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Abstract

In the present work we introduce the problem of determining the probability that a rotating and bouncing
cylinder (i.e. flipped coin) will land and come to rest on its edge. We present this problem and analysis as a
practical, nontrivial example to introduce the reader to Bayesian model comparison. Several models are presented,
each of which take into consideration different physical aspects of the problem and the relative effects on the edge
landing probability. The Bayesian formulation of model comparison is then used to compare the models and
their predictive agreement with data from hand-flipped cylinders of several sizes. Keywords: probability theory,
log-likelihood, parameter estimation, marginalization, Occam’s razor.

1. INTRODUCTION
The success of Bayesian inference has led to a paradigm shift in our understanding of statistical inference based on
a theory of extended logic. In light of this paradigm shift, it is important to introduce students to the fundamentals
of Bayesian probability theory and its wide range of applications. Bayesian probability theory is a unified approach
to data analysis that encompasses both inductive and deductive reasoning(Gregory, 2005). The Bayesian approach
to model comparison offers a straightforward and effective solution to the problem of model selection. From a simple
application of Bayes’ Theorem, we are able to assign a probability to each model and compare them directly with
one another. Here we apply this technique to the problem of the three-sided coin.

A three-sided coin is defined to be a cylinder that, when flipped like a coin, has some possibly non-negligible
probability of landing on its edge. An ideal coin has a probability of 0.5 for landing on heads, or tails, due to the
symmetry (the limit of the edge height going to zero). Once the edge height is allowed to be finite, factors such as
geometry and flip dynamics become significant.

Several models are presented that assign probabilities for a coin landing on edge, each taking into account different
aspects of the problem. The first four models focus only on the geometrical constants of the coin(Mosteller, 1987;
Pegg, 1997), containing no free parameters, while Models 5 and 6 are statistical models with free parameters. Each
model is compared to data on hand-flipped cylinders of various sizes. The likelihood of each model given the data
is calculated using Bayesian model comparison and it is shown that the statistical models perform better than the
purely geometrical ones. We also illustrate how this type of analysis allows us to question assumptions made by a
model and how relative complexity plays a significant role in the probabilities assigned to the models.

This problem is a particularly good one for teaching probability and statistics, especially from a Bayesian per-
spective. The data are easily obtained in a class or lab setting, there is a number of models of varying complexity
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Figure 1: Three-sided coin. (A) A cylinder with radius, R, of the circular cross section and height, h, of the edge.
(B) The cross section of the cylinder, with internal angles, α and β, and length, l, defined.

that can be explored, and there is no “right” answer, which students can refer. As a result, there is a lot of flexibility
in examining the three-sided coin. We restrict ourselves here to models with relatively simple physics concepts, to
keep the focus on model selection and to not imply that a physics background is necessary to use the three-sided
coin in a teaching setting.

2. THE THREE-SIDED COIN
The coin is represented by its rectangular cross section, as shown in Figure 1. The important geometrical quantities
used in the models presented are the following:

ratio of the edge height to the radius, η ≡ h/R

the diagonal length of the coin, l ≡
√

R2 + (h/2)2

internal angle (see Figure 1), β ≡ atan(η/2)
internal angle (see Figure 1), α ≡ atan(2/η)

We will ask the question

What is the probability, pedge, for the coin to land (and come to rest) on the edge, as a function of the
radius, R, and the height, h?

The models presented attempt to answer this question by considering different aspects of the problem. For the
geometrical models (Models 1-4) this will involve no further parameters or concepts other than the geometrical
constants of the coin. The statistical models (Models 5 and 6) will consider the effect of bouncing in addition to the
cylindrical geometry.

