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are meant as a memory aid for students who took stat 200 at Stanford University. They may be distributed
outside this class only with the permission of the instructor. Also, Stanford University holds the copyright.

Abstract

These notes are mnemonics about what was covered in class. They don’t replace being present or
reading the book. Reading ahead in the book is very effective.

14.1 Introduction

This lecture was about cross classified data based on Chapter 13 of Rice. It is easiest to visualize in terms
of either people in categories or balls in urns or bins. The data are a list of integer counts nij ∈ {0, 1, 2, . . . }
for i = 1, . . . , I and j = 1, . . . , J . In class I spoke of nij people of occupation i from country j. We need to
have I > 2 and J > 2 for this to really be a cross-classification.

These notes explain the goals and reasoning. Be sure to read the numerical examples in the book.

The total number of people with occupation i is ni• =
∑J
j=1 nij , the total number of people from country j

is n•j =
∑I
i=1 nij and the total number of people counted in the data is

n•• =

I∑
i=1

ni• =

J∑
j=1

n•j =

I∑
i=1

J∑
j=1

nij .

The observed data look like

n11 n12 · · · n1J n1•
n21 n22 · · · n2J n2•

...
...

. . .
...

...
nI1 nI2 · · · n1J nI•
n•1 n•2 · · · n1J n••

You can get a very small table of just I × J numbers even though the number n•• of observations behind it
can be enormous. (This should remind you of sufficient statistics.) The null hypothesis for this data is that
the row a person belongs to has nothing to do with the column that they belong to. Or if balls are placed
within an I×J grid of bins, the row that a ball occupies has nothing to do with the column that it occupies.

Where the methods differ is in what is random. Each nij is the observed value of some random variable Nij .
Sometimes the row totals are fixed and sometimes they are random. Same for the column totals. Once we
decide what is random and what is not, we can formulate the null hypothesis mathematically.
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14.2 Fisher’s exact test

Suppose that I = J = 2 and that ni• is non random for i = 1, 2 and n•j is non random for j = 1, 2. The
classic example of this kind is about tea tasting.1 Muriel Briston was a colleague of Ronald Fisher. She
claimed that she could tell by taste the difference between a cup of tea where the tea had been added to
the milk and a cup where the milk had been added to the tea. Maybe there is something noncommutative
there where tea + milk 6= milk + tea. Apparently Fisher was skeptical. If you think of what happens to the
temperature of the milk over time it is plausible. If you drop a bit of milk into near boiling tea the milk
is heated much more suddenly than if you pour tea into milk. Then again maybe the effect is not strong
enough to be detectable. On the other hand, maybe some people are sensitive enough to detect a thing that
other people cannot. This uncertainty calls for statistical testing.

Here’s how you could test it. Make up 8 cups of tea, four done each way, with the expert not present. Then
ask the expert to say which four got milk first. You get a table like

Milk first chosen Tea first chosen Total
Milk was first x 4− x 4
Tea was first 4− x x 4

Total 4 4 8

which we could write as

N11 N12 n1•
N21 N22 n2•
n•1 n•2 n••

The row totals are fixed by the experimental design and hence not random. Same for the column totals.
The table entries are random given the row and column totals.

A null hypothesis is that the taster simply guesses n•1 cups at random in a way that has nothing to do with
what is in the cup. Under that model there are

(
n••
n•1

)
equally probable choices. Here

(
8
4

)
= 70 different ways

that Muriel Briston could have selected 4 cups that had milk before tea. Then N11 has the hypergeometric
distribution,2

Pr(N11 = n11) =

(
n1•
n11

)(
n2•
n21

)(
n••
n•1

) =

(
n1•
n11

)(
n2•

n•1−n11

)(
n••
n•1

) .

See the Wikipedia page for the legal outcome values (i.e., the support) of a hypergeometric distribution.

The hypergeometric distribution is available to you in R (rhyper, dhyper, phyper, qhyper). We can
easily come up with p-values for the alternative that N11 is larger than predicted. E.g., better than random
taste testing. It is

p = Pr(N11 > n11) =
∑

x:x>n11

(
n1•
x

)(
n2•

n•1−x
)(

n••
n•1

) .

