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Abstract

These notes are mnemonics about what was covered in class. They don’t replace being present or
reading the book. Reading ahead in the book is very effective.

7.1 Context

Now we switch from estimation to testing. Until now the data Xi followed a parametric distribution f(x; θ)
where f was perfectly well known and θ was an unknown parameter or vector of parameters. We then looked
at ways to pick a value θ̂ to use for θ from the data: moments, likelihood and Bayes.

The family f of distributions could be based on science or experience or perhaps even convenience. Now we
switch to testing. We will test whether a given value of θ seems right. We can even test whether that family
f of distributions is right.

7.2 Hypothesis test types

We will be testing one hypothesis versus another, H0 versus H1. Suppose that we know θ = θ0 or θ = θ1.
Then we can test H0 : θ = θ0 versus H1 : θ = θ1. These are both simple hypotheses because, together
with f , they completely describe the distribution of our data X1, . . . , Xn. We might also test H0 : θ = θ0
versus an hypothesis like H1 : θ 6= θ0 or H1 : θ > θ0. These latter hypotheses are composite hypotheses
because they allow more than one possible value of θ and hence more than one distribution for X1, . . . , Xn.

Later we will test whether Xi ∼ f(x; θ) is true for any θ. That is, instead of testing whether some θ is right,
we test whether f is right. This is a goodness of fit test.

7.3 Bayes testing

Rice begins by working out Bayes hypothesis tests for a discrete data setting. Here we use a continuous data
model. The likelihood ratio

LR =
Pr(all our data | H0)

Pr(all our data | H1)

plays a critical role. Notice that we use a ratio not a difference. If the numerator and denominator were
0.51 and 0.50 respectively the difference would be the same as 0.02 and 0.01 or even 0.01 and 0. It makes
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intuitive sense that 0.51 versus 0.50 is far less conclusive than the others, and we will see that the ratio
comes out naturally in our formulas.

In Bayesian testing we compute the posterior probability

Pr(H0 | data)

Pr(H1 | data)
=

Pr(H0)

Pr(H1)
× Pr(data | H0)

Pr(data | H1)
. (7.1)

Of course this means our model has to specify the prior probabilties Pr(H0) and Pr(H1). When H0 and H1

are the only possibilities then Pr(H0) = 1− Pr(H1) and we get

Pr(H0 | data)

1− Pr(H0 | data)
=

Pr(H0)

1− Pr(H0)
× Pr(data | H0)

Pr(data | H1)

that is
posterior odds = prior odds× likelihood ratio.

If there are more than 2 possibilities then (7.1) still holds for any two of them, but the probability ratios are
not odds. [Recall that the odds for event E are Pr(E)/(1− Pr(E)).]

Now suppose that H0 is that an egg has one yolk while under H1 the egg has two yolks. We weight the egg
getting W ∼ N(µ1, σ

2) if there is one yolk and W ∼ N(µ2, σ
2) if there are two. Here µ1 = 2, µ2 = 2.6 and

σ = 0.4. After some algebra

LR =
Pr(W | H0)

Pr(W | H1)
= exp

(
− 1

2σ2
[2W (µ2 − µ1) + µ2

1 − µ2
2]
)
.

Because µ2 − µ1 > 0 the likelihood ratio decreases exponentially with W . We can find the value W giving
LR = 1. It is (µ1 + µ2)/2 = 2.3. If the weight lands half way between the two means then the likelihood
ratio equals one and the data fit the two distributions equally well.

If we saw W = 2.3 (the midpoint) we would not ordinarily think that the egg is equally probable to be a
single or double yolker. In our experience double yolk eggs are rare. Suppose we model that with a prior
distribution Pr(H1) = 0.001 and Pr(H0) = 0.999. Now

Pr(H0 |W )

Pr(H1 |W )
= 999× exp

(
− 1

2σ2
[2W (µ2 − µ1) + µ2

1 − µ2
2]
)
. (7.2)

Taking account of this prior information there is some value w0 > 2.3 with Pr(H1 | W = w0) = Pr(H0 |
W = w0). The double yolk is more probable if W > w0, and less probable if W < w0.

