Stat 315c: Transposable Data Clustering

Art B. Owen

Stanford Statistics
Given n objects with d attributes, place them (the objects) into groups.
Clustering

Given n objects with d attributes, place them (the objects) into groups.

A form of unsupervised learning. Unsupervised because there is no response.
Clustering

- Given n objects with d attributes, place them (the objects) into groups.
- A form of unsupervised learning. Unsupervised because there is no response.
- Has a long history, at least as old as taxonomy.
Clustering

- Given n objects with d attributes, place them (the objects) into groups.
- A form of unsupervised learning. Unsupervised because there is no response.
- Has a long history, at least as old as taxonomy.
- Raises all the vexing issues of an exploratory method.
Clustering

- Given n objects with d attributes, place them (the objects) into groups.
- A form of unsupervised learning. Unsupervised because there is no response.
- Has a long history, at least as old as taxonomy.
- Raises all the vexing issues of an exploratory method.
- We’ll look at it as a precursor to 'bi-clustering' of objects and attributes.
Given \(n \) points in \(\mathbb{R}^d \), do they clump together into \(k \) clusters? If so, how to find the clusters, and the boundaries, and cluster identities?

Outcomes

In the best case, a clustering can reveal the presence of a new categorical variable, e.g. types of diabetes. Other times there are no clusters, just a 'smear'. Or we find clusters but not their meanings.

Key idea

Items within a cluster are more similar (less distant) to each other than items from different clusters.
Given \(n \) points in \(\mathbb{R}^d \):

- Do they clump together into \(k \) clusters?
- If so, how to find the clusters,
- and the boundaries,
- and cluster identities?

Outcomes

- In the best case, a clustering can reveal the presence of a new categorical variable, e.g. types of diabetes.
- Other times there are no clusters, just a ‘smear’.
- Or we find clusters but not their meanings.

Key idea

Items within a cluster are more similar (less distant) to each other than items from different clusters.
Clustering

Given n points in \mathbb{R}^d
- Do they clump together into k clusters?
- If so, how to find the clusters,
- and the boundaries,
- and cluster identities?

Outcomes

In the best case, a clustering can reveal the presence of a new categorical variable, e.g. types of diabetes.
Other times there are no clusters, just a ‘smear’
Or we find clusters but not their meanings.

Key idea
Items within a cluster are more similar (less distant) to each other than items from different clusters.
Given \(n \) points in \(\mathbb{R}^d \)

- Do they clump together into \(k \) clusters?
- If so, how to find the clusters, and the boundaries, and cluster identities?

Outcomes

- In the best case, a clustering can reveal the presence of a new categorical variable, e.g. types of diabetes.
- Other times there are no clusters, just a 'smear'
- Or we find clusters but not their meanings.
Clustering

Given n points in \mathbb{R}^d

- Do they clump together into k clusters?
- If so, how to find the clusters,
- and the boundaries,
- and cluster identities?

Outcomes

- In the best case, a clustering can reveal the presence of a new categorical variable, e.g. types of diabetes.
- Other times there are no clusters, just a 'smear'
- Or we find clusters but not their meanings.

Key idea

Items within a cluster are more similar (less distant) to each other than items from different clusters.
k-means

- **Algorithm**
 - Pick k points $z_1, \ldots, z_k \in \mathbb{R}^d$
 - Repeat
 1. For $i = 1, \ldots, n$
 - Put $g(i) = \min_{1 \leq j \leq k} \|x_i - z_j\|_2$
 2. For $j = 1, \ldots, k$
 - Put $z_j = \text{avg}\{x_i | g(i) = j\}$

- **Issues**
 - Handle averaging over empty set
 - Pick stopping rule (it must converge, or at worst cycle)
 - Answer depends on starting points

- **Properties**
 - Usually rapid convergence
 - An iteration can be done in $O(nkd)$ time. No n^2 or d^2 or k^2.
 ($k \log(k)$ to sort negligible)
k-means

Algorithm

1. Pick k points $z_1, \ldots, z_k \in \mathbb{R}^d$, then repeat
 - For $i = 1, \ldots, n$ put $g(i) = \min_{1 \leq j \leq k} \|x_i - z_j\|^2$
 - For $j = 1, \ldots, k$ put $z_j = \text{avg}\{x_i \mid g(i) = j\}$

Issues
- Handle averaging over empty set
- Pick stopping rule (it must converge, or at worst cycle)
- Answer depends on starting points
- Hard to pick k (at least 30 methods proposed by 1985)

Properties
- Usually rapid convergence
- An iteration can be done in $O(nkd)$ time. No n^2 or d^2 or k^2.
 ($k \log(k)$ to sort negligible)
k-means

