorem 4, we obtain the following corollary,
which significantly improves the result in [6]:

Corollary 1 Let A be a rank r m × n matrix generated according to the random orthogonal
model. Then, with probability at least 1 − O(n−3), the RBP algorithm will terminate with an
exact reconstruction of A, and the total number of entries inspected by the algorithm is bounded
above by O(n + m log n) when r = O(1), and by O(n log n + m log2 n) when r = O(log n).

3.2 Implementation and Complexity Analysis of the RBP Algorithm

In this section we discuss some of the implementation details of the RBP algorithm and analyze
its computational complexity. Clearly, the initialization step can be done using O(n) operations.
For the basis pursuit step, we need to determine whether a newly selected column is in the
span of the current basis columns (i.e. those indexed by S). This can be achieved via a Gram–
Schmidt type process. Specifically, we maintain a set U of orthonormal vectors with the following
property: during the i–th epoch (where i = 0, 1, . . . , r−1), the set U will contain i orthonormal
vectors w1, . . . , wi ∈ Rm, whose span is equal to that of the columns indexed by S. Now, suppose
that the algorithm selects the column v ∈ R

m. To test whether v ∈ span{w1, . . . , wi}, we first
compute:

Πi(v) ≡
i
∑

l=1

(wT
l v)wl ∈ R

m

and then check whether Πi(v) = v (we set Π0(v) = 0). If this is the case, then we have
v ∈ span{w1, . . . , wi}, whence we can proceed to select another column. Otherwise, v is a new

15

basis column. Thus, we add its index to the set S and add the unit vector (v−Πi(v))/‖v−Πi(v)‖2
to the set U before continuing to the next instruction.

To determine the time needed by the basis pursuit step, observe that during the i–th epoch,
each selected column requires O(im) operations. Since i ≤ r − 1, by Theorem 4, we conclude
that with probability 1− rδ, the total number of operations executed in the basis pursuit step
is bounded by O((k + 1)−1mnr2 log(1/δ)).

In the row identification step, we need to find r linearly independent rows in the m × r
matrix AS. This can be achieved by a Gram–Schmidt type process similar to the one outlined
above, and the total number of operations required is bounded by O(mr2).

Finally, in order to carry out the reconstruction step, we can first compute the inverse of the
non–singular r × r matrix AS̄,S using O(r3) operations. Then, for each j 6∈ S, we can express

the vector (aij)i∈S̄ ∈ R
|S̄| as a linear combination of the columns of AS̄,S using O(r2) operations.

Afterwards, the j–th column can be reconstructed using O(mr) operations. Since we need to
reconstruct at most n − 1 columns, it follows that the total number of operations required in
the reconstruction step is bounded by O(r3 + nr2 + mnr) = O(mnr).

To summarize, we have the following:

Theorem 5 Suppose that the input rank r m×n matrix A to the RBP algorithm is k–stable for
some k ∈ {0, 1, . . . , n− r}, i.e. A ∈Mm×n(k, r). Let δ ∈ (0, 1) be given. Then, with probability
at least 1 − rδ, the total number of operations performed by the RBP algorithm is bounded by
O((k + 1)−1mnr2 log(1/δ) + mnr).

Note that Theorem 5 only gives a probabilistic bound on the runtime. However, the bound
can be made deterministic by suitably modifying the RBP algorithm. Specifically, we can add
a counter to keep track of the total number of times Step 2b is being executed. Once that
number exceeds (k + 1)−1nr(1 + ln(1/δ)), we stop the algorithm and declare failure. With such
modification, the conclusion of Theorem 4 still holds. However, we now have a deterministic
bound of O((k + 1)−1mnr2 log(1/δ) + mnr) on the runtime. We remark that such an idea can
also be used to develop a “rank–free” version of the RBP algorithm, i.e. one that does not
require the knowledge of the rank of the input matrix. We refer the reader to Section 3.3 for
details.