7.4 Loss function

If one of H0 or H1 is true, and we pick one of them we are either right or wrong. Being right is good, but
there are two error types: picking H1 when the truth was H0 and picking H0 when the truth was H1. These
two errors might not be equally severe.

Suppose that we are running a recycling plant and a chunk of material going by our scanner is either glass
or ceramic. What we think is glass, we melt to recycle. What we think is ceramic we reject. With one error,
we might miss a gram or two of usable glass, with another error we might get something that explodes and
causes damage. Similar asymmetric losses come up if we are classifying an email as spam or not, a customer
as a good loan prospect or not, and so on.
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If we think of picking H1 as a positive discovery then we can make up a loss table like the following:

LOSS Pick H0 Pick H1

H0 true 0 FP
H1 true FN 0

where FN and FP are possibly unequal positive damages attributed to our mistake types.

If we pick H0 then our expected loss is

0× Pr(H0 | data) + FN× Pr(H1 | data) = FN× Pr(H1 | data).

If we pick H1 then our expected loss is
FP× Pr(H0 | data).

We should pick H1 if it has a smaller expected loss. That is, if

FP× Pr(H0 | data) < FN× Pr(H1 | data).

Rearranging this, we pick H1 if
FN× Pr(H1 | data)

FP× Pr(H0 | data)
> 1

that is if
Pr(H1)

Pr(H0)
× Pr(data | H1)

Pr(data | H0)
× FN

FP
> 1.

We pick H0 if
Pr(H0)

Pr(H1)
× Pr(data | H0)

Pr(data | H1)
× FP

FN
> 1.

Our decision criterion is now the product of the prior probability ratio times the likelihood ratio times a loss
ratio. Note that only the ratio of the losses enters. Also, if those losses are equal then we pick H1 if it has
higher posterior probability.

It could have been pretty bad to ignore the prior odds of 999:1 for the double yolk egg. Sometimes it is hard
to get a good prior ratio to use.

7.5 Neyman-Pearson setup

In the Neyman-Pearson setup we retain H0 but start calling the other hypothesis HA. Here H0 is a null
hypothesis describing a situation considered uninteresting. It might be that a coin has 50% probability
of coming up heads, or that a psychic’s predictions are complete chance, or that our newly developed drug
is exactly as effective as a placebo (e.g., sugar pill) or that two populations of Barramundi have the same
average weight, or that something in your diet has exactly no effect on something else in your health. Then
HA is an alternative hypothesis describing one or more ways that H0 could be wrong.

Very often H0 is a simple hypothesis such as H0 : θ = θ0 for some special value θ0. When θ ∈ R (i.e., not a
vector) we might have any of the following alternative hypotheses

HA : θ = θ1 (simple)

HA : θ 6= θ0 (two sided)

HA : θ > θ0 (one sided)

HA : θ < θ0 (one sided).
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The choice depends on our scientific goals and understanding. Examples later. Very commonly the null
value θ0 is 0.

In this setup we construct a statistic T designed to take larger values if HA is true than if H0 is true.
In general this is T (all our data). For IID data it would be T (X1, . . . , Xn). Here are some examples. If
Xi ∼ N(µ, σ2) and H0 is µ = 0 and HA is µ 6= 0 then we might take T (X1, . . . , Xn) = |X̄|. If we chose
instead to have HA be µ > 0 then we might take T (X1, . . . , Xn) = X̄.

Given this statistic we then decide to reject H0 if and only if

T (X1, . . . , Xn) > t0.

If we don’t reject H0 then we accept H0. This does not mean that we have proved H0 true, just that we
tried and failed to reject it. It is also possible that the data are just not informative enough to do it. We
might reject H0 later when we have more or better data. Acceptance is only made grudgingly.