Getting the milk+tea question right for all 8 cups would give a one tailed p = 1/70. Similarly, p = Pr(N11 6
n11) is a p-value for H0 against an alternative that N11 is smaller than expected. For a two-sided alternative
we use the hypergeometric distribution to get Pr

(
|N11 − E(N11)| > |n11 − E(N11)|

)
. We need E(N11) to do

that. It is n1•n•1/n••. These are the p-values from Fisher’s exact test.

Sometimes people use Fisher’s exact test even when the row and column totals were not really fixed. Rice
gave an example of a company with 24 male and 24 female employees of which 35 were promoted and 13

1https://en.wikipedia.org/wiki/Muriel_Bristol
2Rice p42 and https://en.wikipedia.org/wiki/Hypergeometric_distribution
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not. The hypergeometric argument would apply directly if that company had decided to promote 35 of their
employees.

This next bit is for your curiosity and not something you’ll be tested on. Statisticians are still arguing about
it. Sometimes Fisher’s test is used even when the row and column totals were random. The argument is like
the one in regression. If you see all the xi you still know nothing about the slope β1 until you get Yi given
xi. For regression we made that precise by exhibiting a likelihood where the MLE and likelihood ratio for
β1 all came from the Y given x distribution.

For 2× 2 tables, the intuitive argument is as follows. Suppose you see

? ? n1•
? ? n2•
n•1 n•2 n••

with ? indicating an unknown value. Do you think you know anything about whether rows are associated
with columns from that table? If not, then you might reason that the association comes only from the
distribution of what is inside the table given the row and column sums. Intuition like this is good for
formulating questions, for guessing answers, and for understanding an answer that the math gives, but
intuition itself is not the answer. Rice avoids this issue and so will we!

Another off the record fact: There are generalizations of Fisher’s exact test to I×J tables for any I > 2 and
J > 2. The null hypothesis is that all possible tables with the given row and column sums have the same
probability. The distribution of counts is then more complicated than hypergeometric but can be computed.

14.3 χ2 test of homogeneity

Suppose that we fix the column totals. We observe n•j people for j = 1, . . . , J . The data in each of our J
columns are independent. From column j we get multinomial counts N1j , . . . , NIj . The sample size in that
column is n•j and the row probabilities are πi|j > 0 with

∑
i πi|j = 1. [Rice uses πij here but I like to show

that these are conditional probabilities.]

We can model row variable i having nothing to do with the column variable j through

H0 : πi|1 = πi|2 = · · · = πi|J , i = 1, . . . , I.

Imagine that your chance of having occupation i in country j is the same for all j. The alternative is that
πi|j can be different for every j.

We will do a generalized likelihood ratio test. Let the common value of πi|j under H0 be called πi. The null
has I − 1 degrees of freedom because these add up to 1. The alternative has I − 1 degrees of freedom in each
of J columns so it has (I − 1)J degrees of freedom. Therefore the GLRT will have

(I − 1)J − (I − 1) = (I − 1)(J − 1)

degrees of freedom.

To do the GLRT we need the MLEs under H0 and HA. Under H0 π̂i = ni•/n•• as we saw in class and as
Rice proves. Under HA, π̂i|j = nij/n•j because we have J separate multinomial likelihoods.

After the algebra is over, the likelihood ratio test statistic ends up as

−2 log(Λ) = 2

J∑
j=1

I∑
i=1

Oij log(Oij/Eij).
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The same Taylor approximation we used for multinomials before gives

X2 =

J∑
j=1

I∑
i=1

(Oij − Eij)2

Eij
.

If X2 > χ2,1−α
(I−1)(J−1) then we reject H0 at level α.

Here Oij is the observed count Nij in row i and column j while Eij is the expected count there under H0.
Writing it this way makes it look just like our previous GLRT for the multinomial except now we use a
double sum. We need to work out Eij . Here

Eij = n•j × π̂i|j = n•j ×
ni•
n••

=
ni•n•j

n••
.

Suppose we had gotten the exact same Nij but we had instead sampled ni• observations in row i for
i = 1, . . . , I independently. E.g., we sample ni• people with occupation i and record which country j they
are in. We would end up with the exact same −2 log(Λ) and X2 as above and the exact same degrees of
freedom.

