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APPENDIX B

Probability review

c©A. B. Owen 2006, 2008

We review some results from probability theory. The presentation avoids
measure theoretic complications, using terms like “sets” and “functions” where
“measurable sets” and “measurable functions” respectively would be more ac-
curate. Measure theory is interesting and powerful, but it seldom makes the
difference between good and bad data analysis, and so we neglect it here.

B.1 Expectation and moments

Suppose that the real valued random variable X has probability density function
f(x) for x in the interval X , and let h(x) be a real valued function on X . Then
the expected value of h(X) is given by

E(h(X)) =

∫
X
h(x)f(x) dx.

For a discrete random variable X taking values xi ∈ R with probability pi ≥ 0
where

∑∞
i=1 pi = 1 we have

E(h(X)) =

∞∑
i=1

h(xi)pi,

where h is a real valued function of the xi. For a discrete random variable
X taking only finitely many possible values we can arrange for them to be
x1, . . . , xn and replace the summations above by sums over i = 1, . . . , n.

If XD and XC are discrete and continuous random variables respectively and
X = XD with probability p ∈ (0, 1) and X = XC with probability 1 − p then
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X is neither discrete nor continuous. In such a case E(h(X)) = pE(h(XD)) +
(1− p)E(h(XC)).

In any of these cases E(h(X)) is only properly defined when E(|h(X)|) <∞.
In this section we’ll work with scalar X. Taking h(x) = x in the expectation

formulas gives us the mean µ = E(X). More generally for positive integer k,
the k’th moment is µk = E(Xk). It is usually more convenient to translate
these raw moments into more interpretable quantities, so we work with:

µ = E(X)

σ2 = E((X − µ)2)

γ = E((X − µ)3)/σ3, and,

κ = E((X − µ)4)/σ4 − 3.

The variance σ2 can also be written as E(X2)−E(X)2 though it is usually
better not to compute it that way. The standard deviation is σ, the nonnegative
square root of σ2. It has the same units as X has and can be used to describe
how far X typically gets from its mean, sometimes via the coefficient of variation
σ/µ.

The quantities γ and κ may be unfamiliar. The skewness γ and the kurtosis
κ are dimensionless quantities that describe the shape of the distribution of
X, particularly how the tails differ from those of the normal distribution. The
normal distribution has γ = 0 by symmetry and making κ = 0 for the normal is
the reason for the −3 in the definition of κ. The value γ is one way to measure
how much heavier the right tail of FX is compared to the left, with negative
values indicating that the left tail is heavier. The value κ is a way to measure
distributions with tails heavier (κ > 0) or lighter (κ < 0) than the normal.

There are other ways to describe the tails of a distribution but γ and κ
are handy because they behave very simply when one takes averages. Suppose
that X1, . . . , Xn are IID random variables with given values of µ,σ,γ,κ. Let
X̄ = (1/n)

∑n
i=1Xi. Then

µ(X̄) = µ

σ2(X̄) = σ2/n

γ(X̄) = γ/
√
n, and,

κ(X̄) = κ/n.

We see that as n increases that the skewness and kurtosis both approach zero.
We would expect just that because of the central limit theorem (CLT). The
extra information we see above is, roughly, that X̄ becomes symmetric (as
measured by γ) at a 1/

√
n rate while the heaviness of it’s tails approaches that

of the normal distribution even faster. In particular if Xi are symmetric then
we anticipate that the CLT should become accurate relatively quickly.

If we knew all of the moments µk of X for k ≥ 1 we might be able to re-
construct the exact distribution of X. Here “might” means that those moments
have to all be finite and not grow too quickly (Carleman’s condition). To get
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a moment-like characterization of the distribution that is always available, we
use the characteristic function of X. This is

φX(t) = E(eitX) = E(cos(tX)) + iE(sin(tX))

defined as a function of t ∈ R, where i =
√
−1 .

The benefit that we get from bringing complex numbers into the picture
is that the expectations we need are always finite because cosine and sine are
bounded. We can extract the moments of X from φX . For integers k ≥ 1, let

φ
(k)
X (t) be the k’th derivative of φX(t). Then if µk exists

φ
(k)
X (0) = ikµk.