Algorithm

1. Pick k points $z_1, \ldots, z_k \in \mathbb{R}^d$, then repeat
 - For $i = 1, \ldots, n$ put $g(i) = \min_{1 \leq j \leq k} \|x_i - z_j\|^2$
 - For $j = 1, \ldots, k$ put $z_j = \text{avg}\{x_i \mid g(i) = j\}$

Issues

- Handle averaging over empty set
- Pick stopping rule (it must converge, or at worst cycle)
- Answer depends on starting points
- Hard to pick k (at least 30 methods proposed by 1985)
Algorithm

1. Pick \(k \) points \(z_1, \ldots, z_k \in \mathbb{R}^d \), then repeat
 - For \(i = 1, \ldots, n \) put \(g(i) = \min_{1 \leq j \leq k} \| x_i - z_j \|^2 \)
 - For \(j = 1, \ldots, k \) put \(z_j = \text{avg}\{ x_i \mid g(i) = j \} \)

Issues

- Handle averaging over empty set
- Pick stopping rule (it must converge, or at worst cycle)
- Answer depends on starting points
- Hard to pick \(k \) (at least 30 methods proposed by 1985)

Properties

- Usually rapid convergence
- An iteration can be done in \(O(nkd) \) time. No \(n^2 \) or \(d^2 \) or \(k^2 \). \((k \log(k)) \) to sort negligible)
k-means ctd

There’s a criterion

- Each step minimizes

$$\sum_{i=1}^{n} \| x_i - zg(i) \|^2$$

over its free variables

Hartigan and Wong (1979) get solutions where no $zg(i)$ change reduces ss

Exact min infeasible to get k-means

Pelleg and Moore: Efficient lookups to get k into tens of thousands

Picks k via AIC or BIC along the way

Defining true k problematics (galaxies in clusters in super-clusters)
There’s a criterion

- Each step minimizes

\[\sum_{i=1}^{n} \left\| x_i - z_{g(i)} \right\|^2 \]

over its free variables

- Hartigan and Wong (1979) get solutions st no \(g(i) \) change reduces ss
There's a criterion

- Each step minimizes
 \[\sum_{i=1}^{n} \| x_i - z_g(i) \|^2 \]
 over its free variables
- Hartigan and Wong (1979) get solutions st no \(g(i) \) change reduces ss
- Exact min infeasible to get

x-means

- Pelleg and Moore
- Efficient lookups to get \(k \) into tens of thousands
- Picks \(k \) via AIC or BIC along the way
There's a criterion

- Each step minimizes
 \[\sum_{i=1}^{n} \| x_i - z_{g(i)} \|^2 \]
 over its free variables
- Hartigan and Wong (1979) get solutions st no \(g(i) \) change reduces ss
- Exact min infeasible to get

x-means

- Pelleg and Moore
- Efficient lookups to get \(k \) into tens of thousands
- Picks \(k \) via AIC or BIC along the way

Defining true \(k \) problematic (galaxies in clusters in super-clusters)
Variations

Change dist

- Change the distance L^2 to L^1 to · · · L^p
- Changes mean to median to · · · arg min
Variations

Change dist
- Change the distance L^2 to L^1 to \cdots L^p
- Changes mean to median to \cdots arg min

Change z
- k medoids
- Require $z_k = x_{i(k)}$ for some $i(k)$
- Avoids using z with 2.3 kids, 30% pregnant, 10% male
- PAM “partitioning around medoids”
- Minimize $\sum_i \min_j D(x_i, z_j)$
- Slow. Uses only D_{ij} values.
What is a cluster?

Defining issues

- Scale of variables matters
- Subset of variables matters too
 - Do whales go with penguins or with elephants?
 - Why does my breakfast cereal cluster with pure sugar?
- # Density bumps ≠ # mixture components

Scaling data

$$z_{ij} = \frac{x_{ij} - m_j}{s_j}$$

m, s are mean & stdev (so $z_j \sim (0, 1)$)
or min & range (so $0 \leq z_{ij} \leq 1$)
or median & MAD (for robustness)

NB: transformation defined column-wise [vs row-wise or simultaneous]
What is a cluster?