3. MODELS OF THE THREE-SIDED COIN
In this section we describe five models of the three-sided coin that focus on different aspects of the problem in order
to assign a probability to an edge landing.
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3.1 Model 1: Surface Area

In analogy with dice, one presumes that the probability is proportional to the surface area of the edge.

pedge(h, R) =
2πRh

2πR2 + 2πRh

pedge(η) =
η

1 + η

3.2 Model 2: Cross-sectional Length

Again, in analogy with dice, one presumes that the probability is proportional to the cross-sectional length. A square
cross section would assign equal probabilities to all sides.

pedge(h, R) =
h

2(2R) + h

pedge(η) =
η

4 + η

3.3 Model 3: Solid Angle

It has been suggested(Mosteller, 1987; Pegg, 1997) that the probability of landing on a given side of a three-sided
coin is proportional to the solid angle subtended by the side. For the edge probabilities we obtain

edge area subtended =
∫ 2π

0

dφ

∫ π/2+β

π/2−β

sin θdθdφ

= 4π sinβ

pedge(η) = sinβ

=
η√

η2 + 4

3.4 Model 4: Center of Mass

For a solid object with one point of contact with the floor, the location of the center of mass with respect to the vertical
line through the contact point determines which way the object will tip. If we assume there is no bouncing, then the
angle, θ, at which the coin comes in contact with the floor will entirely determine the final resting configuration.

• if 0 < θ < α then the coin will land on heads (i.e. heads-conducive)

• if α < θ < π/2 then the coin will land on the edge (edge-conducive)

Therefore the probability for landing on edge is simply

pedge(h, R) = 1− α

π/2
≡ pe (1)

where we define pe for use in later models.
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Figure 2: The energy values used in the Simple Bounce model. The blue line traces the center of mass of a cylinder
relative to a flat surface as it is rotated 360 degrees.

3.5 Model 5: Simple Bounce

The Simple Bounce model takes the effect of bouncing into consideration. Bouncing is incorporated in the following
way. Let E be the incoming energy of the coin as it falls, and γ be the fractional energy loss on each bounce, i.e.
on each bounce E → γE. For example, if E = 100 and γ = 0.2, then the value of E after two bounces would be
γ2E = 4. At each bounce, we consider the location of the center of mass as the coin makes contact with the solid
surface, as in Model 4. We also define two constant energy values

Eh ≡ l − h/2
Ee ≡ l −R

where Eh is the minimum energy needed to bounce out of the heads (or tails) state. Similarly Ee is the minimum
energy needed to escape the edge state (Figure 2). We will assume that as long as the coin has enough energy to
escape these states, it will continue randomizing its angle. Eventually it will not have enough energy to escape one
of the states and will come to rest in that state. We can further illustrate this point using simple numbers. Lets say
that for some coin the current energy, E = 50, and γ = 0.1, with well depths Eh = 0.8 and Ee = 0.2. On the first
bounce, the energy will drop to E = 5, which is larger than both energy wells, and thus the coin will escape and
re-randomize. The second bounce yields E = 0.5, which is smaller than the energy well for the heads state but larger
than the one for the edge state. If the bounce was heads-conducive, then the coin will come to rest in the heads
state. If the bounce was edge-conducive, it will escape the state and re-randomize. In this case, the next bounce
yields E = 0.05, and a further edge-conducive bounce will bring the coin to come to rest in the edge state.

By examination, one can see that, in general (for h/R < 2), Ee is smaller than Eh. There will come a point when
the energy will be large enough to escape the edge state, but not a heads or tails state. After that point, if the coin
has a heads-conducive fall, then it will remain in the heads state forever, coming to rest on heads. Thus, to come to
rest on edge, the coin must have a series of edge-conducive falls in a row until the energy falls to the point where it
cannot escape the edge state (γE < Ee).

We take the probability for an edge-conducive fall, pe, from Model 4, Equation 1. If we start with energy just
able to escape the largest state (Eh), and bounce until we cannot escape the smallest state (Ee), then we will bounce
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n times where n is

n = log(Ee/Eh)/ log γ + 1 (2)

The probability of bouncing n times, each time with an edge-conducive fall, is simply

pedge = pn
e (3)

It is worth noting that there are several assumptions made in this model which may or may not be correct.
Perhaps the three most important of these assumptions are

1. the initial energy has a negligible effect

2. the coin’s angle is randomized after each bounce

3. the fractional energy loss γ is the same at each bounce

As we shall see, the analysis using Bayesian model comparison will be useful in determining whether we should
reconsider one or more of these assumptions.