The quantities µ, σ, γ, and κ are the first four cumulants of (the distribution
of) X. We use the first two directly with our data. The next two are mainly
of interest to study how fast the central limit theorem is taking hold though in
principle either could be the object of study. Just as there are higher moments
of X there are also cumulants of any order. All the cumulants past the first
two are zero for the normal distribution. For averages of n IID observations,
the k’th cumulant is O(n−(k−2)/2) for k ≥ 3. An astonishing amount is known
about high order moments and cumulants of random variables, and even random
vectors. The text by McCullagh (19xx) is a good place to start. We will confine
our interest to low order moments.

B.2 Random vectors and matrices

Let X be an n by p matrix of random variables

X =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp

 .

Then the expected value of X is defined to be

E(X) =


E(X11) E(X12) · · · E(X1p)
E(X21) E(X22) · · · E(X2p)

...
...

. . .
...

E(Xn1) E(Xn2) · · · E(Xnp)

 . (B.1)

Indeed it is hard to imagine a viable alternative definition. If any of the Xij do
not have expectations then neither does X. Taking n = 1 or p = 1 gives the
expected value for row and column vectors respectively.

Let A and B be nonrandom matrices. Equation (B.1) together with the
definition of matrix multiplication gives

E(AX) = AE(X), and, E(XB) = E(X)B
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whenever the matrix products are well defined. Similarly E(AXB) = AE(X)B.
Let X and Y be random column vectors. The covariance of X and Y is

cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))′

)
.

When X has n components and Y has m components, cov(X,Y ) is an n by m
matrix whose ij element is the covariance of Xi and Yj .

For a random column vector X the variance-covariance matrix is

var(X) = cov(X,X) = E((X − E(X))(X − E(X))′).

Let A and B be nonrandom matrices for which the multiplications AX and BY
are well defined. Then

cov(AX,BY ) = Acov(X,Y )B′

and so for a constant vector b,

var(AX + b) = var(AX) = Avar(X)A′.

The matrix var(X) is symmetric and positive semi-definite. Symmetry is
obvious. Let c be a fixed vector of the same length as X. Then

0 ≤ var(c′X) = c′var(X)c

so that var(X) is positive semi-definite. If c 6= 0 implies that c′var(X)c > 0 then
var(X) is positive definite. If var(X) is positive semi-definite but not positive
definite then for some nonzero c we have c′var(X)c = var(c′X) = 0. Then one
of the components of X is a linear combination of the others.

B.3 Quadratic forms

Let A be an n by n symmetric matrix and X be a random column vector taking
observed value x. Then X ′AX =

∑n
i=1AijXiXj is a quadratic form in X.

There is no loss of generality in taking A symmetric. We would get the same
quadratic form if we were to use Ã = (A+A′)/2 which is symmetric.

The main use for quadratic forms in statistics is in variance estimates. For
example, it is easy to show that

Y1
Y2
...
Yn


′

1− 1/n − 1/n . . . − 1/n
− 1/n 1− 1/n . . . − 1/n

...
...

. . .
...

− 1/n − 1/n . . . 1− 1/n



Y1
Y2
...
Yn

 =

n∑
i=1

(Yi − Ȳ )2,

so the familiar variance estimate is s2 = Y ′AY with Aij = (1i=j−1/n)/(n−1).
Many other variance estimates turn out to be quadratic forms. Moreover the
sometimes mysterious quantity known as the “degrees of freedom” of an error
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estimate usually turns out to be simply the rank of the matrix A inside the
corresponding quadratic form.

Now suppose that Y is random with mean µ and variance Σ. Then

E(Y ′AY ) = µ′Aµ+ tr(AΣ).

This is easy to prove: For matrices A and B if both products AB and BA
are well defined then tr(AB) = tr(BA) follows from the definition of matrix
multiplication and trace. Now

Y ′AY = (µ+ (Y − µ))′A(µ+ (Y − µ))

= µ′Aµ+ µ′A(Y − µ) + (Y − µ)′Aµ+ (Y − µ)′A(Y − µ), so,

E(Y ′AY ) = µ′Aµ+ E((Y − µ)′A(Y − µ))

= µ′Aµ+ tr(E((Y − µ)′A(Y − µ)))

= µ′Aµ+ tr(E(A(Y − µ)(Y − µ)′))

= µ′Aµ+ tr(AΣ).

Notice the “trace trick”. The scalar (Y − µ)′A(Y − µ) is treated as a 1 by 1
matrix factored as the product of (Y −µ)′ (one by n) and A(Y −µ) (n by one).
Then we write it as the trace of the product multiplied in the other order, pull
A out of the expectation and recognize the formula for Σ.

