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Abstract

These notes are mnemonics about what was covered in class. They don’t replace being present or
reading the book. Reading ahead in the book is very effective.

6.1 Rao-Blackwell

Before starting on Bayes we briefly covered the Rao-Blackwell theorem. If θ̂ is an estimator of θ with E(θ̂2) <

∞ for all θ and T is a sufficient statistic for θ, then θ̃ = E(θ̂ | T ) has E((θ̃ − θ)2) 6 E((θ̂ − θ)2). The proof
in Rice uses formulas for iterated expectation and the familiar Var(Y ) = Var(E(Y | X)) + E(Var(Y | X)).

Nowhere does that proof use the fact that T is sufficient. A more mathematical book, by Casella and Berger
(Statistical Inference, 1990), states the reason. Conditioning on T is sure to give a function of the data and
hence it is a statistic. You might otherwise get θ̃ that could only be computed by using the known θ. [And
if you had that, you would not have needed any data, much less a statistic.]

6.2 Bayes estimates

Bayes estimates are based on Bayes theorem that we use to reverse the direction of a conditional probability.
Suppose that A1, . . . , An are mutually exclusive and exhaustive events, we know Pr(Ai), we know Pr(B | Ai)
for some event B but we want Pr(Ai | B). Think of n distinct diseases i = 1, . . . , n and one symptom B. Or
B could be a whole collection of symptoms. Then using basic rules of probabilty

Pr(Ai | B) = · · · = Pr(B | Ai) Pr(Ai)∑n
j=1 Pr(B | Aj) Pr(Aj)

.

Similarly for two continuous random variables

fY |X(y | x) = · · · =
fX|Y (x | y)fY (y)∫
fX|Y (x | y)fY (y) dy

.

Get used to seeing a potentially awkward sum or integral in the denominator.

In the Bayesian framework we suppose that the parameter θ of interest is actually the observed value of a
random variable Θ. [Other places in the notes use Θ for the set of legal θ values but here it is a random
variable.] The idea is that some mechanism, we call it “nature” has somehow sampled Θ = θ from a
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distribution fΘ(θ). Then we observe X = x from X ∼ fX|Θ(x | θ). We know X. What we want is the
unobserved Θ. That now plays the role of Y above and we get

fΘ|X(θ | x) =
fX|Θ(x | θ)fΘ(θ)∫
fX|Θ(x | θ)fΘ(θ) dθ

.

In Bayesian estimation we have two main tasks. The first is picking a good model fΘ. That can raise thorny
philosophical issues about which people can reasonably disagree. [Or unreasonably.]

The second is computing some potentially nasty integrals. Sometimes the integrals can be done in closed
form. Sometimes they can be done using symbolic math. Sometimes numerical quadrature, sometimes Monte
Carlo, sometimes Markov chain Monte Carlo (MCMC), sometimes approximate MCMC, and sometimes
nobody can do it at all. In this course we will work from the simple end of the problem, either leaving the
result as an integral, or looking at cases with easy integrals, or using some basic numerical method in the
homework. This course is not about numerics.

We call fΘ the prior distribution of Θ and fΘ|X the posterior distribution of Θ. The prior is what we
know (or believe) before seeing X and the posterior is our updated knowledge or belief after seeing X. We
can write

fΘ|X(θ | x) ∝ fX|Θ(x | θ)× fΘ(θ), i.e.,

posterior ∝ prior× likelihood.

Many books write expressions like

f(θ | x) ∝ f(x | θ)× f(θ), or

p(θ | x) ∝ p(x | θ)× p(θ),

dropping the function identifying subscripts. In that notation p(x) and p(θ) are not the same function p(·).
Think of them as living things that look inside their own parentheses before deciding what function to be.
The class seemed about equally split on whether to use subscripts or not, and to break the tie, the textbook
uses them and so will we.

6.3 Examples

Let θ be the speed of light (meters per second in a vacuum). Suppose that X ∼ N(θ, σ2) where σ2 is a
known value describing the accuracy of our experiment. Then take a prior distribution Θ ∼ U [A,B] for
A = 299× 108, and B = 301× 108. Now we get a posterior distribution

fΘ|X(θ | x) =

1√
2πσ

e−
1
2 (x−θ)2/σ2 × 1A6θ6B∫ B

A
1√
2πσ

e−
1
2 (x−θ)2/σ2

dθ
.