3.6 Summary of Models

Figure 3: Summary of Models 1-5.

The five models are summarized in Figure 3. The Simple Bounce model (Model 5) gives a much lower probability
of edge landing for thin coins than the purely geometrical models (Models 1-4). This seems to be more closely aligned
with one’s intuition. Table 1 shows us that the edge-landing probabilities assigned to US coins by Models 1-4 are
much too large.
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Model Nickel Quarter Penny Dime
M1: Surface Area 1/6 1/8 1/7 1/8
M2: Cross-sectional Length 1/23 1/29 1/26 1/28
M3: Solid Angle 1/11 1/14 1/12 1/13
M4: Center of Mass 1/17 1/22 1/19 1/21
M5: Simple Bounce 1/226890 1/1699613 1/614281 1/1167291

Table 1: Predicted probabilities of U.S. coins landing on edge when flipped. For Model 5, the free parameter γ = 0.2.

Figure 4: Data from coin flips, using PVC solid stock.
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1 inch 2 inch
h/R Flips Edge Landings
0.43 200 1
0.84 200 48
1.03 200 58
1.29 200 74
1.53 200 120
1.66 200 118

h/R Flips Edge Landings
0.25 100 1
0.50 100 5
0.75 100 13
1.25 105 28
2.00 100 61

Table 2: Data from flipping experiments with 1 and 2 inch diameter PVC coins.

4. EXPERIMENTAL RESULTS
Experiments were done with solid PVC stock cut into cylinders of different sizes. Flips were done in a vigorous way
onto tile floor, excluding those bounces which carried the coin out of a 1ft square. This exclusion was to make sure
that flips which gave coins a significant roll would not be counted. This effect could, of course, later be examined to
determine its significance. The data is shown in Figure 4. The error bars denote the 95% credible intervals for the
probability estimates. Table 2 describes the data in further detail.

5. MODEL COMPARISON
In the Bayesian formulation of model selection we start with the calculation of posterior probabilities for the models,
Mi, given the data, D, and any other information, I (Jaynes, 2003)

P (Mi|D, I) =
P (Mi|I)P (D|Mi, I)

P (D|I)

and look at their ratios to examine the relative probabilities for each model (i.e. the odds of one model to another)

P (Mi|D, I)
P (Mj |D, I)

=
P (Mi|I)P (D|Mi, I)
P (Mj |I)P (D|Mj , I)

=
P (Mi|I)L(Mi)
P (Mj |I)L(Mj)

If we assign equal prior probabilities to each model (P (Mi|I)/P (Mj |I) = 1), then the ratios of the posteriors becomes
simply the ratios of the likelihoods, L(Mi)/L(Mj). For convenience we use the log of the likelihood and compare the
differences

log P (Mi|D, I)− log P (Mj |D, I) = log L(Mi)− log L(Mj)

We are able to calculate the log-likelihoods for Models 1-4 directly using the binomial probability distribution and
summing over all data points

log L(Mi) =
∑

log n!− log r!− log(n− r)! + r log p + (n− r) log(1− p)

where n is the number of flips, r is the number of edge landings, and p is the probability of landing on edge as
predicted by model Mi. Since Model 5 has a free parameter, γ, we must marginalize over that parameter to attain
the likelihood. The parameter γ is a continuous variable, so marginalization takes the form of integration

L(M5) =
∫

dγp(γ|M5, I)p(D|γ, M5, I)
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Model Log-likelihood
Model 1: Surface Area -229
Model 2: Cross-sectional Length -162
Model 3: Solid Angle -155
Model 4: Center of Mass -91
Model 5: Simple Bounce -78

Table 3: Log-likelihoods for three-sided coin models on the data from PVC solid stock. These values are sorted from
least likely (smallest likelihood) to most likely (largest likelihood), given the data.

using the notation of (Gregory, 2005). This has the benefit of automatically penalizing more complex models unless
the additional complexity can be justified with a significantly better fit (i.e. a quantitative Occam’s razor)(Loredo,
1990). We assume γ to be continuous over some range where each value is equally likely to be the actual value of γ.
We therefore assign a uniform prior probability density function (PDF)∫

∆γ

dγp(γ|M5, I) = p(γ|M5, I)∆γ = 1

p(γ|M5, I) =
{ 1

∆γ when γmin < γ < γmax,

0 otherwise.

where ∆γ is the width of the prior PDF (γmax− γmin). The marginalization is performed numerically, with a simple
brute-force algorithm. The range used for γ a priori is [0, 0.5].