Often we arrange for µ to be 0 or at least for Aµ = 0, and Σ to be σ2I.
Then E(Y ′AY ) = σ2tr(A) and σ̂2 = Y ′AY/tr(A) is an unbiased estimate of σ2.

The variance of a quadratic form is a more complicated quantity. We’ll start
ugly and then simplify. If we expand E((Y ′AY )2) we find it contains fourth
moments like E(Yi1Yi2Yi3Yi4).

We won’t ordinarily know all of those moments. We might reasonably model
Yi as independent with mean θi, common variance σ2 and common central
moments µ3 = E((Yi − θi)3) and µ4 = E((Yi − θi)4). Then after some tedious
calculations we get

var(Y ′AY ) = (µ4 − 3σ4)a′a+ 2σ4tr(A2) + 4σ2θ′Aθ + 4µ3θ
′Aa

where a = diag(A) is the column vector made up of the diagonal elements of A.
This is Theorem 1.6 in “Linear Regression Analysis”, second edition, by Seber
and Lee.

If Y ∼ N (θ, σ2I) then µ3 = 0 and µ4 = 3σ4. In that case

var(Y ′AY ) = 2σ4tr(A2) + 4σ2θ′Aθ

and if Aθ = 0 we get var(Y ′AY ) = 2σ4tr(A2). Now suppose that we can come
up with two matrices A1 and A2 with E(Y ′AjY ) = σ2 for j = 1, 2. For normally
distributed data we would be better off using the one with the smaller value of
tr(A2

j ). If we have two unnormalized candidates, so σ̂2
j = Y ′AjY/tr(Aj) then

the better one minimizes tr(A2
j )/tr(Aj)

2.

If σ̂2 = Y ′AY then under a normal distribution var(σ̂2) = 2σ4tr(A2) so we
might take v̂ar(σ̂2) = 2σ̂4tr(A2). If the data are not normally distributed then
σ̂2 may still be unbiased for σ2 but v̂ar(σ̂2) can be biased and even inconsistent.
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B.4 Useful distributions

The Gaussian distribution plays a very important role in linear modelling. A
linear model with Gaussian errors is particularly simple to analyze. Under
a Gaussian assumption it is easy to derive some exact properties of statistical
methods. The important thing about the Gaussian assumption is that the exact
answers with a Gaussian assumption are approximately correct in much greater
generality.

B.5 Univariate normal distribution

The standard normal distribution has the probability density function (PDF)

ϕ(z) =
e−z

2/2

√
2π

, −∞ < z <∞. (B.2)

The cumulative distribution function (CDF) of the standard normal distribution
is denoted

Φ(z) =

∫ z

−∞
ϕ(x) dx, (B.3)

for −∞ < z < ∞. There is no simple closed form expression for Φ. Tables
used to be commonly used. Now most statistical computing environments have
a function for Φ and one for Φ−1 as well.

The standard normal distribution has mean 0 and variance 1. When the
random variable Z has this distribution we write Z ∼ N(0, 1).

More generally, the univariate normal distribution has two parameters: a
mean µ ∈ R and a standard deviation σ ∈ (0,∞). This distribution is denoted
N(µ, σ2) and when X ∼ N(µ, σ2) then X has PDF

e−(x−µ)
2/2σ2

√
2π σ

, −∞ < x <∞. (B.4)

If Z ∼ N(0, 1) and X = µ+ σZ then X ∼ N(µ, σ2). To prove this we write the
CDF of X as

Pr(X ≤ x) = Pr
(
Z ≤ x− µ

σ

)
= Φ

(x− µ
σ

)
,

so that X has density

d

dx
Φ
(x− µ

σ

)
=

1

σ
ϕ
(x− µ

σ

)
which reduces to (B.4). The reverse operation of transforming X ∼ N(µ, σ2) to
a N(0, 1) random variable Z = (X − µ)/σ is called standardization.

The N(µ, σ2) distribution was defined assuming that 0 < σ <∞. If we let σ
approach 0 the N(µ, σ2) distribution degenerates to the point mass distribution
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with Pr(X = µ) = 1. Stated more carefully, if X ∼ N(µ, σ2) then Pr(|X −µ| ≥
ε)→ 0 as σ ↓ 0, for any ε > 0. We can defineN(µ, 0) as a point mass distribution

Pr(X ≤ x) =

{
1, x ≥ µ
0, x < µ.