Defining issues
- Scale of variables matters
- Subset of variables matters too
 - Do whales go with penguins or with elephants?
 - Why does my breakfast cereal cluster with pure sugar?
- # Density bumps ≠ # mixture components

Scaling data

\[z_{ij} = \frac{x_{ij} - m_j}{s_j} \]

- \(m, s \) are mean & stdev (so \(z_j \sim (0, 1) \))
- or min & range (so \(0 \leq z_{ij} \leq 1 \))
- or median & MAD (for robustness)
- NB: transformation defined column-wise [vs row-wise or simultaneous]
Weighting

Weight variables via $w_j \geq 0$

$$d_{ii'} = \sum_{j=1}^{d} w_j |x_{ij} - x_{i'j}| = \sum_{j=1}^{d} |\tilde{x}_{ij} - \tilde{x}_{i'j}|$$

with

$$\tilde{x}_{ij} = x_{ij} \times w_j$$

Weighting and scaling are equivalent (for L^p distances)

Automatic scaling not always sensible. Variables in the same units should sometimes get the same scaling even if they have different variances.
Distances

\(n(n-1)/2 \) interpoint distances

- \(d_{ii'} = \text{dist}(x_i, x_{i'}) \)
- Usually
 1. \(d_{ii'} \geq 0 \)
 2. \(d_{ii} = 0 \)
 3. \(d_{ii'} = d_{i'i} \)

A metric distance has \(d_{ij} \leq d_{ik} + d_{jk} \) (Triangle inequality)

A 'Euclidean' distance \(d_{ij} = \|z_i - z_j\| \) for some points \(z_i = z(x_i) \)

An ultra-metric distance has \(d_{ij} \leq \max(d_{ik}, d_{jk}) \) (More later)
Distances

\(n(n - 1)/2 \) interpoint distances

- \(d_{ii'} = \text{dist}(x_i, x_{i'}) \)
- Usually
 1. \(d_{ii'} \geq 0 \)
 2. \(d_{ii} = 0 \)
 3. \(d_{ii'} = d_{i'i} \)

- A metric distance has \(d_{ij} \leq d_{ik} + d_{jk} \) (Triangle inequality)
- A 'Euclidean' distance \(d_{ij} = \|z_i - z_j\| \) for some points \(z_i = z(x_i) \)
- An ultra-metric distance has \(d_{ij} \leq \max(d_{ik}, d_{jk}) \) (More later)

Other distances

- Canberra distance \(\sum_{j=1}^{d} \frac{|x_{ij} - x_{ij'}|}{|x_{ij}| + |x_{ij'}|} \) (with 0/0 = 0)
- Angular or cosine distance (dogs||cats, wolves||tigers)
Similarities

Opposite of distance: $d \leftrightarrow S$

Eg $S_{ii'} = 1 - d_{ii'}$ or $1/d_{ii'}$ or $d_{ii'} = S - S_{ii'}$
Similarities

Opposite of distance: \(d \leftrightarrow S\)

\[S_{ii'} = 1 - d_{ii'} \text{ or } 1/d_{ii'} \text{ or } d_{ii'} = S - S_{ii'} \]

Correlation type similarities

\[S_{ii'} = \frac{\sum_{j=1}^{d} x_{ij} x_{i'j}}{\sqrt{\sum_{j=1}^{d} x_{ij}^2 \sum_{j=1}^{d} x_{i'j}^2}}, \quad \text{or,} \]
\[= \left| \frac{\sum_{j=1}^{d} x_{ij} x_{i'j}}{\sqrt{\sum_{j=1}^{d} x_{ij}^2 \sum_{j=1}^{d} x_{i'j}^2}} \right|, \quad \text{or,} \]
\[= \left| \frac{\sum_{j=1}^{d} (x_{ij} - \bar{x}_j)(x_{i'j} - \bar{x}_j)}{\sqrt{\sum_{j=1}^{d} (x_{ij} - \bar{x}_j)^2 \sum_{j=1}^{d} (x_{i'j} - \bar{x}_j)^2}} \right|, \quad \text{or,} \cdots \]
Some equalities are more equal than others

1. i and i' are both Nobel laureates (unusually strong similarity)
2. i and i' are both over 21 years old (mild similarity)
3. i and i' are both not Nobel laureates (barely similar at all)

We can handle 1 vs 2 by weighting the variables.
But 1 vs 3 is trickier (same variable).
Binary similarity measures \[d = 1 - S \]

p features 2 × 2 table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

We want to count \(a \) more than \(d \)

Generic measure: \(\alpha > 0, \delta \geq 0 \)

\[
S_{ii'} = \frac{\alpha a + \delta d}{\alpha a + b + c + \delta d}
\]

\((\alpha, \delta)\) and \((\alpha', \delta')\) give the same ranking if \(\alpha \delta' = \alpha' \delta \)

Specific measures

- **Simple matching**
 \[
 S_{ii'} = \frac{a + d}{a + b + c + d}
 \]

- **Jaccard-Tanimoto**
 \[
 S_{ii'} = \frac{a}{a + b + c}
 \]
 \(= 1 \) when \(a + b + c = 0 \)

- **Russel-Rao**
 \[
 S_{ii'} = \frac{a}{a + b + c + d}
 \]

