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17.1 Bayes for regression

We looked at how Bayesian linear regression models work, referring to an example in Chapter 9 of Peter
Hoff’s book.

There was a linear model relating changed O2 uptake as a function of age and another variable indicating
whether the subject was on a running program or some other aerobic program. The data were differences
so there was no ANCOVA element in this that one might otherwise have considered.

The largees model considered was

Yi = β1 + β2AERi + β3AGEi + β4AERi ×AGEi + εi.

which plots as two not necesarily parallel lines for E(Y ) versus age. Here AERi is 1 for subjects in the
aerobic program and 0 for those who merely ran.

The likelihood for β with σ fixed is the exponential of a quadratic. If the prior has the same structure, then
so does the posterior and we get a Gaussian posterior distribution for β so long as the quadratic inside the
exponential is negative definite.

Let the Gaussian prior be
β ∼ N (β0,Σ0).

Then we get (see Hoff for the steps)

var(β |y, x, σ2) = (Σ−1
0 + ZTZ/σ2)−1 and

E(β |y, x, σ2) = (Σ−1
0 + ZTZ/σ2)−1(Σ−1

0 β0 + ZTy/σ2),

where xi = (AGEi,AERi)
T and Z ∈ Rn×4 is our design matrix (observations × features), y is all the yi and

x is all the xi. In class, we discussed how this looks the same as in the scalar case: inverse variances get
summed and the means get weighted.

We need a prior for σ2. Taking γ = 1/σ2, we have

γ ∼ Gam(ν0/2)

ν0σ2
0/2

.

We will see in the posterior formulas that this prior is like having ν0 prior observations (or degrees of freedom
so maybe ν0 + 1 observations) with a sample variance of σ2

0 . Or,

σ2 ∼ ν0σ
2
0/2

Gam(ν0/2)
.
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The posterior distribution for γ is

p(γ |y, Zβ) ∝ γ(ν0+n)/2−1e−γ[ν0σ
2
0+SSR)(β)]/2

which we recognize as

γ ∼ Gam((ν0 + n)/2)

(ν0σ2
0 + SSR)/2

for SSR =
∑
i(yi − zTi β̂)2.

We do not dwell here on how to compute this posterior distribution. In passing we note that this case could
be sampled by alternately sampling β given γ and γ given β. This is known as the Gibbs sampler. There
are many much more sophisticated ways to sample from a posterior distribution. Take a course in Monte
Carlo or applied Bayes to see them. If you had a huge sample of (β, σ2) pairs sampled from the posterior
distribution, you could use them to estimate posterior means, variances, covariances and probabilities of
interest to you.

17.2 Choosing β0 and Σ0

Ridge regression that penalizes the intercept too, is like taking β ∼ N (0, τ2I). If we don’t want to regularize
the intercept to be close to zero, we could replace Σ0 = τ2I by

Σ0 =

(
M 0
0 I

)
τ2

for some large scalar value M . That allows the intercept to be large without incurring a prior penalty.
Equivalently

Σ−1
0 =

(
ε 0
0 I

)
τ−2.

A flat non-informative prior with M →∞ or ε→ 0 is close to what we do in ridge regression.

There is a unit information prior due to Kass and Wasserman. It takes

Σ−1
0 =

ZTZ

nσ2
and β0 = β̂OLS.

It is then like a prior with the strength of just n = 1 prior observation right at the ordinary least squares
estimate β̂OLS. The practice of plugging some sample values into the prior is a form of empirical Bayes.
They also take ν0 = 1 and σ2

0 = σ̂2 = s2.

That prior is a special case of the Zellner prior

β ∼ N (β0, g(ZTZ)−1σ2).

Letting q = g/(g + 1) (and quoting Wikipedia!), the posterior is

β ∼ N (qβ̂OLS + (1− q)β̂0, q(ZTZ)−1σ2).

For β0 = β̂OLS,
β ∼ N (β̂OLS, q(Z

TZ)−1σ2).

For β0 = 0,
β ∼ N (qβ̂OLS, q(Z

TZ)−1σ2).
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and the posteror means has shrunk each component of β̂OLS by the factor q = g/(g + 1) < 1. The Zellner
posterior for γ = 1/σ2 is

1

σ2
|x, y ∼ Gam((ν0 + n)/2)

(ν0σ2
0 + SSRg)/2

where SSRg = yT(I − qH)y and H is the usual hat matrix.

17.3 O2 uptake example

He considers 5 models,

M ∈ {intercept only, AER only, AGE only, parallel lines, two lines}.

There could have been 8 models but these models avoid putting in an interaction AGE×AER unless both
of those are also in the model. It is common to impose a hierarchy constraint like this on models. If an
interaction of some order is present, then so are all sub-interactions. If a polynomial term is present then so
are all lower order polynomial terms. It is not a theorem that this is always better, it is just a commonly
adopted guideline.

Putting a uniform distribution on M and then for each model a Zellner prior on its parameters, generates
a posterior distribution on β and σ2. Any time that the AER only model is chosen we automatically have
β3 = 0 for the AGE coefficient. The posterior distribution of each βj might then have a lump at zero and
some other distribution for nonzero values.