The time bound obtained in Theorem 5 compares very favorably with that for the SDP–
based algorithm of Candès and Recht [5]. Perhaps more importantly, our algorithm will produce
an exact reconstruction of the input matrix in polynomial time. By contrast, the Candès–Recht
algorithm can only produce an approximate reconstruction in polynomial time. This is due to
the fact that SDPs can only be solved to a fixed level of accuracy in polynomial time. We refer
the reader to [30] for further discussion on this issue.

3.3 A Rank–Free RBP Algorithm

Recall that the RBP algorithm introduced earlier assumes that the rank of the input matrix
is known. However, in practice, there is very little a priori information on the input matrix.
This raises the question of whether one can design a reconstruction algorithm that does not

16

need the rank information. It turns out that this is possible if we modify the RBP algorithm
using the idea mentioned at the end of the last sub–section. Specifically, we keep track of the
number of attempts made by the algorithm to find the next basis column. If that number
reaches a pre–specified threshold, say Λ, then we exit the basis pursuit step and proceed to
the row identification step of the algorithm. The idea is that if Λ is sufficiently large and the
algorithm fails to find a new basis column after Λ drawings, then it probably has found all the
basis columns and hence the input matrix can be exactly reconstructed. To formalize this idea,
let us first give a precise description of the proposed algorithm.

Rank–Free Randomized Basis Pursuit (RF–RBP) Algorithm

Input: An m× n matrix A, stopping threshold Λ ≥ 1.

1. Initialization: Initialize S ← ∅, T ← {1, . . . , n} and κ← 0. The set S will be used to store
the column indices that correspond to the recovered basis columns of A. The counter κ
will be used to keep track of the number of attempts made to find the next basis column.

2. Basis Pursuit Step:

(a) If T = ∅, then stop. All the columns of A have been examined, and hence A can be
reconstructed directly. Otherwise, reset κ← 0 and proceed to Step 2b.

(b) Let j be drawn from T uniformly at random, and let uj ∈ Rm be the corresponding
column of A. Examine all the entries in uj.

If uj is spanned by the columns whose indices belong to S, then increment κ← κ+1.
If κ ≥ Λ, then proceed to Step 3. Otherwise, repeat Step 2b.

If uj is not spanned by the columns whose indices belong to S, then uj is a new basis
column. Update:

S ← S ∪ {j}, T ← T\{j}
and repeat Step 2.

3. Row Identification: Let AS be the m × |S| sub–matrix of A whose columns are those
indexed by S. Find |S| linearly independent rows in AS. Let S̄ be the corresponding set
of row indices, and let AS̄,S be the corresponding |S| × |S| matrix.

4. Reconstruction: Examine all the entries in the i–th row of A for all i ∈ S̄. Now, express
the j–th column of A (where j 6∈ S) as a linear combination of the basis columns indexed
by S, where the coefficients are obtained by expressing the vector (aij)i∈S̄ ∈ R|S̄| as a linear
combination of the columns of AS̄,S.

Again, we are interested in the sampling complexity of the RF–RBP algorithm. It turns out
that if the input matrix is known to be k–stable for some k ≥ 0, then the sampling complexity
of the RF–RBP algorithm is comparable to that of the RBP algorithm. Specifically, we prove
the following:

17

Theorem 6 Suppose that the input m × n matrix A to the RF–RBP algorithm is k–stable for
some k ≥ k0, i.e. A ∈Mm×n(k). Let δ ∈ (0, 1) be given, and set:

Λ = log

(

δ

min{m, n}

)

/

log

(

1− k0 + 1

n

)

(4)

Then, with probability at least 1− δ, the RF–RBP algorithm will terminate with an exact recon-
struction of A, and the total number of entries inspected by the algorithm is bounded above by
nr + m(r + 1)Λ, where r = rank(A).

Remarks

1. Since log(1− (k0 + 1)/n) ≤ −(k0 + 1)/n, Theorem 6 guarantees that the total number of
entries inspected by the RF–RBP algorithm is bounded by:

nr +
mn(r + 1)

k0 + 1
log

(

min{m, n}
δ

)

In particular, when δ is inversely proportional to a polynomial in min{m, n}, the bound
above is of the same order as that obtained for the RBP algorithm (see Theorem 4).