From the PVC solid stock data we calculate the log-likelihoods shown in Table 3. Recall that larger log-likelihoods
imply a model is more likely given the data, and each increment in value is a factor of e difference in the posterior
probability. From this table we can see that the Simple Bounce model is the most probable given the data. However,
if we look at the posterior PDF for γ shown in Figure 5, we see that there is a problem with the model. The most
likely value for γ taken from the posterior (the maximum of the curve shown in Figure 5) is approximately 0.0001,
which yields, using Equation 2, an average number of bounces of 1.16 (i.e. no bounces after first impact), which
is not what is observed empirically. If, instead of the maximum of the posterior, we use the median, then we can
calculate credible intervals to quantify the uncertainty. By definition, we are 95% certain that the parameter has
the values within the 95% credible interval. In the case of estimating γ, we obtain an estimate (from the median) of
γ = 0.0005, with a 95% credible interval of [0.00006, 0.002383]. This does not change our conclusions, but is included
here for completeness. The point of this is to demonstrate that the estimation of the parameters, and the uncertainty
in those estimates, is a straightforward process. In further estimates, we will adopt the convention of displaying the
median and the 95% credible intervals.

With this new information, we now go back and reconsider the assumptions of the Simple Bounce model. In
doing so, we will be able to formulate an alternative bounce model.

As we mentioned above, the Bayesian model comparison technique acts like a quantitative Occam’s Razor by
penalizing more complex models, assigning them larger probabilities only if the additional complexity is justified
by a significantly better prediction of the observed data. What we generally mean by “additional complexity” are
additional free parameters and/or wider or more uniform prior PDFs for parameters. This penalty is a direct result
of the marginalization performed on the free parameters. We can demonstrate this effect by modifying the width of
the prior PDF (∆γ) in Model 5. If we do the same analysis as above with the prior ranges for γ equal to [0, 0.1] and
[0, 0.9], the log-likelihood for the model becomes −76.05 and −78.25, respectively. This about a factor of 6 difference
in posterior probability.
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Figure 5: The posterior probability density function for Model 5 parameter γ.

6. MODEL 6: NEW SIMPLE BOUNCE
With this new model we reconsider some of the assumptions made in the original Simple Bounce model. The third
assumption of the Simple Bounce model was that the fractional energy loss, γ, is the same for both heads-conducive
and edge-conducive bounces. However, the difference between these energy losses could be significant. We now try
using two separate parameters, γe and γh. We make no assumption about which γ is larger and we use the same prior
range for each, [0, 0.5]. Note that we could have added an arbitrary number of γ parameters that would correspond
to different energy losses for different bounce angles, but this additional complexity would make it computationally
prohibitive, and would incur a significant Occam penalty. We therefore add only one additional bounce parameter
and consider the possibility of additional parameters only if the results from the analysis are unsatisfactory.

In Model 5, we made use of the energy values Eh and Ee. We will continue to use these values as well as the
center of mass method (pe) to determine whether a landing is heads or edge-conducive. We remove the initial energy
assumption by randomizing the initial value of E. Starting with a random energy E taken from some range ∆E, we
simulate n flips of a coin, keeping track of the resting state of each flip. The probability is then taken as the ratio of
edge landings to total flips

pedge =
nedge

n

We maintain the assumption that the coin will continue randomizing its angle on each bounce because there does
not seem to be any reasonable and simple alternative.

