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Abstract

These notes are mnemonics about what was covered in class. They don’t replace being present or
reading the book. Reading ahead in the book is very effective.

17.1 Bootstrap confidence intervals

The main use of the bootstrap is to get a confidence interval. We can start with the plug-in principle and
suppose that

Distn(θ̂ − θ;Xi ∼ F ) ≈ Distn(θ̂∗ − θ̂;X∗
i ∼ F̂ ). (17.1)

Here Distn is a function that takes the distribution F of the data and returns the distribution of our error
θ̂ − θ. Distribution in and distribution out. If you prefer you can work with a function that takes the
distribution of F and returns a quantile, such as the 97.5’th percentile of θ̂ − θ. Then we are back to
distribution in and real number out.

As before we generate a large number B of bootstrap samples and we get θ̂∗b for b = 1, . . . , B. This time we
sort them getting

θ̂∗(1) 6 θ̂∗(2) 6 θ̂∗(3) 6 · · · 6 θ̂∗(B).

We will work with 95% confidence because it is familiar. We get the 2.5% and 97.5% quantiles of the bootstrap
sample, calling them θ̂∗(0.025B) and θ̂∗(0.975B) respectively. We get to choose B so we can make sure that
.025B and 0.975 are integers, but even if they were not, we could define our quantiles by interpolation. We

will use Q.975(θ̂;F ) to represent the given quantile of θ̂ when X1, . . . , Xn
iid∼ F .

Now, working in slow motion (slower than we did in class) we develop a confidence interval.

0.95 = Pr(Q.025(θ̂;F )− θ 6 θ̂ − θ 6 Q.975(θ̂;F )− θ) (defn of quantiles)

≈ Pr(Q.025(θ̂∗;F ∗)− θ̂ 6 θ̂∗ − θ̂ 6 Q.975(θ̂∗;F ∗)− θ̂) (plug in)
.
= Pr(θ̂∗(.025B) − θ̂ 6 θ̂∗ − θ̂ 6 θ̂∗(.97B) − θ̂; X∗

i ∼ F̂ ) (bootstrap sampling).

We then are left with an approximate 95% confidence interval for θ̂ − θ of the form

0.95 ≈ Pr(θ̂∗(.025B) − θ̂ 6 θ̂ − θ 6 θ̂∗(.975B) − θ̂).

Next we unravel it to get θ by itself in the middle. The result is

0.95 ≈ Pr(2θ̂ − θ̂∗(.975B) 6 θ 6 2θ̂ − θ̂∗(.025B)).

Notice that the upper limit of the confidence interval depends on the lower quantile of the bootstrap sampled
values and vice versa.
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17.2 Bootstrap bias estimate

Some of our statistics are biased. The bootstrap leads to a bias adjustment. The plug-in idea is

E(θ̂ − θ;Xi ∼ F ) ≈ E(θ̂∗ − θ̂;X∗
i ∼ F ∗).

We can estimate the bias by

b̂ias(θ̂) =
1

n

B∑
b=1

θ̂∗b − θ̂ ≡ ¯̂
θ∗ − θ̂

and if we subtract the estimated bias from θ̂ we get

θ̂ − (
¯̂
θ∗ − θ̂) = 2θ̂ − ¯̂

θ∗.

17.3 Percentile method

Perhaps the most common bootstrap confidence interval is the percentile method which simply takes

0.95 ≈ Pr(θ̂∗(.025B) 6 θ 6 θ̂∗(.975B)).

That is, we simply sort the resampled values and use the interval spanned by the central 95% of them.

This does not really have a good plug-in story. Rice remarks about this too. It matches the interval given
above if

θ̂∗(.025B) ≈ 2θ̂ − θ̂∗(.975B),

or equivalently

θ̂ ≈ θ̂∗(.025B) + θ̂∗(.975B)

2
.

The above approximation is often quite good. For large n we might have a central limit theorem making θ̂∗

approximately normal and approximately symmetric around θ̂.

So the percentile method has three components to its justification: plug-in, random sampling, and a sym-
metry argument.

17.4 Parametric bootstrap

Instead of resampling from the empirical CDF F̂ we can run our Monte Carlo simulations by sampling from
f(x; θ̂) instead. Of course this requires that we have an available method to sample from our parametric
family. That is very often the case. With the parametric bootstrap we stand to gain some precision if our
parametric model is good, while losing some if the parametric model is bad.

17.5 Permutations

Suppose we have data X1, . . . , Xn
iid∼ Fx independent of Y1, . . . , Ym

iid∼ Fy. We might want to test the null
hypothesis

H0 : E(X) = E(Y ).
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The natural way to do this is to compute Ȳ − X̄ and reject H0 if |Ȳ − X̄| is unusually large. That leads to
the question of defining how large is unusually large.

We can make progress under a somewhat stronger assumption

H0 : Fx = Fy,

which implies H0 (when the expectations exist). This stronger assumption does not force Fx or Fy to have
a parametric form. It just requires them to be equal.

Under H0 our n+m observations are IID from the common distribution F = Fx = Fy. We could write them
in order as (X1, X2, . . . , Xn, Y1, Y2, . . . , Ym). There are (n+m)! ways to permute the order of these values.
For instance one such permutation is (X1, Y3, X4, Yn, . . . , X2). If we decided to make X∗

1 , . . . , X
∗
n be the first

n values after permutation and Y ∗
1 , . . . , Y

∗
n be the last m values the distribution of those n+m values would

be exactly the same for any permutation under H0.

The permutation reference distribution is the distribution of |Ȳ ∗ − X̄∗| under all (n + m)! permutations.
We only have to do N =

(
n+m
n

)
permutations because the ordering within the first n (or last m) permuted

observations does not change |Ȳ ∗ − X̄∗|. The permutation p-value is

p =
1

N

N∑
`=1

1{|Ȳ ∗` − X̄∗`| > |Ȳ − X̄|},

where ` represents one of the ways of choosing n of the data points to be X∗
i values. For full details of the

permutation test (that you might want to read about after this course) see “Testing Statistical Hypotheses”
(3rd edition) by Lehmann and Romano.

Often N is too large for the full test to be done. Then we sample M permutations at random and report

p =
1

M + 1

(
1 +

N∑
`=1

1{|Ȳ ∗` − X̄∗`| > |Ȳ − X̄|}

)
.

The plus one in numerator and denominator represent the actually observed data values and with out them
you might get p = 0 (which is very wrong).

Permutation analysis is often used in A/B trials where the allocation of a subject to treatment A or B really
is made at random.

We can use permutations on more complicated statistics than Ȳ − X̄. For instance we could compare the
10’th percentiles.

17.6 Hold outs

In linear regression we estimate the mean square future errors by

1

n− 2

n∑
i=1

(Yi − β̂0 − β̂1xi)2.

The future might not match our model for it. Sometimes we can suppose that holding out say 10% of the
present data is a reasonable approximation to the future distribution. In that case we can fit our regression
to 90% held in data and average the squared errors on the 10% held out.
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We don’t have to use squared error either. If the problem gives us a more meaningful error measure, perhaps
|Y − β̂0 − β̂1x|, we can average that. One of the main reasons for using squared error was that it make the
theory easy. Holdouts let us study quantities where the theory would not be so easy.

In more advanced courses you will see that a holdout set can be used to compare two ways of predicting to
see which works best. For instance logistic versus logit models.