2. To appreciate the power of Theorem 6, consider an m×n matrix A whose rank r is known
to be much smaller than min{m, n}, say, r ≤ n/2. If A is generic, then by Theorem
2, it is k–stable, where k = n − r ≥ n/2. Hence, by Theorem 6, the matrix A can be
exactly reconstructed by the RF–RBP algorithm with high probability, and the number
of inspected entries is bounded by O(nr + mr log n). Note that such a reconstruction is
done without the algorithm knowing the exact value of r or k. By contrast, the algorithm
of Keshavan et al. [22] is much less flexible, as it needs to know the exact value of r in
order to guarantee an exact reconstruction.

Proof of Theorem 6 For j = 1, 2, . . . , r, let qj be the probability that the RF–RBP algorithm
finds at least j basis columns before proceeding to Step 3. We claim that:

qj ≥
j
∏

i=1

[

1−
(

1− k + 1

n− i + 1

)Λ
]

for j = 1, . . . , r (5)

The proof of (5) will proceed by induction on j. To facilitate the proof, let us again divide the
execution of Step 2 into epochs, where the (j − 1)–st epoch (for j = 1, 2, . . . , r) is defined in
exactly the same way as in the proof of Theorem 4. Furthermore, let pj be the probability that
the column selected in an iteration of the (j−1)–st epoch is a basis column. Since A is assumed
to be k–stable, we have:

pj ≥
k + 1

n− j + 1
for i = 1, 2, . . . , r

Now, for j = 1, we have:

q1 = 1− (1− p1)
Λ ≥ 1−

(

1− k + 1

n

)Λ

18

and hence the base case holds. Suppose that (5) holds for some j < r. Then, conditioned on the
event that the RF–RBP algorithm finds at least j basis columns before proceeding to Step 3,
the probability that the RF–RBP algorithm finds at least j +1 basis columns before proceeding
to Step 3 is given by:

qcond
j+1 = 1− (1− pj+1)

Λ ≥ 1−
(

1− k + 1

n− j

)Λ

Hence, it follows from the definition of conditional probability and the inductive hypothesis
that:

qj+1 = qcond
j+1 · qj ≥

j+1
∏

i=1

[

1−
(

1− k + 1

n− i + 1

)Λ
]

This completes the proof of (5).
Now, observe that the RF–RBP algorithm will terminate with an exact reconstruction of A

iff it finds r basis columns before proceeding to Step 3. Using (5) and the definition of Λ in (4),
we see that the probability of such an event is at least:

r
∏

i=1

[

1−
(

1− k + 1

n− i + 1

)Λ
]

≥
[

1−
(

1− k + 1

n

)Λ
]r

≥
(

1− δ

min{m, n}

)min{m,n}

≥ 1− δ

Moreover, the number of distinct columns inspected by the algorithm is always bounded above
by (r+1)Λ, which implies that the total number of entries inspected by the algorithm is bounded
above by nr + m(r + 1)Λ. This completes the proof of Theorem 6. ⊔⊓
Finally, upon following the proof of Theorem 5, one can easily establish the following complexity
result for the RF–RBP algorithm:

Theorem 7 Given an m × n matrix A and a stopping threshold Λ ≥ 1, the total number of
operations performed by the RF–RBP algorithm before it terminates is bounded by O(mr2Λ +
mnr), where r = rank(A).

We remark that the bound in Theorem 7 holds for arbitrary input matrices. In the case where
the input matrix has rank r and is k–stable, we can set Λ as in (4) and bound the total number
of operations by:

O

(

mnr2

k + 1
log

(

min{m, n}
δ

)

+ mnr

)

In particular, when δ is inversely proportional to a polynomial in min{m, n}, the bound above
is of the same order as that obtained for the RBP algorithm (see Theorem 5).