There are now two types of error that we could make. Rejecting H0 when it is true is called a Type I error.
It frequently corresponds to a false discovery because H0 was meant to describe “nothing interesting”.
Failing to reject H0 when it is false is called a Type II error. Here are our possible errors:

Error Accept H0 Reject H0

H0 true None Type I
HA true Type II None

The probability of a type I error is denoted α and the probability of a type II error is denoted β. We have

α = Pr(T (X1, . . . , Xn) > t0 | H0).

If HA is simple, then we can write

β = Pr(T (X1, . . . , Xn) 6 t0 | HA).

If HA is composite then β can depend on which θ in HA is the true one. We reject H0 if we observe a value
T (x1, . . . , xn) in the set (t0,∞). This set of T values for which we reject H0 is called the rejection region.
Similarly (∞, t0] is the acceptance region for T (X1, . . . , Xn). It is also interesting to think of the set of
data values that would lead to rejection. That is

{(x1, . . . , xn) | T (x1, . . . , xn) > t0}.

If (X1, . . . , Xn) is in that set, then we reject H0.

Up to now, any statistic T and any threshold t0 give us error rates α and β. If we increase t0 we generally
make α smaller (and never larger) while generally making β larger (and never smaller). For any statistic T
that we decide to use there is then a tradeoff in picking t0. Later we will see good ways to pick the statistic T
itself.

The customary way to work this tradeoff is to fix a small level for α. Lots of people use 0.05 but this is a
very lenient default that generates lots of false discoveries. One might also use 0.01 or even smaller values.
Given that value of α we solve

α = Pr(T (X1, . . . , Xn) > t0 | H0)

to find the threshold t0. Then under a simple alternative hypothesis the type II error probability is

β = Pr(T (X1, . . . , Xn) < t0 | HA).
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When HA is composite the type II error probability β typically depends on which θ in the alternative HA is
the true one.

The p-value is the quantity

p = Pr(T (X1, . . . , Xn) > T (x1, . . . , xn) | H0).

This is the chance of getting a value of T as large as the one we got or larger. Our test rejects H0 when
p < α. For instance, a common choice is to reject H0 if p < 0.05 though this is probably a poor default in
many settings. The logic of the p-value is as follows

“If p < α then either H0 is wrong or a very rare event has been observed.”

A threshold of 0.05 does not seem very rare any more.

The p-value is certainly not Pr(HA is true | data) though this is a common misinterpretation. One could
reasonably prefer this posterior probability statement to having a p-value. However in order to get that
posterior probability statement out of Bayes rule, one would need to specify a prior probability for H0 and
HA.

Example

Let X ∼ N(µ, 1) with H0 : µ = 0 and HA : µ = 2. Here all our data is just the one X. The alternative
HA makes X larger than it would be under H0 so we decide to reject H0 if X > t0 for some t0. That is
T (X) = X. To find t0 we solve

α =

∫ ∞
t0

ϕ(x) dx

where ϕ is the N(0, 1) pdf. It has CDF commonly denoted Φ (and available in R as pnorm). Here we are
solving

α = 1− Φ(t0).

Now N(0, 1) is a symmetric distribution. This means that ϕ(x) = ϕ(−x). It also implies that Φ(x) =
1 − Φ(−x). (Prove this to yourself if it is not familiar.) So now we know that α = Φ(−t0) from which
t0 = −Φ−1(α). The R function qnorm produces Φ−1, the quantile function of N(0, 1). Now

β = Pr(N(2, 1) < t0) = Pr(N(0, 1) < t0 − 2) = Φ(t0 − 2) = Φ(−Φ−1(α)− 2).

Figure 7.1 shows how t0 and β change with α. Making α small makes β high. Higher than we would like
in this model. If X̄ would be the average of n IID N(0, 1) or N(2, 1) observations then it would have the
N(0, 1/n) distribution under H0 and N(2, 1/n) under HA. For large n we could get both a small α and a
small β.
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Figure 7.1: The top curve shows how t0 depends on α for the example test. The bottom shows β versus α.
There are circles to mark α ∈ {.05, .01, .005, .001}.