This distribution does not have a density function and of course it cannot be
standardized. In the multidimensional setting, normal distributions without
density functions are very useful.

B.6 Multivariate normal distribution

Similarly to the univariate case, a general multivariate normal random vector
X is obtained by shifting and scaling a standard multivariate normal random
vector Z.

The vector Z has the p dimensional standard normal distribution if Z =
(Z1, . . . , Zp) where the components Zi are independent random variables with
the N(0, 1) distribution. The mean of Z is the zero vector and the variance-
covariance matrix of Z is the p dimensional identity matrix. We write Z ∼
N(0, I) or Z ∼ N(0, Ip) depending on whether the context makes it desirable
to specify p. Because the components of Z are independent, we easily find that
the density function of Z is

p∏
i=1

e−z
2
i /2

√
2π

= (2π)−p/2 exp

{
−1

2
z′z

}
, z ∈ Rp.

Definition B.1. The multivariate normal distribution is the distribution of a
random vector X = µ + CZ where Z ∼ N(0, Ir), µ ∈ Rp and C is a p by r
matrix of real numbers.

Taking r = p is perhaps the usual case, but is not required. The random
vector X in Definition B.1 has mean µ and variance-covariance matrix Σ = CC ′.

When Σ has an inverse, the PDF of X takes the form

1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
, x ∈ Rp. (B.5)

The expression |Σ| represents the determinant of Σ. This density function (B.5)
is completely determined by µ and Σ. Two different matrices C both with
CC ′ = Σ give rise to the same distribution for X = µ + CZ. We write X ∼
N(µ,Σ). When the context makes it better to specify the dimension p of X, we
write X ∼ Np(µ,Σ).

The density in equation (B.5) depends on x only through the expression
DM (x) = ((x − µ)′Σ−1(x − µ))1/2, known as the Mahalanobis distance. The
points x with DM (x) = d for any d ≥ 0 form an ellipsoid in Rp. The ellipsoid is
centered on µ and has a shape governed by Σ. It follows that the multivariate
normal density (B.5) has ellipsoidal contours. The mean µ is also the (unique)
mode of this distribution.
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B.7 Bivariate normal

The multivariate normal distribution with dimension p = 2 is called the bivari-
ate normal distribution. The covariance matrix for a bivariate normal random
vector X = (X1, X2)′ can be written

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where ρ is the correlation between X1 and X2 and σ2
j is the variance of Xj .

The determinant of Σ is |Σ| = σ2
1σ

2
2(1− ρ2). The determinant is positive if

σ1 > 0, σ2 > 0 and −1 < ρ < 1. If instead ρ = ±1 then of course Σ is singular
and the distribution concentrates on a line.

When |ρ| < 1 the inverse of Σ is

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
=

1

1− ρ2

(
1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

)
. (B.6)

Suppose that X = (X1, X2)′ has the bivariate normal distribution with mean
µ = (µ1, µ2)′ and covariance Σ above. Then, if |ρ| < 1 the probability density
function of X is

1

2π
√

1− ρ2 σ1σ2
e
− 1

2

[(
x1−µ1
σ1

)2
−2ρ

(
x1−µ1
σ1

)(
x2−µ2
σ2

)
+
(
x2−µ2
σ2

)2
]
.

B.8 Non invertible Σ

It is often very convenient to work with multivariate normal distributions in
which Σ is not invertible. Suppose for instance that p = 3 and let X = (Z1 −
Z̄, Z2 − Z̄, Z3 − Z̄) where Zi are independent N(0, 1). The Xi are obtained by
centering the Zi around their average Z̄ = (Z1 + Z2 + Z3)/3. Such centering is
a common operation in statistics. We should expect it to bring some trouble.
After all X1 + X2 + X3 = 0 for any Z. The distribution of X concentrates on
a two dimensional planar subset of R3, so it cannot have a density on R3.

We can express X via X = µ+ CZ where µ = (0, 0, 0)′ and

C =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Then Σ = CC ′ and in this instance Σ = C. The matrix C has no inverse.
This is clear because the rows sum to zero. The reader who wants more direct
verification can go through the steps of inversion by Gaussian elimination until
it fails by requiring division by zero.

