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16.1 Bayes rule

Bayes rule for events A and B is

P (A |B) =
P (A,B)

P (B)
=
P (A)P (B |A)

P (B)
.

For continuous random variables x and y using events x dx and y dy we get

p(y |x) =
p(y, x)

p(x)
=
p(y)p(x |y)

p(x)
.

In our case y will be what we want to learn, such as all of the parameters in a model and x will be what we
have, such as all of the data (called y!). So we use

p(θ |y) =
p(θ, y)

p(y)
=
p(θ)p(y |θ)

p(y)
.

In this new viewpoint, θ is a random variable just like y (which we use as shorthand for y1, y2, . . . , yn or
whatever else we have observed.) They have a joint distribution. Once we have seen y it is no longer random
to us, and we can condition on its observed value. The parameter θ remains random but knowing y we think
instead of p(θ | y). We might know p(θ) prior to seeing y so it is the prior distribution of θ and then
p(θ | y) is the posterior distribution of θ (given y). If we should later get more data y′ then p(θ |y) would
become the new prior and p(θ |y, y′) would be the updated posterior distribution of θ.

For real valued θ we can get a posterior credible interval [L,U ] computed so that

Pr(L 6 θ 6 U |y) = 0.99

or whatever other level we choose. Unlike a confidence interval here it is θ that is random (from Pr(·)) and
both L and U are nonrandom. They ordinarily depend on y but conditionally on y they are not random.

16.2 The prior distribution

We get some very powerful results from Bayes. We might actually want to know Pr(H0 |y) even more than
we want to know a p-value like Pr(t(Y ) > tobs |H0). In order to get that of course we have to choose some
p(θ).
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There are numerous ways to choose this prior:

1. p(θ) may be a distribution that describes our subjective belief about θ. In principle, beliefs can be
induced from looking at the bets we might take or reject on θ, though actually doing that would be
cumbersome.

2. The problem we are considering might be just one in an ensemble of similar ones that we have seen
many times before and may see many times in the future. Then p(θ) could be defined in reference to
that higher order distribution of problem instances.

3. p(θ) could be defined to match qualitative aspects of the problem, such as enforcing θ1 6 θ2 6 · · · 6 θL
for a vector θ ∈ RL or otherwise widely covering the known or likely domain of θ.

4. p(θ) could be chosen for computational convenience.

5. p(θ) could be chosen to make posterior credible intervals have approximately the desired coverage level
when viewed as confidence intervals. This is called calibration. If we are designing an algorithm for
somebody to use based on Bayes, we might prefer one that is well calibrated.

Sometimes more than one of the above comes into a decision. Point 2 above is the least controversial
version of Bayes. One could argue that the value of θSan Mateo has nothing to do with θSanta Clara or θVentura.
However that starts to sound like the arguments that people originally had against averaging observations
from one sample, when those values were all taken in somewhat different ways. Hierarchical models where,
for instance, data from one county are drawn from a county-specific parameter and those county-specific
parameters are themselves drawn from some other distribution have proved very useful. See the book by
Gelman and Hill on hierarchical models.

16.3 Stein and De Finetti

Stein showed in 1955 that if your method is admissible then it is either Bayes or the limit of a sequence of
Bayes methods. Informally, a good method is nearly Bayes for some prior.

De Finetti showed that if y1, . . . , yn are exchangeable (joint distribution invariant to permuting their order)

then yi
iid∼ f(·; θ) for some f and some random θ.

16.4 Normal data

See Chapter 5 of the book by Peter Hoff for details about Bayes for normally distributed data. We saw there
how conjugate priors make things easy. We saw how the posterior mean was ȳ shrunk towards the prior
mean. We saw that precision (inverse variance) updates additively. The conjugate prior for µ is normal and
the one for σ2 is inverse Gamma. We also saw how the likelihood can swamp the prior so that in the end
the prior makes little difference. That requires that the prior not rule out some values by declaring them
impossible.

16.5 Tradeoffs

Using Bayes you get more but you have to give more (specify the prior). Moving away from conjugate
priors can take you into a place where computation becomes incredibly hard. If you can write out all your
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knowledge in terms of distributions that generate all of the variables you see, then you can potentially use
Bayes to combine the information. If θ is more complicated like θ1 identifies one of 10 models we might want
to use and the rest of θ has the parameters for the model given by θ1, then posterior predictions give us a
weighted average over all 10 models. This Bayesian model averaging can be beneficial.