The prior here might represent somebody’s rough idea of the truth before getting any data. Notice that here
the prior belief has A 6 θ 6 B with absolute certainty. No amount of data can overturn that certainty. This
is a good thing if what we are certain about is correct. A more cautious approach is to use a heavier tailed
prior just in case.

Now let Θ be the probability that a ride-hailing driver gets 5 points from the customer. Let X ∼ Bin(n, θ)
be the observe number of 5s in n rides (IID Bernoulli trials). Perhaps our prior belief is well described by



Lecture 6: Bayesian estimation 6-3

U [1/2, 1]. Alternatively, if we have by now a good estimate θ̂i for N = 10,000 other drivers similar to the
one we are interested in, then we can use a discrete prior distribution

pΘ(θ) =
1

N

N∑
i=1

1θ=θ̂i .

Suppose for instance that out of those N historical drivers exactly 30 of them hat θ̂ = 0.93. Then

pΘ(0.93) =
1

N

N∑
i=1

10.93=θ̂i
=

30

10,000
= 0.003.

6.4 Conjugate distributions

Suppose that X ∼ Bin(n, θ) and the prior distribution for Θ is Beta(α, β). In class we did examples like this,
multiplying prior by likelihood. We can ignore any constant factors. Constant means they don’t depend on
θ so for our purposes a function of x is a constant. We get a posterior

fΘ|X(θ | x) ∝ θα−1(1− θ)β−1

(
n

x

)
θx(1− θ)n−x

and so we have
fΘ|X(θ | x) ∝ θx+α−1(1− θ)n−x+β−1.

The Beta(α + x, β + n− x) PDF is proportional to this. There can be only one PDF proportional to that.
Therefore the posterior distribution actually is Beta(α+ x, β + n− x).

This posterior distribution is in the same family as the prior distribution. That is an enormous convenience.
We say that the Beta distribution is the conjugate prior to the Binomial distribution. Conjugacy is an
important special case where the numerical problems in Bayes are easy to handle.

In class we had the example of boy and girl births in Laplace’s time in 18th century France. Also Laplace’s
example of whether we get another sunrise in the next 24 hours, where the posterior is Beta(N + 1, 1)
if you start with a U [0, 1] = Beta(1, 1) prior and get N events in a row. That is called Laplace’s rule
of succession. It’s useful for generating nonzero probability estimates of p when you get X = 0 for
X ∼ Bin(n, p). Somebody writing a language processing system might have needed a model for whether the
next word they saw would be “XKCD”.

Now that the posterior is Beta(α+x, β+n−x) we can interpret α and β. Every time we get new data with
x successes in n trials, we add x to the first parameter and n − x. So we can think of α and β as roughly,
the number of successes and failures that had been observed before any data were gathered at all. Note that
the Beta distribution allows fractional α and β so they might not be actual counts.

If the prior and likelihood are both of the form exp(−Aθ2 − Bθ − C) for numbers A, B and C that might
depend on x, then so is the posterior. This means that a Normal prior and normal likelihood give a normal
posterior. See several cases worked out in Rice Ch 8.

6.5 Flat priors

You could take a flat prior like U [0, 1] or U [−106, 106] to model not knowing anything about Θ. That is
mildly problematic becuase Θ3 for example gets a non-uniform distribution so suddenly you know something
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about Θ3 without knowing about Θ. People may choose a flat prior on whichever function of Θ is most
directly connected to their interests.

There is no uniform distribution over [0,∞) or R or {0, 1, 2, . . . }. A flat prior over any of those sets does
not exist as a distribution. Sometimes we use an improper prior proportional to some positive constant,
such as 1, over those sets. This is also called a noninformative prior. The posterior distribution is then

fΘ|X(θ | x) ∝ 1× fΘ(θ), i.e.,

posterior(θ) ∝ likelihood(θ).

The posterior distribution is then proper if and only if the likelihood has a finite integral over θ.

6.6 Bayesian estimates

If we have the whole posterior distribution then we have several ways to pick an estimate θ̂. It could be
the mean, median or mode of the posterior distribution. The posterior mean minimizes the posterior mean
squared error

EΘ|X((θ̂ −Θ)2 | x).

The posterior median minimizes the posterior mean absolute error

EΘ|X(|θ̂ −Θ| | x).

The posterior mode maximizes the posterior probability of a correctly guessed Θ (or a guess within some
small error dx).