The multivariate distribution of X can be represented in terms of its char-
acteristic function

φ(t) = φX(t) = E(eitX), t ∈ Rp. (B.7)
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For a multivariate normal distribution

φX(t) = exp

{
it′µ− 1

2
t′Σt

}
. (B.8)

The characteristic function is less interpretable than is the density function, but
it exists without assuming that Σ is invertible. In the small example above,
we could work with the density of (X1, X2)′ making use of the identity X3 =
−X1−X2 but this sort of reduction breaks a symmetry, and becomes unwieldy
in general.

B.9 Properties of the multivariate normal dis-
tribution

Here we develop some of the most useful properties of the multivariate normal
distribution.

If X ∼ Np(µ,Σ) and c ∈ Rp then c′X has a normal distribution. The
converse also holds and is sometimes taken as the definition of the multivariate
normal distribution. Specifically, if c′X has a normal distribution for all c ∈ Rp
then the p dimensional random vector X has a multivariate normal distribution.

Taking c to have have some components equal to 1 and the rest if any equal
to 0, we find that X ′c is a nonempty subset of the components of X which have
a multivariate normal distribution. In other words, the marginal distributions
of a multivariate normal random vector are also multivariate normal.

Let us now partition the vector X into r components and p− r components:
X = (X ′1, X

′
2)′ with X1 ∈ Rr and X2 ∈ Rp−r. We make the corresponding

partition to µ and Σ writing

X =

(
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

The cross correlation matrix between X1 and X2 is Σ12 = Σ′21. If Σ12 = 0 then
the components in X1 are uncorrelated with those in X2. In the multivariate
normal context, uncorrelated random variables are independent. That is Σ12 =
0 implies that X1 is independent of X2. The proof follows from factoring the
characteristic function of X. Partitioning t = (t′1, t

′
2)′ the same as for X,

φX(t) = exp

{
it′µ− 1

2
t′Σt

}
= exp

{
it′1µ1 −

1

2
t′1Σ11t1

}
exp

{
it′2µ2 −

1

2
t′2Σ22t2

}
= φX1

(t1)φX2
(t2).

Because the characteristic function of X factors into pieces for X1 and X2 it
follows that X1 and X2 are independent.
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Subvectors X1 and X2 of a multivariate random vector X are independent if
and only if they are uncorrelated. It is crucial that X1 and X2 be subvectors of
a multivariate random vector. Otherwise we can construct uncorrelated normal
vectors X1 and X2 that are not independent. It is not enough for X1 and X2

to each be multivariate normal and uncorrelated with each other. We require
(X ′1, X

′
2)′ to be multivariate normal.

It is not just the marginal distributions of the multivariate normal distri-
bution that are multivariate normal. Conditional distributions are too. If X
is split as above then the conditional distribution of X1 given that X2 = x2 is
multivariate normal.

We suppose that Σ22 is invertible. Then X2 has a probability density func-
tion and can take any value x2 ∈ Rp−r. We let Y1 = X1 − AX2 and Y2 = X2

for a p by p− r matrix A. By choosing A carefully we’ll make Y1 and Y2 uncor-
related and hence independent. Then with X1 − AX2 independent of X2 we’ll
find the conditional distribution of X1 given X2.

We begin by writing(
Y1
Y2

)
=

(
I −A
0 I

)(
X1

X2

)
∼ N

((
µ1 −Aµ2

µ2

)
,

(
I −A
0 I

)(
Σ11 Σ12

Σ21 Σ22

)(
I 0
−A′ I

))
= N

((
µ1 −Aµ2

µ2

)
,

(
I −A
0 I

)(
Σ11 − Σ12A

′ Σ12

Σ21 − Σ22A
′ Σ22

))
= N

((
µ1 −Aµ2

µ2

)
,

(
Σ11 − Σ12A

′ −AΣ21 +AΣ22A
′ Σ12 −AΣ22

Σ21 − Σ22A
′ Σ22

))
.