6.1 Model 6 Analysis

After we run the flipping simulations we marginalize over the three free parameters, γe, γh, and E with uniform
prior ranges of [0, 0.5], [0, 0.5], and [1, 5], respectively. For parameter estimates, we calculate the full posterior, and
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marginalize over all other parameters, and the log-likelihood is also calculated by marginalizing over the parameters.
Using these procedures, we arrive at a log-likelihood of −50. That is a great improvement over the original Simple
Bounce model, but we also want to examine the marginal posteriors for each γ parameter to make sure the values
are indeed reasonable. Given the PVC data, the best estimate (from the median) and the 95% credible intervals of
the values of γh and γe are 0.496 ([0.458, 0.537]) and 0.090 ([0.078, 0.102]), respectively. In this model, the average
number of bounces is 2.0, which is more physically meaningful than the values obtained from Model 5. Assuming
independence of the parameters is a computational convenience, and would not affect the results significantly.

7. DISCUSSION
In the initial analysis (of Models 1-5), it was clear that Model 5 was the most likely model, given the data. However,
the examination of the posterior for γ prompted us to reconsider the model because the most likely value of γ was far
too small to be physically reasonable. We were then able to formulate a New Simple Bounce model which addressed
some of the assumptions made in the original Simple Bounce model. However, in doing so we added additional
complexity to the model. But after calculating the log-likelihood for the New Simple Bounce model we are able to
say that the additional complexity is indeed justified because it performs far better than the other models, given the
data.

A similar problem is addressed in (Dunn, 2003), where instead of a cylinder, a series of rectangular dice that
differ in length are used. These 1× 1× r dice (or η ≡ 2r, in our notation) are rolled and the results analyzed with
generalized linear models. Using this data (we chose their more careful “Group A” data), we are not surprised that
Model 6 once again performs better than the other models. Additionally, we would expect there to be differences in
the bouncing and rolling properties of rectangles and cylinders. These are observed in the estimates of the bounce
parameters (see Table 4).1

One can then go further to explore more details of the physics, using whatever data one wishes, applying the
straightforward model comparison techniques described here. The Bayesian approach has the advantage over the
regression from (Dunn, 2003) in that one can easily apply it to parameters of physical interest, with straightforward
interpretation. It is not only predictive in the current experimental setup, but can guide the experimenter to other
aspects of the problem that might be important, and guide him or her away from aspects that are not important.

We have shown that Bayesian model comparison not only helps us choose the best model for predictive purposes,
it also allows us to identify which features of the problem are more significant than others. This information can
then be used to refine existing models or formulate new ones. We can now say with confidence that models of the
three-sided coin must go beyond the geometrical constants of the coin and include some dynamical properties. Using
Bayesian analysis we are able to approach the three-sided coin problem making simple assumptions then refine our
model incrementally, eventually leading us to a workable model with minimal complexity.

References

Dunn, Peter K. (2003). What Happens When a 1x1xr Die is Rolled? American Statistician, 57(4):258–264.

Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press, New
York, NY, USA.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press, Cambridge. Edited by
G. Larry Bretthorst.

1If we include the unpublished data from Dan Murray at www.geocities.com/dicephysics/3sided.htm using a machine to flip (N ∼
50, 000), our results are still maintained, with qualitatively similar parameter estimates.

10



A

Model Log-likelihood
Kuindersma-Blais Dunn, 2003

Model 1: Surface Area -229 -287
Model 2: Cross-sectional Length -162 -876
Model 3: Solid Angle -155 -178
Model 4: Center of Mass -91 -346
Model 5: Simple Bounce -78 -165
Model 6: New (2-γ) Bounce -50 -121

B

Kuindersma-Blais Dunn, 2003
Model Median 95% Credible Region Median 95% Credible Region
Model 5: Simple Bounce, γ 0.0005 [0.00006, 0.0024] 0.159 [0.143, 0.172]
Model 6: New (2-γ) Bounce, γh 0.496 [0.458, 0.527] 0.756 [0.736, 0.779]
Model 6: New (2-γ) Bounce, γe 0.090 [0.078, 0.102] 0.296 [0.271, 0.319]

Table 4: (A) Log-likelihoods for three-sided coin models on the data from PVC solid stock (Kuindersma-Blais) and
1× 1× r rectangular dice (Dunn, 2003). (B) Parameter estimates for the bounce parameters for the same data sets.
Shown are the median value, and the 95% credible region around the median.
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