The estimated posterior probabilities on those models are

M = {intercept only, AER only, AGE only, parallel lines, two lines}
w prob. (0.00, 0.00 0.18 0.63 0.19).

If we sample β or zTn+1β from this model (for fixed zn+1 representing a potential n+ 1’s subject) we will get
predictions that do Bayesian model averaging instead of just picking the one possibly best model and
using it alone. It is clear that AGE makes a difference, and less conclusive about AER. If we just want to
predict, we don’t have to decide which mdoel to go with. Believing the posterior there is at best 63% chance
that we would choose correctly.

With a larger data set we would probably have the posterior probability just pick out one of these models.
I would bet on the most general one here. This may be why Hoff chose an example with a small data set. It
is more interesting.

He has another diabetes example with 64 predictors potentially 264 ≈ 1019 models (if you don’t enforce
hierarchy). Only 38 distinct models turned up in the 10,000 samples from the posterior distribution. Only
4 models turned up more than 6 times.

In that bigger example Bayesian model averaging was more accurate on held out data (MSE 0.452) than was
OLS (MSE 0.67) or backward elimination (MSE 0.53). (I wonder how ridge or a Zellner prior would have
done.)

17.4 Hierarchical models

Let Yij ∼ N (µi, σ
2
i ) for i = 1, . . . , k and j = 1, . . . , ni. Our plain ANOVA approach would have us choose

between H0 where µ1 = µ2 = · · · = µk and HA where the µi are completely unrelated to each other. In a
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Bayesian approach, we can make µi
iid∼ N (µ∗, σ

2
∗). A tiny σ∗ is like imposing H0 and an enormous σ∗ is like

considering the µi to be unrelated. If k is large we should be able to learn something about µ∗ and σ∗ and
find a middle ground between H0 and HA.

That middle ground could be very helpful. If n1 = 3 and n2 = 1400 then data from samples 2 through k
help us learn µ∗ and σ∗ and shrink Ȳ1• towards values from the other groups. We might find that we have
enough data from group 2 that we don’t need to shrink it’s mean very much at all.

There can also be a hierarchical model for the σi.

If we pick a prior for the (µi, σi) pairs it will ordinarily have parameters. We can place a prior on those
parameters. It could be a very flat one so that we then learn the extent to which data from one group are
relevant to the others. We would ordinarily just pick one flat prior there instead of picking a prior that had
further random parameters.

17.5 Spike and slab

We might believe that our vector β has lots of tiny values and a small number of meaningfully large values.
We can model that by taking a prior with independent

βj ∼ λN (0, ε2) + (1− λ)N (0,M2)

where ε is tiny and M is large and 0 < λ < 1 is a mixture parameter. The first component is a spike near
zero and the second is a slab over a wide swath of values.

The normal mixture components could be replaced by double exponential. The spike could be a point mass
at zero, i.e., N (0, 0). The slab could be improper.

The posterior distribution of βj could well be bimodal, sometimes near zero and sometimes near some other
value.

17.6 Bayesian software and examples

In this course, we have just scratched the surface of Bayes.

Real world applications commonly take you way beyond what can be done with closed forms and conjugate
distributions.

There are probabilistic programming languages that let you specify what your prior is, and where your data
are, and they take it from there. I would recommend STAN as a start at least for modest sized data sets
and hierarchical models.

At present there is always the possibility that your Bayesian software fails to properly sample from the
posterior distribution you have in mind. There are diagnostics. Most of them can be fooled.

If you are looking for detailed worked examples, there is a Stan con conference that includes many of them.
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17.7 Random effects

The random effects model is a non-Bayesian counterpart to hierarchical Bayesian models. We looked at how
it plays out in the two factor setting. You could have two fixed effects, two random effects, or one of each.
The fixed × random effects setting is the one where you can most easily get it wrong in a consequential way.
See Chapter 11 of the notes by Eric Min. Those notes outline the sums of squares and mean squares and F
tests.

If you have n observations on k people (random effects) for t treatments (fixed effects) then while you have
n× k× t data values you don’t really have as much information as that might make you think. To see why,
let n→∞ and take means per person. Then you have data about t treatments for k people and your sample
size is obviously just k vectors in Rt if you’re thinking about what you’ve learned about people. You’re
ordinarily better off measuring 2k people n times each than measuring k people 2n times each. Getting 2k
people is probably going to cost more to do. After thinking about it this way, the initially strange looking
F -tests for crossed random effects may make more sense.

Whether an effect is random or fixed depends in part on our goals. If there are only k levels of some effect
then it is fixed. If instead we have data on k levels and we want to generalize to a universe of K � k levels
from which they were sampled, then the effect is a random effect. If there are K � k levels but we only
want to think about the k we have studied, then it is back to a fixed effect analysis. E.g, there are k people
who run the lathes in our machine shop. For differences among those k people a fixed effects analysis is
appropriate. To draw conclusions on equipment operators in general, of whom we just happen to have k
examples, then it is a random effect.