19

4 Conclusion

In this paper we proposed a randomized basis pursuit (RBP) algorithm for the matrix recon-
struction problem. We introduced the notion of a k–stable matrix and showed that the RBP
algorithm can reconstruct a k–stable rank r n× n matrix with high probability after inspecting
O((k + 1)−1n2r log n) of its entries. In addition, we showed that the runtime of the RBP algo-
rithm is bounded by O((k + 1)−1n2r2 log n + n2r). Our results yield substantial improvement
over those in existing literature ([5, 22, 6]), in the sense that the RBP algorithm can reconstruct
a larger class of matrices by inspecting a smaller number of entries, and it can do so in a more
efficient manner. Although the RBP algorithm assumes that the rank of the input matrix is
known, we showed that such an assumption can be removed. Specifically, we proposed a variant
of the RBP algorithm that can reconstruct a matrix without knowing the exact value of its rank.
Such a feature offers great flexibility in practical settings. Finally, it would be interesting to
study the tradeoff between the sampling complexity and computational complexity of the ma-
trix reconstruction problem. Another interesting direction would be to extend our techniques to
handle the case where the sampled entries are noisy. Some recent results along this direction,
which are established using the techniques of [5, 6], can be found in [4].

References

[1] P. Biswas and Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sensor Network
Localization. In Proceedings of the 3rd International Symposium on Information Processing
in Sensor Networks (IPSN 2004), pages 46–54, 2004.

[2] J.-F. Cai, E. J. Candès, and Z. Shen. A Singular Value Thresholding Algorithm for Matrix
Completion. Manuscript, 2008.

[3] E. Candès and J. Romberg. Sparsity and Incoherence in Compressive Sampling. Inverse
Problems, 23(3):969–985, 2007.

[4] E. J. Candès and Y. Plan. Matrix Completion with Noise. Manuscript, 2009.

[5] E. J. Candès and B. Recht. Exact Matrix Completion via Convex Optimization. To appear
in Foundations of Computational Mathematics, 2009.

[6] E. J. Candès and T. Tao. The Power of Convex Relaxation: Near–Optimal Matrix Com-
pletion. Manuscript, 2009.

[7] P. Chen and D. Suter. Recovering the Missing Components in a Large Noisy Low–Rank
Matrix: Application to SFM. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(8):1051–1063, 2004.

[8] G. M. Crippen and T. F. Havel. Distance Geometry and Molecular Conformation, volume 15
of Chemometrics Series. Research Studies Press Ltd., Taunton, Somerset, England, 1988.

20

[9] J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance Selection for Non–Chordal
Graphs via Chordal Embedding. Optimization Methods and Software, 23(4):501–520, 2008.

[10] S. Debnath, N. Ganguly, and P. Mitra. Feature Weighting in Content Based Recommen-
dation System Using Social Network Analysis. In Proceedings of the 17th International
Conference on World Wide Web (WWW 2008), pages 1041–1042, 2008.

[11] F. A. Dietrich. Robust Signal Processing for Wireless Communications, volume 2 of Foun-
dations in Signal Processing, Communications and Networking. Springer–Verlag, Berlin
Heidelberg, 2008.

[12] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo Algorithms for Matrices
II: Computing a Low–Rank Approximation to a Matrix. SIAM Journal on Computing,
36(1):158–183, 2006.

[13] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Department of Elec-
trical Engineering, Stanford University, Stanford, CA 94305, 2002.

[14] A. Frieze, R. Kannan, and S. Vempala. Fast Monte–Carlo Algorithms for Finding Low–
Rank Approximations. Journal of the ACM, 51(6):1025–1041, 2004.

[15] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using Collaborative Filtering to Weave
an Information Tapestry. Communications of the ACM, 35(12):61–70, 1992.

[16] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization, volume 2 of Algorithms and Combinatorics. Springer–Verlag, Berlin Heidelberg,
second corrected edition, 1993.

[17] J. P. Haldar and D. Hernando. Rank–Constrained Solutions to Linear Matrix Equations
Using PowerFactorization. To appear in IEEE Signal Processing Letters, 2009.

[18] T. F. Havel and K. Wüthrich. An Evaluation of the Combined Use of Nuclear Magnetic
Resonance and Distance Geometry for the Determination of Protein Conformations in
Solution. Journal of Molecular Biology, 182(2):281–294, 1985.

[19] L. Hogben. Graph Theoretic Methods for Matrix Completion Problems. Linear Algebra
and its Applications, 328(1–3):161–202, 2001.