Now things simplify greatly if we choose A = Σ12Σ−122 . Then Y1 and Y2
are independent. The variance of Y1 is Σ11 − Σ12A

′ − Σ21A + AΣ22A
′ which

simplifies to

Σ11 − Σ12Σ−122 Σ21. (B.9)

Translating from Y1 and Y2 to X1 and X2 we find that X1−AX2 is independent
of X2. Therefore the conditional distribution of X1−AX2 given X2 = x2 is the
same as the unconditional distribution which is N(µ1 −Aµ2,Σ11|2) where Σ11|2
is the expression in (B.9). Conditionally on X2 = x2 we find that X1 −AX2 =
X1 −Ax2. Therefore the conditional distribution of X1 given that X2 = x2 is

L(X1|X2 = x2) = N(µ1 +A(x2 − µ2),Σ11|2)

= N(µ1 + Σ12Σ−122 (x2 − µ2),Σ11 − Σ12Σ−122 Σ21).
(B.10)

Equation (B.10) is quite interpretable in the bivariate case. There Σ22 = σ2
2

and Σ12 = ρσ1σ2 so that A = Σ12Σ−122 = ρσ1/σ2. Then

E(X1|X2 = x2) = µ1 + ρσ1(x2 − µ2)/σ2.
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In other words, when X2 is ∆ = (x2 − µ2)/σ2 standard deviations above its
mean µ2, then we expect X1 to be ρ∆ standard deviations above its mean µ1.

Multiplying x2 − µ2 by σ1/σ2 changes the units from X2 units to X1 units.
For instance if X2 is recorded in seconds then so is σ2 and then (x2 − µ2)/σ2
is dimensionless. If X1 is recorded in meters then so is σ1 and therefore (x2 −
µ2)σ1/σ2 is also in meters. The correlation ρ is dimensionless. Multiplying by ρ
simply attenuates the expected change, and it can also switch the sign if ρ < 0.
The general expression Σ12Σ−122 makes multivariate unit changes, attenuations
and possibly sign reversals to convert x2−µ2 into a conditionally expected value
for X1 − µ1.

In data analysis one typically does not have to keep explicit track of the units
of measurement as here. But expressions should make sense dimensionally. In
particular quantities inside an exponent are almost invariably dimensionless
because expressions like e5meters are not interpretable.

Expression (B.9) is known as the Schur complement of Σ22 in Σ. It appears
often in numerical analysis. It is worth remembering the form, because when
one encounters it, there may be a conditional variance interpretation. For the
bivariate case we get

Σ11|2 = Σ11 − Σ12Σ−122 Σ21

= σ2
1 − (ρσ1σ2)σ−22 (ρσ1σ2)

= σ2
1(1− ρ2).

Observing that X2 = x2 typically reduces the uncertainty in X1: the conditional
variance is 1− ρ2 times the unconditional one. If ρ 6= 0 the variance is reduced,
otherwise it is unchanged. Similarly Σ11|2 is no larger a matrix than Σ11 in that
c′Σ11|2c ≤ c′Σ11c for any c ∈ Rr.

It is noteworthy and special that, when (X ′1, X
′
2)′ is multivariate normal,

then var(X1|X2 = x2) does not depend on which exact x2 was observed. Ob-
serving X2 = x2 shifts the expected value of X1 by a linear function of x2 but
makes a variance change (usually a reduction) that is independent of x2.

B.10 Normal quadratic forms

Suppose that Y ∼ Nn(µ,Σ) and that Σ is invertible. Then

(Y − µ)′Σ−1(Y − µ) ∼ χ2
(n).

To prove this we note that Σ is symmetric and positive definite. Then we
can write Σ = P ′ΛP where P is an n by n orthogonal matrix and Λ =
diag(λ1, . . . , λn) where each λj > 0.

Now let Z = Λ−1/2P (Y − µ). This Z is a standardized version of Y . The
vector Z is normally distributed with mean 0 and variance

Λ−1/2PΣP ′Λ−1/2 = Λ−1/2PP ′ΛPP ′Λ−1/2 = In.
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Therefore the components of Z are independent and Zi ∼ N(0, 1). Now

(Y − µ)′Σ−1(Y − µ) = Z ′Z ∼ χ2
(n).

B.11 Some special functions and distributions

Certain special functions appear repeatedly in statistics, often as normalizing
constants for probability densities. For example the Gamma density is propor-
tional to xa−1e−x/b over 0 ≤ x < ∞ and the Beta density is proportional to
xa−1(1−x)b−1 over 0 ≤ x ≤ 1. In both cases the legal parameter are a > 0 and
b > 0. For any particular values of a and b we can plot these functions to get
an idea of how these distributions look. But to actually compute the density
functions we need to calculate normalizing constants.

The Gamma function is

Γ(z) =

∫ ∞
0

tz−1e−t dt.