- **Sokal-Sneath I**
 \[
 S_{ii'} = \frac{2(a + d)}{2(a + d) + b + c}
 \]

- **Sokal-Sneath II**
 \[
 S_{ii'} = \frac{a}{a + 2(b + c)}
 \]

Janowitz recommends Jaccard or Russel-Rao
Agglomerative clustering

General

- Start with \(n \) clusters of one element each
- Repeat
 1. Find closest two clusters
 2. Merge them into a new cluster
- Until only one cluster remains
- We need point to cluster and cluster to cluster distances
Flavors of agglomerative clustering

Single linkage

\[d(C_1, C_2) = \min_{i \in C_1} \min_{j \in C_2} d_{ij} \]

Get 'chaining'; friends of friends

Complete linkage

\[d(C_1, C_2) = \max_{i \in C_1} \max_{j \in C_2} d_{ij} \]

Get dense nearly spherical clusters

Average linkage

\[d(C_1, C_2) = \frac{1}{|C_1|} \frac{1}{|C_2|} \sum_{i \in C_1} \sum_{j \in C_2} d_{ij} \]

Compromise
Example

Bird data

```r
> dim(voeg)
[1] 395 34
> voeg[1:5,1:5]
Heron Mallard Sparrowhawk Buzzard Kestrel
1 0 0 0 0 1
2 1 0 0 0 0
3 0 0 1 0 0
4 0 0 1 0 0
5 1 1 0 0 0
```

1 means that place i has bird j
Place names not present
Complete linkage dendrogram

Birds clustered by habitat

hclust(\texttt{\textasciitilde}, \texttt{\textasciitilde}complete\texttt{\textasciitilde})
Single linkage dendrogram

Birds clustered by habitat

hclust (*, 'single')
Average linkage dendrogram

Birds clustered by habitat

```
Rclus<-
```

Art B. Owen (Stanford Statistics) Clustering 19 / 26
Complete vs Average linkage dendrograms

Birds clustered by habitat

hclust(", complete")

Birds clustered by habitat

hclust(", average")
Heatmap
Dendrogram details

Ordering
- n points $\implies n - 1$ splits $\implies 2^{n-1}$ orderings
- R puts 'tightest' cluster on the left
- heatmap lets you control ordering somewhat

Ultrametric
- H_{ij} height at which clusters containing i and j merge
- It’s an ultrametric: for i, j, k top two of H_{ij}, H_{ik}, H_{jk} are equal
- Need $H_{ij} \leq \max(H_{ik}, H_{jk})$
- Non-ultrametric measures yield dendrograms with 'reversals'
Centroid merging

\[d(C_1, C_2) = \| \bar{X}_{C_1} - \bar{X}_{C_2} \| \]

Requires original points, not just distances

Ward’s

\[d(C_1, C_2) = \frac{2|C_1||C_2|}{|C_1| + |C_2|} \| \bar{X}_{C_1} - \bar{X}_{C_2} \| \]

Via within cluster SS (after \(-\) before)
Goal is to min

\[\sum_j \sum_{i \in C_j} \| X_i - \bar{X}_{C_j} \|^2 \]
 Costs of hierarchical splits

- It takes $O(n^2 d)$ to get all pairwise distances
- We have to take $O(n)$ steps
- Naive implementation would be $O(n^3 d)$.

Lance-Williams family of methods

Dist of $i \cup j$ to k

$$\alpha_i d_{ki} + \alpha_j d_{kj} + \beta d_{ij} + \gamma |d_{ki} - d_{kj}|$$

eg: $\alpha = 1/2$, $\beta = 0$, $\gamma = -1/2$ for single linkage.
α_i can depend on n_i.
Updates lead to $O(n^2 d)$ cost.
Divisive clustering

Recipe

- Start with one cluster of \(n \) objects
- Repeat
 1. Select one cluster
 2. Split it into two
- Until there are \(n \) clusters of size 1

Choices

- Which cluster to split. E.g. largest 'diameter'
 \[
 \arg \max_j \max_{i,i' \in C_j} \| X_i - X_{i'} \|
 \]
- How to split it. E.g. remove far point, \(X_i \) goes with nearer of far point, \(\bar{X}_{C_j \text{—far}} \)

Apparently no good speedup
Optimization based clustering

E.g. Ward’s

Recipe

- Measure quality of a cluster
 - Scale est, like diameter, RMS width, median width
- Combine into quality of clustering
 - Typically the sum (max plausible)
- (Attempt to) optimize

Isolation measures

- Split $\min_{i \in C, j \not\in C} d_{ij}$
- Cut $\sum_{i \in C, j \not\in C} d_{ij}$