[20] C. R. Johnson. Matrix Completion Problems: A Survey. In C. R. Johnson, editor, Matrix
Theory and Applications, volume 40 of Proceedings of Symposia in Applied Mathematics,
pages 171–198. American Mathematical Society, Providence, Rhode Island, 1980.

[21] T. Kariya and C. F. J. Wu. On the Nonsingularity of Principal Submatrices of a Random
Orthogonal Matrix. Journal of Statistical Planning and Inference, 12:353–357, 1985.

[22] R. H. Keshavan, A. Montanari, and S. Oh. Matrix Completion from a Few Entries.
Manuscript, 2009.

21

[23] R. Kumar, P. Raghavan, S. Rajagopolan, and A. Tomkins. Recommendation Systems: A
Probabilistic Analysis. Journal of Computer and System Sciences, 63(1):42–61, 2001.

[24] M. Laurent. A Tour d’Horizon on Positive Semidefinite and Euclidean Distance Matrix
Completion Problems. In P. M. Pardalos and H. Wolkowicz, editors, Topics in Semidefinite
and Interior–Point Methods, volume 18 of The Fields Institute for Research in Mathe-
matical Sciences, Communications Series, pages 51–76. American Mathematical Society,
Providence, Rhode Island, 1998.

[25] M. Laurent. Matrix Completion Problems. In C. A. Floudas and P. M. Pardalos, editors,
The Encyclopedia of Optimization, volume 3, pages 221–229. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2001.

[26] Z. Liu and L. Vandenberghe. Interior–Point Method for Nuclear Norm Approximation with
Application to System Identification. Manuscript, 2009.

[27] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error–Correcting Codes, volume 16
of North–Holland Mathematical Library. North–Holland Publishing Company, Amsterdam,
The Netherlands, 1977.

[28] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New
York, 1995.

[29] M. Okamoto. Distinctness of the Eigenvalues of a Quadratic Form in a Multivariate Sample.
Annals of Statistics, 1(4):763–765, 1973.

[30] L. Porkolab and L. Khachiyan. On the Complexity of Semidefinite Programs. Journal of
Global Optimization, 10(4):351–365, 1997.

[31] M. Rudelson and R. Vershynin. Sampling from Large Matrices: An Approach through
Geometric Functional Analysis. Journal of the ACM, 54(4):Article 21, 2007.

[32] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item–Based Collaborative Filtering
Recommendation Algorithms. In Proceedings of the 10th International Conference on World
Wide Web (WWW 2001), pages 285–295, 2001.

[33] J. B. Saxe. Embeddability of Weighted Graphs in k–Space is Strongly NP–Hard. In
Proceedings of the 17th Allerton Conference in Communication, Control, and Computing,
pages 480–489, 1979.

[34] A. M.-C. So. A Semidefinite Programming Approach to the Graph Realization Problem:
Theory, Applications and Extensions. PhD thesis, Computer Science Department, Stanford
University, Stanford, CA 94305, 2007.

[35] A. M.-C. So and Y. Ye. A Semidefinite Programming Approach to Tensegrity Theory and
Realizability of Graphs. In Proceedings of the 17th Annual ACM–SIAM Symposium on
Discrete Algorithm (SODA 2006), pages 766–775, 2006.

22

[36] A. M.-C. So and Y. Ye. Theory of Semidefinite Programming for Sensor Network Local-
ization. Mathematical Programming, Series B, 109(2):367–384, 2007.

[37] M. J. Todd. Semidefinite Optimization. Acta Numerica, 10:515–560, 2001.

[38] Z. Zhu, A. M.-C. So, and Y. Ye. Measurement Sparsification and Chordal Decomposition
for Sensor Network Localization and Graph Realization. Manuscript, 2009.

23

	Introduction
	Related Work
	Our Contribution
	Outline of the Paper

	The Class of k--Stable Matrices
	Relation to the Notion of Coherence
	Ubiquity of k--Stable Matrices

	The Randomized Basis Pursuit (RBP) Algorithm
	Sampling Complexity of the RBP Algorithm
	Implementation and Complexity Analysis of the RBP Algorithm
	A Rank--Free RBP Algorithm

	Conclusion