In statistics we usually use the Gamma function at real arguments z > 0. It
can be defined also for some negative and even complex numbers. The Gamma
function satisfies Γ(z+ 1) = zΓ(z). Also, for positive integers n we have Γ(n) =
(n− 1)!.

The standard Gamma distribution with shape parameter θ > 0 has proba-
bility density function

g(z; k) =
xk−1e−x

Γ(k)
, 0 ≤ z <∞. (B.11)

The Gamma function supplies exactly the denominator we need to construct a
probability density function proportional to xk−1e−x on [0,∞).

The general Gamma distribution with parameters k > 0 and θ > 0 has
probability density function

g(z; k, θ) =
xk−1e−x/θ

Γ(k)θk
, 0 ≤ z <∞. (B.12)

The new parameter θ is a scale parameter. If Z ∼ g(·; k, θ) then for c > 0 we
have Z/c ∼ g(·; k, θ/c) so that Z/θ ∼ g(·; k, 1) = g(·; k) follows the standard
Gamma distribution with shape k.

B.12 Distributions derived from the normal

Suppose that Z1, . . . , Zn are IID N(0, 1) random variables. Then X =
∑n
i=1 Z

2
i

has the chi-squared distribution on n degrees of freedom, denoted by X ∼ χ2
(n).

The derivation of this and similar results is given in texts like xxx. Here we are
content to record the names of distributions derived from the normal, and the
derivations thereof.
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The χ2
(n) distribution has probability density function

fn(x) =
xn/2−1e−x/2

Γ(n/2)2n/2
, 0 ≤ x <∞. (B.13)

The χ2
(n) distribution is a special case of the Gamma distribution (B.12), having

shape parameter k = n/2 and scale parameter θ = 2.

If Z ∼ N(0, 1) and X ∼ χ2
(n), with n ≥ 1, are independent random variables

then

t(n) ≡
Z√
X/n

has Student’s t distribution on n degrees of freedom. This distribution has
probability density function

Γ((n+ 1)/2)√
nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

, −∞ < t <∞. (B.14)

As n→∞ the t(n) density approaches the standard normal density e−t
2/2/
√

2π.

If X1 ∼ χ2
(n) and X2 ∼ χ2

(d) are independent then

F =
1
nX1

1
dX2

∼ Fn,d,

which is Fisher’s F distribution with n numerator and d denominator degrees
of freedom.

B.13 Noncentral distributions

Noncentral distributions are widely ignored in many modern statistics books.
Their probability density functions are unwieldy. These distributions are how-
ever quite useful for power calculations and software for them can readily be
found, and so we present them here.

Let Xi ∼ N(ai, 1) be independent random variables for i = 1, . . . , n. Let
λ =

∑n
i=1 a

2
i . Then Q =

∑n
i=1X

2
i has the noncentral chi-squared distribution

on n degrees of freedom, with noncentality parameter λ. We write this as

Q ∼ χ′ 2(n)(λ).

For λ = 0 we recover the usual, or central, chi-squared distribution. The non-
central chi-squared density function does not have a closed form expression.
We use the noncentral chi-squared by setting things up so that under a null
hypothesis all the ai equal 0 but under the alternative they’re nonzero. Then
larger values of

∑
i a

2
i give larger Q and ordinarily greater chances of rejecting

that null.
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Recall that the central F distribution with n1 numerator and n2 denominator
degrees of freedom is obtained via the recipe

Fn1,n2 =

1
n1
χ2
(n1)

1
n2
χ2
(n2)

where the numerator and denominator random variables are independent. The
noncentral F distribution is obtained as

F ′n1,n2,λ1
=

1
n1
χ′2(n1)

(λ1)
1
n2
χ2
(n2)

with an independent numerator and denominator. Usually our null hypothesis
makes the numerator noncentral while the denominator arises as a variance
estimate needed to scale the numerator. We use the noncentral F to do power
calculations.

The doubly noncentral F distribution is obtained as

F ′′n1,n2,λ1,λ2
=

1
n1
χ′2(n1)

(λ1)
1
n2
χ2
(n2)

(λ2)
,

where again the numerator and denominator are independent. We seldom use
it. As with the singly noncentral F , the numerator has a noncentrality arising
from the alternative hypothesis. Here however the denominator could have
noncentrality too if it were a variance estimate based on residuals from a model
that did not properly fit.

The noncentral t distribution is obtained as

t′n(λ) =
N(λ, 1)√
χ2
(n)/n

.

The noncentrality parameter λ can be negative.