14.4 χ2 test of independence

Now suppose that n•• is fixed. We sample that many people and then record both their occupation and
country getting a table of Nij values. Or we drop balls from the sky and they land in an I × J grid of bins.

We now have one big multinomial distribution with IJ levels and probability πij on the (i, j) bin. A natural
way to form a null hypothesis is to suppose that

πij = πi• × π•j

where πi• =
∑J
j=1 πij . Then the row you land in is independent of the column.

The null hypothesis has I − 1 degrees of freedom for πi• and J − 1 more for π•j for a total of I + J − 2.
The alternative hypothesis has IJ parameters πij that add up to one so it has IJ − 1 degrees of freedom.
Therefore the GLRT has

(IJ − 1)− [(I − 1) + (J − 1)] = (I − 1)(J − 1)

degrees of freedom, the same as for testing homogeneity.

In class we wrote out the likelihood under H0. It ends up as the product of two multinomial likelihoods, one
for rows and one for columns and we get

π̂i• =
ni•
n••

, and π̂•j =
n•j

n••
.

Under HA we have one combined multinomial on IJ levels. The MLE for that multinomial is just

π̂ij =
nij
n••

.

Once again the likelihood ratio test ends up as

−2 log(Λ) = 2

J∑
j=1

I∑
i=1

Oij log(Oij/Eij).
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and Pearson’s χ2 is

X2 =

J∑
j=1

I∑
i=1

(Oij − Eij)2

Eij

both with with Oij = Nij except that now Eij = E(Nij |H0) is expectation under row and column indepen-
dence. That turns out to be

Eij = n•• × π̂i• × π̂•j = n•• ×
ni•
n••
× n•j

n••
=
ni•n•j

n••
.

This is the same as we got under the test for homogeneity.

There is really just that one test for all three scenarios.

14.5 Simpson’s paradox

I presented some extreme hypothetical outcomes for two doctors. For Dr. B., the patient outcomes are

Dr. B Lived Died Total
Sick 25 25 50
Well 50 0 50
Total 75 25 100

while Dr. K has

Dr. K Lived Died Total
Sick 0 10 10
Well 80 10 90
Total 80 20 100

We see evidence of better outcomes for Dr. B on both patient groups. Pooling the data we get

Lived Died Total
Dr. B 75 25 100
Dr. K 80 20 100
Total 155 45 200

Pooling the data makes it appear that Dr K is better. What went wrong is that Dr B was getting the more
difficult cases and the pooled data do not show that.

The pooled data collapses a 2× 2× 2 table down to a 2× 2 table. Collapsing a table can make the opposite
effect appear. Or it can create an association out of individual tables that don’t have any. Or hide an
association that is present in the individual tables.

People comparing doctors or hospitals take care to adjust for the varying case loads. A hospital with a
strong reputation might attract the most difficult cases and then not look as good as it should in a collapsed
table. If collapsed tables were used it could give surgeons an incentive to avoid the most difficult cases. A
ride hailing driver might avoid night time if that is when harder to please riders arrive.

In class I mentioned a genetic marker that is associated with diabetes in the population at large but not
in any of the subgroups. It is thus unlikely to be the key to any cure or treatment. The marker could be
genuinely very predictive of diabetes just because it is predictive of being in the higher risk subgroup.

Given data it is easy to collapse it over one or more additional variables. The much more difficult problem
is uncollapsing a table. You would have to think of which other variable might be important. That would
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come from real world understanding of the nature of the rows and columns. Then you might find that the
variable you’re thinking of is not in anybody’s data set.

14.6 Prospective vs retrospective

Suppose we look at the association of 2 diets and 2 health outcomes (good or bad). We could find 100 people
with each diet and follow them prospectively for 50 years to measure the health outcome. Apart from the
delay there is also the issue that if the bad outcome is rare we might get 0 out of 100 in each group (or some
other small number) and have an uninformative comparison.

In a retrospective study, we find 100 people with the good outcome and 100 with the bad outcome and then
try to ascertain what their past diet was. We are then assured of sufficient numbers in the two outcome
groups. It is remotely possible that one of the dietary habits was extremely rare but we would probably
know that before doing the study. There is also a practical difficulty in getting good data about the past
(memory being imperfect).


